OMRON

Machine Automation Controller NJ-series

General Ethernet (TCP/IP) Connection Guide

OMRON Corporation
Auto Focus Multi Code Reader
V330-F / V430-F-series

Network

Connection

Guide

About Copyrights and Trademarks

Microsoft product screen shots used with permission from Microsoft.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in
Japan and other countries for OMRON factory automation products.

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

Contents

1. Related Manualscoovveiiiiiiiieiiec s e s nnnene 1
2. Terms and Definitions.........ccccccceriiiriinriicnnncsrrrrs e 2
3. Restrictions and Precautions..........cccccmiiiiiiiiiiiisnnccee s 3
L S © V- V- 4
5. Applicable Products and Support TOOISccccceriiicciccmrreen e 5
5.1. Applicable Productscoovviiiiiiiic e 5
5.2. Device Configuration...........cccooee e, 6
6. Ethernet Settings.......ooo e 9
6.1. Ethernet Communication Settings...........ccccoee e 9
6.2. Example of Connection Check for Communications 10
7. Connection Procedure..........cccoiiiririrnnnsnnssssssss s s s s s s s s ssssss s 1"
71. OPeration FIOW.......couii i 11
7.2. Code Reader SEtUPvvuiiiiiiiieeece e 12
7.3. Controller SEtUPooviiiie e 17
7.4. Checking the Connection Status.........cccccveeiiiiiciiie e, 23
8. Initializing the System........cccccciiiiiciiiii e ———— 26
8.1. Initializing the Controller................uueiiiiiiiiiiiiiiieeeeeeeeeeaees 26
8.2. Initializing the Code Reader ... 26
9. Project File..... s 27
9.1. OVEIVIBW ...t e e e e e e e e e eeaaaaas 27
9.2. Code Reader Commandcoooovviiiiiiiiiii 31
9.3. Error Judgment Processing........coooooiioiiioiiiieii e 33
9.4. Variables USEed.........ccooiiiiiiiiie e 35
9.5. Programs (ST Language)........ccoeeevieiiiiii e 40
9.6. TimMING Chart.......oeeiieieeiieeee e e b asaaeerarserrnees 57
9.7. ErrOr PrOCESSING ...euuitiiiiiiiiiiiiiiiiiiiettitt ettt eeeeeeeeeeeeeeeeeeeeees 63

VT S J=AVZ Y TeT o TN o 153 o 67

1. Related Manuals

1. Related Manuals

To ensure system safety, make sure to always read and follow the information provided in all

Safety Precautions and Precautions for Safe Use in the manuals for each device which is

used in the system.
The following OMRON Corporation (hereinafter referred to as “OMRON”) manuals are related

to this document:

Cat. No. Model Manual name

W500 NJ Series NJ-series CPU Unit Hardware User’s Manual

W501 NJ/NX Series NJ/NX-series CPU Unit Software User’s Manual

W506 NJ/NX Series NJ/NX-series CPU Unit Built-in EtherNet/IP Port
User’s Manual

W504 SYSMAC-SE2ooo Sysmac Studio Version 1 Operation Manual

W502 NJ/NX Series Machine Automation Controller Instructions
Reference Manual

2432 V320-F/V330-F/V420-F/V430-F | MicroHAWK V320-F/V330-F/V420-F/V430-F

Series Series Barcode Reader User Manual
2407 V320-F/V330-F/V420-F/\V430-F | Autofocus Multicode Reader MicroHAWK

Series

V320-F/V330-F/V420-F/\V430-F Series User
Manual for Communication Settings

2. Terms and Definitions

2. Terms and Definitions

Term

Description/Definition

IP Address

Ethernet uses IP addresses to achieve communications.

Each IP address (specifically, Internet Protocol address) identifies a
specific node (host computer, controller, etc.) on an Ethernet network,
IP addresses must be set and managed so that they are not duplicated.

Socket

A socket is an interface that allows you to directly use TCP or UDP
functions from a user program.

The NJ Series Machine Automation Controller performs socket
communication using standard socket service instructions.

To use socket services, you need to establish a connection with a remote
node and disconnect it after use. In this document, processing for
establishing a connection is referred to as “socket open” or “TCP open”
and for disconnecting it as “socket close” or “close”.

You can use the socket services to send and receive arbitrary data to
and from the remote node.

Active and Passive

When you open a TCP socket connection with nodes, open processing is
executed for each node.

The method to open a connection differs depending on whether the node
is to serve as a client or server.

In this document, processing to open a connection as a server is referred
to as “passive open” and as a client is referred to as “active open” or
“active open processing”.

keep-alive Function

When a remote node (server or client) does not respond for a set period
of time or longer in TCP/IP socket services, the keep-alive function sends
a communications frame to the node to check the connection status.

If the node does not respond to it, the function performs this check at a
certain interval, and closes the connection if it does not respond to all
check frames.

linger function

This is a TCP socket option that sends RST data when the TCP socket is
closed. This enables immediate open processing using the same port
number, without waiting for the port to be opened.

If the linger option is not specified, the controller issues FIN data when
the TCP socket is closed and, after that, performs end control such as a
send data arrival check with the remote node for approximately 1 minute.
Therefore, TCP sockets with the same port number may not be used
immediately.

3. Restrictions and Precautions

Restrictions and Precautions

(1) Before building a system, understand the specifications of devices which are used in the
system. Allow some margin for ratings and performance, and provide safety measures
such as installing a safety circuit in order to minimize the risk in case of failure.

(2) To ensure system safety, make sure to read and follow the information provided in all
Safety Precautions and Precautions for Safe Use in the manuals for each device which is
used in the system.

(3) The user is encouraged to confirm the standards and regulations that the system must
conform to.

(4) ltis prohibited to copy, to reproduce, and to distribute a part or the whole of this document
without the permission of OMRON Corporation.

(5) The information contained in this document is current as of March 2023.

It is subject to change for improvement without notice.

The following notations are used in this document.

Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or may result in serious
injury or death. Additionally, there may be severe property
damage.

/\\ WARNING

. Indicates a potentially hazardous situation which, if not avoided,
Caution N -
may result in minor or moderate injury, or property damage.

Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

[E' Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

@ Note

Additional information to read as required.
This information is provided to increase understanding or make operation easier.

Symbols

The filled circle symbol indicates operations that you must do.
The specific operation is shown in the circle and explained in text.
This example shows a general precaution for something that you must do.

w

4. Overview

4. Overview

This document describes the procedures for connecting the OMRON code reader products
(V330-F/V430-F Series) to an NJ Series Machine Automation Controller (hereinafter referred
to as the controller) via Ethernet and for checking their connections.

You can establish an Ethernet communication connection by understanding the setting
procedures and key points of setup through the Ethernet communication settings in the
project file prepared in advance.

In this project file, the Ethernet connection is checked by sending a read trigger command to
the code reader and receiving the read data from it.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.

Name Filename Version
Sysmac Studio Compact OMRON_V330_V430_NJ_ETN(TCP)_V100. Ver. 1.00
Project File (Extension: smc2) | smc2

The purpose of this document is to describe the wiring methods, communication

settings, and setting procedures required to establish a connection for
communications with applicable devices. In addition, the program used in this
document is designed to check that the connection has been correctly
performed (connection check). Since the program is not intended for permanent
use on-site, full consideration is not given to functionality and performance.
When configuring an actual system, please refer to the wiring methods,
communication settings, and setting procedures described in this document to
design and create a program that meets your purpose.

5. Applicable Products and Support Tools

5. Applicable Products and Support Tools

I 5.1. Applicable Products
The applicable devices that are required to ensure a connection are as follows:

Manufacturer | Name Model Version
OMRON NJ Series CPU Unit | NJ501-1500
NJ501-1400 s lat
NJ501-1300 amle o a.e;. ted
NJ301-00000 ?/er3|orl1 as indicate
in section 5.2.
OMRON Code reader V330-FOOOOOO0O-000

V430-FOOOOOOO-00n

@ Note

This document describes the procedures for establishing the communication connection of
the device, and does not describe the operation, installation and wiring method of the device.
For details on the above products (other than communication connection procedures), please
refer to the instruction manual for the product or contact OMRON.

@ Note

From among the above applicable devices, this document uses the devices listed in section
5.2 for the connection check. When using devices that are not described in section 5.2, check
the connection according to this document.

[E' Precautions for Correct Use

The connection and connection check procedures described in this document use the
devices listed in section 5.2, from among the above applicable devices.

You cannot use devices with versions earlier than the versions listed in section 5.2.

To use models that are not listed in section 5.2. or versions that are later than those listed in
section 5.2., check the differences in the specifications according to their instruction manuals
before operating the devices.

5. Applicable Products and Support Tools

I 5.2. Device Configuration

The system components required for reproducing the connection procedures described in this
document are as follows.

» Configuration with V330-F

NJ301-1200 Switching V330-FO64N12M-NNX

PC (Built-in EtherNet/IP Port) hub

(Sysmac Studio W4S1-05C

installed, OS:
Windows 10)

USB cable
LAN cable PoE injector

T 24 VDC power supply

Manufacturer | Name Model Version

OMRON NJ Series CPU Unit NJ301-1200 Ver. 1.19

(Built-in EtherNet/IP Port)

OMRON Power Supply Unit NJ-PA3001

OMRON Switching hub W4S1-05C

OMRON Sysmac Studio SYSMAC-SE2[10]] Ver. 1.44

OMRON Sysmac Studio Project File OMRON_V330_V430_NJ_ | Ver. 1.00

ETN(TCP)_V100. smc2
- PC (OS: Windows 10) -—-

- USB cable -

(USB 2.0-compliant B-type
connector)

LAN cable (STP (shielded,
twisted-pair) cable of Ethernet

category 5 or higher)
OMRON Code reader V330-FO64N12M-NNX Ver. 2.1.0
OMRON PoE (Power over Ethernet) injector | Select one that can be ---

powered via Ethernet.

- 24 \/DC power supply -

5. Applicable Products and Support Tools

» Configuration with V430-F

NJ301-1200 Switching V430-FO00M12M-SRX
PC (Built-in EtherNet/IP Port) hub
(Sysmac Studio W4S1-05C
installed, OS:
Windows 10)
USB cable Ethernet cable I/O Cable
LAN cable V430-WE-3M V430-W8-3M
T 24 VDC power supply 24 VDC power supply
Manufacturer Name Model Version
OMRON NJ Series CPU Unit NJ301-1200 Ver. 1.19
(Built-in EtherNet/IP Port)
OMRON Power Supply Unit NJ-PA3001
OMRON Switching hub W4S1-05C
OMRON Sysmac Studio SYSMAC-SE2000 Ver. 1.44
OMRON Sysmac Studio Project File OMRON_V330_V430_NJ_ | Ver. 1.00
ETN(TCP)_V100.smc2
PC (OS: Windows 7)
USB cable
(USB 2.0-compliant B-type
connector)
LAN cable (STP (shielded,
twisted-pair) cable of
Ethernet category 5 or
higher)
OMRON Code reader V430-FOOOM12M-SRX Ver. 2.1.0
OMRON I/O Cable V430-W8-3M
OMRON Ethernet cable V430-WE-3M

24 \VDC power supply

5. Applicable Products and Support Tools

[E' Precautions for Correct Use

=

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

Note

The configuration may not be reproduced if the system component models or versions differ.
Check your configuration and, if there is any difference in the models or versions, contact
OMRON.

Note

This document assumes that the USB is used to connect the controller. For information on
how to install the USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection
in Appendices of the Sysmac Studio Version 1 Operation Manual (Cat. No. W504).

Note

Refer to the Industrial Switching Hub W4S1 Series User Manual (0969584-7) for power
supply specifications that can be used for 24 VDC power supply (for the switching hub).

Note

Refer to the MicroHAWK V320-F/V330-F/V420-F/V430-F Series Barcode Reader User
Manual (Cat. No. Z432) for the power supply specifications that can be used for 24 VDC
power supply (for the code reader).

6. Ethernet Settings

6. Ethernet Settings

This section shows the specifications of the communication parameter settings, variable
names and other information provided in this document.

@ Note

This document and the project file only cover the operations that you can perform using the
settings and commands described in this section. To use communication settings that are not
described here, you need to modify the project file.

I 6.1. Ethernet Communication Settings
The settings required to perform Ethernet communications are as follows.

6.1.1. Communications Settings for Setting PC and Code Reader
This document assumes that you use the settings below to set the code reader using a setting

PC.
Parameter name Setting PC Code reader
IP address 192.168.188.100 192.168.188.2 (default)
Subnet mask 255.255.0.0 255.255.0.0 (default)
Gateway Blank (default) 0.0.0.0 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices
are connected within the same segment of the network.

6.1.2. Communication Settings for Ethernet Unit and Code Reader
It is assumed that you use the settings below to connect the Ethernet Unit and the code

scanner.
Parameter name NJ301-1200 Code reader
(Built-in EtherNet/IP Port)
IP address 192.168.188.1 192.168.188.2 (default)
Subnet mask 255.255.0.0 255.255.0.0 (default)
Gateway - 0.0.0.0 (default)
Port number (set by software part) 2001 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices
are connected within the same segment of the network.

I 6.2. Example of Connection Check for Communications

6. Ethernet Settings

This document assumes that you use a program in structured text (hereinafter, ST) language
to execute “socket open”, “send and receive”, and “socket close” from the controller to the

code reader.
The controller sends a “read trigger” command to the code reader. The code reader sends the

read data back to the controller.

An overview of the operation is shown below.

Local_
SrcData

Local_
RecvData

CPU

EtherNet/IP port

Ethernet

Code reader

Project file

Socket

communications

ST language program
l Socket open
> >
< <
Send data
Variable
Send data > >
area Sends serial command.
< > (Read trigger
command) Reads code.
T
|
Read data
Receive data | <
area .
Receives read data.
Socket close
>

10

7. Connection Procedure

7. Connection Procedure

This section describes the procedures for connecting the controller to an Ethernet network.

In this document, it is assumed that the controller and the code reader use the factory default
settings. For how to initialize the devices, refer to Section 8. Initializing the System.

I 7.1. Operation Flow

The procedures for connecting and setting up the controller via Ethernet are as follows.

“ 7.2. Code Reader Setup

v

7.2.1. Setting the Parameters

v

7.3. Controller Setup

v

7.3.1 Starting the Sysmac Studio and
Loading the Project File

v

7.3.2 Checking Parameters and
Executing builds

v

7.3.3 Going Online and Transferring

the Project Data

v

7.4. Checking the Connection Status

v

7.4.1 Executing the Project File and
Checking the Receive Data

[E| Precautions for Correct Use

Set up the code reader.

Set the parameters for the code reader.

Set up the controller.

Start the Sysmac Studio Automation Software and
load the Sysmac Studio Project File.

Check the setting parameters. Then, perform
program checks and builds on project data.

Place the Sysmac Studio online and transfer the
project data to the controller.

Execute the transferred project file to check that
Ethernet communications work correctly.

Execute the project file and check that correct data
is written to controller variables.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

11

I 7.2. Code Reader Setup

7. Connection Procedure

Set up the code reader.

[E| Precautions for Correct Use

Use a PC (personal computer) to set the parameters for the code reader.

Note that you may need to change the PC settings depending on the condition of your PC.

7.2.1. Setting the Parameters
Set the parameters for the code reader.
Set the IP address of your PC to 7192.168.188.101 and its subnet mask to 255.255.0.0.
Using V330-F .
1 [Using] Seitehing N V330-F0B4N12M
W4S1-05C PoE injector -NNX
Connect the cord reader and the I ————— 1
1
switching hub to the PoE - 1 T
LAN cable I LAN cable

injector with a LAN cable.

[Using V430-F]

Connect the Ethernet connector
of the code reader to the
switching hub with the Ethernet
cable.

Connect the 1/O cable to the I/O
connector and turn ON the 24
VDC power supply.

* In this document, only the
power supply wires of the 1/0
cable are connected and
checked. Be careful not to
short-circuit any other wires.

* Ground the shield wire as
needed. For more information
on grounding, please refer to
Grounding in Appendices of
the MicroHAWK
V320-F/V330-F/VV420-F/\V430-
F Series Barcode Reader User
Manual (Cat. No. Z432).

Ethernet cable

V430-WE-3M EIH —
| Switching
[] hub
0 Ethernet 24 VDG
Brown 24V power
Connector Connector Blue ov [supply
Red COM_IN
Red Striped COM_OUT
White TRIG
Black HOST_RxD
Purple HOST_TxD
Gray OUTPUT1
I1/0 Cable Gray Striped OUTPUT2
V430-W8-3M Pink OUTPUT3
Green DEFAULT
Yellow NEW MASTER
None (Shield)

12

7. Connection Procedure

2 Connect the PC to the switching

hub with a LAN cable.

Connect 24 VDC power supply
(for the switching hub) to the
switching hub.

LAN cable

24 VVDC power supply

Set the IP Address of the PC.
For the IP address, enter
192.168.188.100.

For the subnet mask, enter
255.255.0.0.

For how to open the screen
shown on the right in Windows
10, please refer to step 4.

General

‘fou can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

() Obtain an IP address automatically
(®) Use the following IP address:

IP address: | 192 . 168 . 188 . 100 |
Subret mask: |255.255. 0 .0 |
Default gateway: | . . . |

Obtain DMS server address automatically

(®) Use the following DS server addresses:

Preferred DNS server: | . . . |

alternate DMNS server: | . . . |

[validate settings upon exit e

Cancel

(1) From the Windows Start Menu, select Control Panel — Network and Internet — Network

and Sharing Center.

(2) Click on Local Area Connection. The Local Area Connection Status Dialog Box is

displayed. Click Properties.

(3) In the Local Area Connection Properties Dialog Box, select Internet Protocol Version 4
(TCP/IPv4), and click the Properties Button.

(4) Click the OK Button.

Start your browser and enter
http://192.168.188.2.
“Google Chrome” is the
recommended browser.

-

@) Mew Tab X +

c (of? 192.168.188.2]

13

7. Connection Procedure

When the WebLink startup
screen is displayed, go to step

: OMmRON

If you cannot access by

WeblLink, go to step 7. OOW E B L I N K

Version 2.1.0.4004

If the WebLink startup screen does not appear, it means that communications are not
established between the code reader and the PC. Please check the following.
* The code reader and the PC have a proper physical (cable) connection.

— Refer to steps 1 and 2 for checking the connection.
» The IP Addresses of the PC and code reader are set correctly.

— Refer to step 4 for setting the IP address of the PC.
For other measures that can be taken, please refer to When unable to access by WebLink in
Q&A in Appendices of the MicroHAWK V320-F/V330-F/V420-F/V430-F Series Barcode
Reader User Manual (Cat. No. Z432).

The WebLink screen appears.) R

€ C A SWANTUGLAR | hpd192.168.188.2Weblink! © % I 02

| .stm g2 setup - - Run OMRON m %

Click on the Setup Tab and, in
Read Cycle Sequence, set
Cycle to Triggered.

Read Cycle Sequence

T

Serial Trigger Character <SP=
| Trigger Delay 0 ps
| Timeout after 500 ms

10

Click on the gear icon on the
upper right of the screen and Om Ron B q *
select Advanced. .

B &R

Advanced | Language... Te 3
-

o T @

Beeper Guided mags

oL Siorage

14

7. Connection Procedure

11 The Advanced Settings Screen A

appears.

PP o - = iga n Y
Se|eCt the Communlcatlons Camera Setup ommunications| Read Cycle Symbologies o Symbol Quality
Tab and check the settings for Search for settings
Ethernet shown in the red .

; v RS232A
rame. Baud Rate 115.2K
Parity None
To use the defaults, you do not Stop Bits One
. Data Bits Eight
need to change the settings. - o—
Ethernet Enabled
If you need to change the IP j Sddeess L
Subnet 255.255.0.0
address, for example when
. . Gateway 0.0.0.0
connecting multiple code IP Address Mode Static
readers, change the IP Address TCP Port 1 2001
and subsequent settings as TCP Port 2 2003
Search and Configure Mode Enabled
necessary.
EtherNet/IP Enabled
EtherNet/IP Byte Swapping Disabled
PROFINET Disabled
PROFINET Byte Swapping Disabled

12 Click on the icon shown in the

red frame to save the settings to O m Ron

the code reader.

13 Finally, check the version
number of the code reader. , m Ron
Click on the gear icon on the
upper right of the screen and
select About WebLink.

Advancad

<)

Beeper

| Restore Default Settings |

Activate Account Management..

About WebLink..

15

7. Connection Procedure

so you can check the current

version of the code reader. o m R o n

Please update the code reader

to the latest version if CPWEBLINK

Reader Model V430-F
Serial Number 3835476
Part Number 7412-2000-1005-006
MAC ID 00:0B:43:3A:92:0C
Sensor 1280x960 (SXGA)
Firmware 35-9000097-2.1.1 Alpha 1
Boot 35-9000033-200RC 2
Browser Chrome 101.0.4951.54
Operating System Windows 10
Screen Resolution 1320x1040

Contact Us

Done

16

7. Connection Procedure

I 7.3. Controller Setup

Set up the controller.

7.3.1. Starting the Sysmac Studio and Loading the Project File
Start the Sysmac Studio Automation Software and load the Sysmac Studio Project File.
Install the Sysmac Studio and USB driver on the PC beforehand. In addition, connect the
PC and the controller with a USB cable, and turn ON the power supply to the controller.

1 Start the Sysmac Studio. [—
Click Import.

* If a user account control dialog
box is displayed at startup,
select the option to start.

Sysmac Studio

ion Software

1.49

2 The Import file Dialog Box is B mport ile %
displayed. Select the project file « “ 4 || « Desktop > Projectfile v | © | | Search ProjectFile P
OMRON_V330_V430_NJ_ETN(Tpxine [oEks =- m @

Name Date modified Type
TCP)_V100. smc2 (Sysmac 5 Quick access |) -P
- = OMRDN_VBO_VA}D_NJ_EW(‘I‘(P]_WDD‘c.I 11/7/2022 4:23 PM CSM2 File
Studio Project File) and click > [JTIEEE
Open ¥ Metwork

* Obtain the latest version of the

Sysmac Studio Project File .)
from the OMRON website. File name: | OMRON_V330_V430_NJ_ETN(TCP) V100.¢ v\ et e (o
| Open | Cancel
3 The OMRON_V330_V430_ETN i i o e e ——
(TCP)_V100 Project Window is El2 I
displayed. |l e

The window consists of three
panes: “Multiview Explorer” on
the left side, “Edit Pane” in the
center, and “Toolbox” on the
rightside.

17

7. Connection Procedure

7.3.2. Checking Parameters and Executing builds
Check the setting parameters. Then, perform program checks and builds on project data.

1 Double-click Built-in L J Configurations and Setup
EtherNet/IP Port Settings o EtherCAT
under Configurations and B = CPU/Expansion Racks
Setup — Controller Setup in the

Multiview Explorer.
L M Operation Settings

L s

= £+ Motion Control Setup

2 The Built-in EtherNet/IP Port pem—

Settings Tab Page is displayed
TCP

in the Edit Pane. TPl i

. ¥ IP Address
Select TCP/IP, select the Fixed O Fixed setting

setting Option in IP Address, Ml 192 - 168 188 . 1
) Subnet mask PRI I
and check that the settings are

Default gateway [T
as follows. : @ Obtain from BOOTP server.

IP Address: 192.168.188.1 @ Fix at the IP address obtained from BOOTP server.
DNS
Subnet mask: 255.255.0.0 -

p Host Name - IP Address
Default gateway: . . .

¥ Keep Alive

Keep Alive @ Use O Do not use
Check that Keep Alive is set as Keep Alive monitoring time |JNER] scc
Linger optior. Q) Do not specify) Specify

follows.
¥ |P Router Table

Keep Alive: Do not use
Linger option: Do not specify

3 Double-click Task Settings [Event Settings
under Configurations and L)
Setup in the Multiview Explorer.

4 The Task Settings Tab Page is
displayed in the Edit Pane.
Select Program Assignment
Settings and confirm that

i [¥ W PrimaryTask
Primary Task is set to M PrimaryTa

Program name
ProgramO.

1 [Program(

18

7. Connection Procedure

5 Select Check All Programs
from the Project Menu.

Project Controller Simulation Tool
Check All Programs F7
Check Selected Programs Shift+F7

Build Controller Fa
Rebuild Controller

© The Build Tab Page is displayed
under the Edit Pane.
Confirm that 0 is shown for both
Errors and Warnings.

wescription Location

[Select Rebuild Controller from
the Project Menu.

Project Controller Simulation Tool
Check All Programs F7
Check Selected Programs Shift+F7

Build Controller Fa
Rebuild Cantroller

A dialog box showing the d

progress of conversion appears. g

8 In the Build Tab Page, confirm
that 0 is shown for both Errors
and Warnings.

N=z_iption Location

19

7. Connection Procedure

7.3.3. Going Online and Transferring the Project Data
Place the Sysmac Studio online and transfer the project data to the controller.

1 Select Communications Setup Controller Simulati Joolssiliindowsskicls
from the Controller Menu. |i c P

Change Device

Cnline Ctr+W
2 The Communications Setup [——— o x
. . . ‘¥ Connection type
D 1a Iog BOX IS d IS played . Select a method to connect with the Controller to use every time you go online.
In Connection type, select the
Direct con nection via USB o > these options at every online connection.
na USB

Option.
CIICk OK' ¥ Remote IP Address

Specify the remote IP address.

USB Communications Test Ethernet Communications Test
]
¥ Options
Kl Confirm the serial ID when going anline.
Kl Check forced refreshing when gaing offline.
'¥ Response Monitor Time
Monitor Time in the communications with the Controller.(1-3600sec)
iently large value when connecting to the Controller via multiple networks, such as VPN connection.
oK Cancel
3 Select Online from the Controller Simulation Tools Window Help

Controller Menu. Communications Setup...

e |

Change Device

A confirmation dialog box

) Online Ctrl+W
appears. Click Yes.

* The dialog box displayed

Sysmac Studio
differs depending on the status

The CPU Unit has no name.
Do you want to write the project name [new_Controller_0] to the CPU Unit name? (Y/N)

of the controller being used.
Select Yes to proceed with the

operation.

@ Note

Refer to Section 6 Online Connections to a Controller in the Sysmac Studio Version 1
Operation Manual (Cat. No. W504) for details on online connection to the controller.

20

7. Connection Procedure

4 When you are online, a yellow
border appears in the upper part
of the Edit Pane.

Multiview Explorer

5 Select Synchronize from the
Controller Menu.

Controller Simulation Tools Window Help

Offline Ctrl+Shift+W

Synchronize.., Ctrl+M

© The Synchronization Dialog Box
is displayed.
Confirm that the check box for
the data to transfer (i.e., NJ301
on the figure on the right) is

Controller: Data Name

selected, and click Transfer to
Controller.

[A confirmation dialog box sysmac Sudio
appears. Click Yes. Confirm that ther oblem if the controller operation is stopped.

The operating m changed to PROGRAM maode. Then, EtherCAT slaves will be reset and forced refreshing will
be cancelled.
Are you sure that you want to execute the transfer?(Y/N)

I Yes No
The Synchronizing Dialog Box

appears.
Synchronizing...

A confirmation dialog box
appears. Click Yes.

Sysmac Studic

Confirm that there is no problem if the controller operation is started.
The operating mode will be changed to RUN mode.

Do you want to continue?(Y/M)

Yes I No

21

7. Connection Procedure

Confirm that the synchronized
data is now shown in the text
color of Synchronized and the

following message is displayed:

The Synchronization process

successfully finished.

If there is no problem, click

Close.

* If synchronization fails, check
the physical connections and
redo the procedure.

22

7. Connection Procedure

I 7.4. Checking the Connection Status

Execute the transferred project file to check that Ethernet communications work correctly.

|'E| Precautions for Correct Use

Before performing the following steps, confirm that the LAN cable is connected securely.
If it is not connected, first turn OFF the power supply to the device and then connect the LAN
cable.

7.4.1. Executing the Project File and Checking the Receive Data
Execute the project file and check that correct data is written to controller variables.

Precautions for Safe Use

Confirm the system safety before you execute the project file.
The connected devices may malfunction regardless of the operating mode of the unit,
resulting in injury.

1 This document uses the 2D code
shown in the right figure as an
example of reading.

Set the code reader to the
position where it can read the 2D
code in the right figure.

2 Confirm that the RUN mode is
shown in the Controller Status
Pane of the Sysmac Studio.

Controller Status

ONLINE @ 192.168.188.1
ERR/ALM @ RUN mode

If PROGRAM mode is shown,
select Mode — RUN Mode from

the Controller Menu. Controller Simulation Tools Window Help
1
1
werMNet/IP Device List
Offline Ctrl+Shift+W
Synchronize... Ctrl+M
Transfer... 4
Mode L RUN Mode..,
A confirmation dialog box g
appears. Click Yes. _
Sysmac Studic

Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (Y/N)

7. Connection Procedure

3 Check that the controller is in a
Monitor state by the Monitor and
Stop Monitoring Buttons in the

Sysmac Studio toolbar. B Vonitor

The controller is in a Monitor

state if the Monitor Button is E Stop Monitoring

selected (not selectable) and the

Stop Monitoring Button is Controller Simulation Tocls Window Help

[
selectable, as shown in the i

I
figure on the right.

* If the controller is in a Stop Offline Ctrl+Shift+W
Monitoring state, select Synchronize.. Ctrl+ M
Monitor from the Controller Transfer... ’
Menu in the Sysmac Studio. Mode g

Maonitor

4 Select Watch Tab Page from the
View Menu.

View Imsert Project Controller Simulation Tools

Multiview Explorer Alt+1
Project Shortcut View Alt+5Shift+1
Toclbox Alt+2
Output Tab Page Alt+3
Watch Tab Page Alt+4

t Watch Tab Page(Table) Alt+5Shift+4

5 The Watch window Tab Page is
displayed under the Edit Pane.

Program name

L s

new_Controller_0 Program0.Input_Start TRUE FALSE

new_Controller_0 Program0.Qutput_ErrCode _

6 Confirm that the variables shown
in the figure on the right are
listed in the Name column.

Program0.Input_Start —— Start of input

Program0.Output_ErmCode

Program0,Output SktCmdsErrorlD
Program0.Output SkTcloseErrorlD

Error codes

* If any of the required variables

TCP
are not listed, click Input Name Program0.Qutput_MErmCode connection
and add them. Program0.Qutput_EtnTepSta status

Program(.ETN_SendMessageSet_instance.Send_Data
Program(.Output_RecvMess —
A\l Program(,Local_Status _-

* In the following description,

“Program0” of the variable
names in the Name column is

omitted. Program execution status Receive data Send data

24

7. Connection Procedure

7 Click TRUE in the Modify
column of Input_Start.
The Online value of Input_Start
changes to True.
The program starts running and
the controller performs Ethernet
communications with the code
reader.

| Name |Online value! Modify
Program0.Input_Start False | TRUE 'FALSE

Program@.Input_Start

8 When the communications have
ended normally, the values of the
error codes are 0.

The value of the TCP connection

status (Output_EtnTcpSta) is

_CLOSED.

* If the program ends with an
error, the error code will be
stored according to the error
that occurred. Refer to 9.7.
Error Processing for details on
error codes.

In addition, the Online value of
Local_Status.Done indicating the
program execution status is
True. If the program ends with an
error, the value of

Local Status.Erroris True.

* If you click FALSE for
Input_Start, the values of
Local_Status also change to
False. For more information,
refer to 9.6. Timing Chart.

|Online valuel Modify |
Program(.Input_Start FALSE I

Program0.Output_ErrCode | 0000 _
Program0.Output_SktCmdsErrorlD | 0000 _
Program(.Output_SkTcloseErrerlD | 0000 _
Program0.Output_MEmCode | 0000 0000 _

Program0.Output_EtnTcpSta _CLOSED]:|

Mame |Online valuel Modify

Program(.Local_Status -

False TRUE FALSE

True TRUE FALSE
False TRUE FALSE

O The response data received from
the code reader is stored in
Output_RecvMess.
(ETN_SendMessageSet_instanc
e.Send_Data is a send
command.)

Specify and check the
referenced area in the Watch Tab
Page, as shown in the figure on
the right.

* The receive data in the figure
on the right varies depending
on your environment.

* For details on the command,
refer to 9.2.2. Command
Settings.

Name I Online value

Program(.Input_Start True

Program0.Output ErrCode
Program0.Output_SktCmdsErrorlD

Program0.Output_SklcloseErrorlD

Program0.Output MEmCode 0000 0000
Program0.COutput_EtnTepSta _CLOSED

Program.ETM_SendMessageSet_instaifiedes

Program0.Output_Recviess

Response Format

Read data
A
la Y
112(3/4(5/6(7|8[9|0|/A|B|C|D|E| CR | LF
Footer

25

8. Initializing the System

8. Initializing the System

This document assumes that each device uses the factory default settings.
If you change their settings from the defaults, you may not be able to perform various setting
procedures as described.

] 8.1. Initializing the Controller
To initialize the controller, initialize the CPU Unit.
Before initialization, place the controller in PROGRAM mode, and select Clear All Memory
from Controller Menu in the Sysmac Studio. When the Clear All Memory Dialog Box is
displayed, confirm the contents and click OK.

Clear All Memory — N Y

Clear All Memory

This function initializes the target area of destination Controller.
Confirm the area to initialize first, and press the OK button.

CPU Unit Name: new_Controller_0
Modek MNJ301-1200
Area: User Program
User-defined Variables
Controller Configurations and Setup
Security Information
Settings of Operation Authonty (initialization at the next online)

B Clear event log

Cancel

| 8.2. nitializing the Code Reader
For information on initializing the code reader, please refer to How to initialize the settings? in
Q&A in Appendices of the MicroHAWK V320-F/VV330-F/V420-F/V430-F Series Barcode
Reader User Manual (Cat. No. Z432).

26

9. Project File

9. Project File

This section describes the details of the project file used in this document.

I 9.1. Overview
This section describes the specifications and functions of the project file used for connecting a
V330-F/V430-F Series Code Reader (hereinafter referred to as “code reader”) to a controller’s
built-in EtherNet/IP port (hereinafter referred to as “built-in EtherNet/IP port”).

“Project file” here refers to a Sysmac Studio Project File.

The project file contains the following data.

* Built-in EtherNet/IP port communication settings and program task settings

* Program and function blocks for socket communications

* Variable tables and data type definition of variables used in the ST language program

This project file uses the socket service function of the built-in EtherNet/IP port to execute the
“< >” (Read trigger) command on the code reader and judges whether it reaches the normal
end or error end.

In the project file, “normal end” means that TCP socket communications have ended normally.
On the other hand,“error end” means that TCP socket communications have ended with an
error.

The project file does not use the keep-alive and linger functions, which are TCP socket
options. Consider using them as needed when designing your application.

@ Note

We have verified in our test configuration that the project file enables communications for the
product versions and product lot used for evaluation.

However, we do not guarantee its operations where there are electrical noise or other
disturbances, or variations in the performance of the devices themselves.

@ Note

In the Sysmac Studio, if it is necessary to distinguish between decimal data and hexadecimal
data, add “Variable Type and #” to the beginning of the decimal data and “Variable Type, 16,
and #” to the beginning of the hexadecimal data. (Example: INT#1000 for decimal data,
INT#16#03E8 for hexadecimal data, etc. For DINT, “Variable Type and #” is not required.)

27

9. Project File

9.1.1. Communications Data Flow
This is the flow from issuing a TCP socket communications command from the built-in
EtherNet/IP port to the code reader and receiving response data from the code reader. The
project file executes a processing sequence of TCP open to TCP close in a continuous
manner. If response data is divided and arrives as multiple pieces of receive data, receive
processing will be repeated.

TCP Open Processing The built-in EtherNet/IP port issues a TCP open
request to the code reader to establish a TCP
connection.

v

Command Send The built-in EtherNet/IP port issues a send message

Processing that is set in the ST language program to the code
reader.

v

Response Receive The built-in EtherNet/IP port stores the response data

Processing received from the code reader in the internal memory
of the specified CPU Unit.

v

Close Processing The built-in EtherNet/IP port issues a close request to
the code reader to close the TCP connection.

* Depending on the code reader or the command used, response data may not be sent after
the command is received or response data may be sent immediately after a connection is
established. For this reason, this project file allows you to set whether or not send/receive
processing is required in the Ethernet Communications Sequence Setting function block.

If Send only is set, response receive processing will not be executed. If Receive only is set,
command send processing will not be executed.

28

9. Project File

9.1.2. TCP Socket Communications Using Socket Service Instructions
This section provides an overview of function blocks for TCP socket services (hereinafter

referred to as “socket service instructions”) and the general movement of send and receive

messages.

@ Note

For details, refer to EtherNet/IP Communications Instructions in Section 2 Instruction
Descriptions of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

e TCP Socket Services Using Socket Service Instructions
This project file uses the following five standard instructions to implement socket

communications.

Name Function block Description

TCP Socket SktTCPConnect Connects to a TCP port on the code reader by

Connect active open.

TCP Socket SktTCPSend Sends data from the specified TCP socket.

Send

TCP Socket SktTCPRcv Reads data received from the specified TCP

Receive socket.

TCP/UDP Socket | SktClose Closes the specified TCP socket.

Close

Get TCP Socket | SktGetTCPStatus | Reads the status of the specified TCP socket.

Status The project file uses this instruction to check the
completion of receiving in receive processing
and to check the closed status in close
processing.

* The Socket obtained by the Connect TCP Socket instruction (SktTCPConnect:
SktTCPConnect_instance) is used as an input parameter for other socket service
instructions. The specifications of the data type structure _sSOCKET of Socket are as

follows.
Variable Name Description Data type Valid range Lr;fba;
Socket Socket Socket _sSOCKET - -
Handle Handle Handle for UDINT Depends on -
sending/receiving data data type.
SrcAdr Source Local node address” _SSOCKET_ - -
Address ADDRESS
PortNo | Port No. Port number UINT 0 to 65535
IpAdr IP Address | IP address or host name™ | STRING Depends on
data type.
DstAdr Destination | Remote node address™ _SsSOCKET_ - -
Address ADDRESS
PortNo | Port No. Port number UINT 1 to 65535
IpAdr IP Address | IP address or host name™? | STRING Depends on
data type.

*1: “Address” refers to an IP address and a port number.

*2: DNS or Hosts settings are required to use a host name.

29

e Send and Receive Messages

9. Project File

Send message o *x ok *x *x *k *x o o o *x
Header Command data Footer
Controller Code read
5
>
< L
<
Receive
o o o o o *x o . . o *x
message
(Response)
Header Response data Footer
Receive
message . o . o . o o . . . o
(Error response)
Header Response data (Error code) Footer

e Communications Sequence
The figure below shows the processing flow of TCP communications between the code
reader (server) and the controller (client).

Controller

(Client)

y
) Connection open request o
>

Code reader
(Server)

l Passive open l

Active open

Connecti

Connection open

Data send

Send data

on open

request J

&

ACK

A 4

Next data
send request

(Acknowledge)

Send data

L[]
]

A

Data receive
request

D

Data send

ACK

l request

>

\ 4

Data receive
request

(Acknowledge)

Close request

»

\ 4

Next data
send request

]

Close

>
| Close

il

U

30

9. Project File

I 9.2. Code Reader Command

This section describes the code reader command in the project file.

9.2.1. Command Overview
This project file uses the “< >” (Read trigger) command to trigger Ethernet communications
with the code reader. The code reader sends the read data back to the controller.

Command Description

<> Read trigger

« Read string: 12345, Character (Delimited): Space, Preamble: None, Postamble: CRLF

External device .
Serial Trigger

commmand
Nl HH Character notatiion | < =
|§ i‘ | Hex notatiion | 3C | 20 | 3E

Code Reader

[In Read Cycle Read result
Character notatiion | 1 2 3| 4 5 |CR|LF
Hex notatiion | 31 | 32 [33 | 34 | 35 | 0D | DA

@ Note

For more information, please refer to Change the Command that Executes Read in 3-2
Communications Settings (Serial(TCP)) in the Autofocus Multicode Reader MicroHAWK
V320-F/V330-F/V420-F/V430-F Series User Manual (Cat. No. Z407).

31

9.2.2.

Command Settings

9. Project File

This section describes in detail the settings of the “< >” (Read trigger) command.

e Send Data (Command) Settings
Send data is set by the function block SendMessageSet_instance.
Code Reader Specifications:

* The data is stored in ASCII code.
Variable Setting (Data format) Setting
Send_Header Send header (STRING[5]) “(None)
Send_Addr Send address (STRING[5]) “(None)
Send_Command | Send data (STRING[256]) f<>”
Send_Check Send check addition (STRING[5]) | “(None)
Send_Terminate | Send terminator (STRING[5]) “(None)
Variable Setting (Data format) | Data Description
CONCAT(Send_Header, | Used as send data
Send message Send_Addr, for the $ktTCPSend
Send_Data Send_Command, instruction
(STRING[256]) Send_Check, (SktTCPSend_
Send_ Terminate) instance).

e Stored Contents of Receive Data (Response)
Receive data is stored as output receive data after a data check by the function block
ReceiveCheck_instance.
Code Reader Specifications:

* The data is stored in ASCII code.
Variable Setting (Data format) Description of storage area
Receive data)
Recv_Data Receive buffer
(STRING[256])
Receive data Receive data storage area (Stores receive
Recv_Buff

(STRING[256])

buffer data as is.)

e Send and Receive Messages

3C 20 3E

Send message

<! [>

(Normal processing: Decoded string)

Receive

31 32 33

0D 0A

message

(Error processing)

Receive
message
(None)

1 2 3 ‘4

CR LF

32

9. Project File

I 9.3. Error Judgment Processing

This section describes error judgment processing in the project file.

9.3.1. Error Judgment in the Project File
In this project file, error judgment processing is executed for the following three types of

errors (1) to (3). Refer to 9.7.1. Error Code List for information on error codes.
Controller

Code reader

Ethernet cable

. v
(1) @) 5

(1) Communications error during TCP socket communications using socket service
instructions

An error that was detected by a program in TCP socket communications, such as a
communications hardware error, command format error, or parameter error, is judged as a
“‘communications error”. This judgment is made based on the socket service instruction
argument “ErrorID”.

(2) Timeout error during communications with the code reader
An error that occurred due to abnormal open, send, receive, or close processing that failed
to complete within the monitoring time is judged as a timeout error. This judgment is made
based on timer monitoring in the project file. Refer to 9.3.2. Time Monitoring Function for
information on time monitoring using the internal timers of the project file.

(3) TCP connection status error at end of processing
The project file uses a procedure in which the overall processing ends after the last close
processing is done, regardless of whether the open to receive processing steps have
ended normally or ended with an error. Therefore, judgment of whether close processing
has ended normally is made based on the TCP connection status variable TcpStatus in the
SktGetTCPStatus instruction. If there is an error in close processing, the next open
processing may not be executed correctly. Refer to 9.7.2. TCP Connection Status Error
Situation and Correction for information on how to correct a TCP connection status error.

33

9. Project File

9.3.2. Time Monitoring Function
This section describes the time monitoring function in the project file.
The monitoring time settings can be changed by using variables in the function block
ParameterSet.

e Time Monitoring Using Internal Timers of the Project File
Assuming that processing has the executing status and does not end due to an error, the
project file uses its internal timers to interrupted the processing (i.e., timeout). The timeout

is set to 5 s (default) for each processing phase from open to close.
Time Monitoring Using Internal Timers of the Project File

Processing | Monitoring description VECIC UL LoD
name (default)
Srzir;ssing Time from start to end of open processing TopenTime '(A\JﬁﬂTZEOO)
Send) .) After5s
processing Time from start to end of send processing TfsTime (UINT#500)
Time from start to end of receive
. processing
Eri‘i:(z\s/seing * If receive processing is repeated, the TfrTime ﬁjﬁ?\ers;ﬁ#EOO)
software part monitors the time for each
repetition of receive processing.
Time from start to end of close processing
* The software part checks that the TCP
Close . .) After5s
processing connect!on stgtus is normal after close TcloseTime (UINT#500)
processing to judge the end of the
processing.

e Time Monitoring Using the Built-in EtherNet/IP Port (Socket Service)
The built-in EtherNet/IP port has a time monitoring function for receive data that arrives in
segments, as a socket service. In receiving processing, it stores the TimeOut parameter of
the socket service instruction SktTCPRcv_instance to TrTime=UINT#3(300ms) (initial
value). The project file also sets the variable TrTime as the Receive Wait Time Monitoring
Timer for the next response receive wait time after completion of receiving a response. If
the next response from the code reader does not arrive within this time, it will be judged
that the receive processing has ended.

@ Note

For information on time monitoring using the socket service, refer to SkiTCPRcv Instruction
in Section 2 Instruction Descriptions of the Machine Automation Controller NJ/NX-series
Instructions Reference Manual (Cat. No. W502).

e Resending and Time Monitoring Using the Built-in EtherNet/IP Port (TCP/IP)
If a communications error occurs, TCP/IP automatically resends the data and monitors the
processing time if there is no problem with the built-in EtherNet/IP port. If processing ends
with an error in the middle of it, the project file stops the resending and time monitoring via
TCP/IP in close processing. However, if the close processing shows a TCP connection
status error, the resending and time monitoring via TCP/IP may continue to be active in the
built-in EtherNet/IP port. Refer to 9.7.2. TCP Connection Status Error Situation and
Correction for information on the error situation and correction.

34

9. Project File

I 9.4. Variables Used

This section describes variables used in the project file.

9.4.1. Lists of Variables Used

Below are lists of variables required in order to execute this project file.

e Input Variable
The following variable is used to manipulate the project file.

Variable name
Input_Start

Data type
BOOL

Description

Executes the project file when the value changes from
OFF (FALSE) to ON (TRUE). The value changes from ON
to OFF after the check of normal end or error end output.

e Output Variables
The following variables reflect the execution results of the project file.

Variable name

Data type

Description

Output_RecvMess

STRING[256]

Stores receive data (response). (An area of
256 words is secured.)

Output_ErrCode

WORD

Stores the error result (flag) for a
communications error or timeout error
detected during open processing, send
processing, receive processing, and close
processing.

#0000 is stored when the processing ends
normally.

Output_
SktCmdsErroriD

WORD

Stores the error code for a communications
error or timeout error detected for each socket
service instruction in open processing, send
processing, and receive processing.

#0000 is stored when the processing ends
normally.

Output_
SkTcloseErrorlD

WORD

Stores the error code for a communications
error or timeout error detected for the
SktTcpClose instruction in close processing,
aside from errors in open processing, sending
processing, and receiving processing.

#0000 is stored when the processing ends
normally.

Output_
EtnTcpSta

_eCONNECTION
_STATE

Stores the TCP connection status when a
communications error or timeout error is
detected in close processing.

_CLOSED is stored when the processing ends

normally.

Output_MErrCode

DWORD

Stores the error code of an FCS calculation
error or code reader error detected as a result
of receive processing.

#00000000 is stored when the processing
ends normally.

35

e Internal Variables

9. Project File

The following variables are used only for the purpose of calculation in the project file.

Variable name Data type Description
Local_Status sStatus Program execution status
(STRUCT)

Busy BOOL Changes to TRUE when the project file is executed
and to FALSE when it is not executed.

Done BOOL Changes to TRUE when the project file ends normally
and to FALSE when Input_Start changes from TRUE
to FALSE.

Error BOOL Changes to TRUE when the project file ends with an
error and to FALSE when Input_Start changes from
TRUE to FALSE.

Local_State DINT State Processing No.
Local _ErrCode uErrorFligs Sets an error code.
(UNION)

Local_ErrCode. | WORD Expresses the error code as WORD data.

WordData

Local_ErrCode. | ARRAY » Communications error

BoolData [0..15] OF BoolData[0]: Send processing: Error (TRUE)/Normal

BOOL (FALSE)

BoolData[1]: Receive processing: Error
(TRUE)/Normal (FALSE)
BoolData[2] Open processing: Error (TRUE)/Normal
(FALSE)
BoolData[3]: Close processing: Error
(TRUE)/Normal (FALSE)
BoolData[4]: Processing number: Error
(TRUE)/Normal (FALSE)

* Timeout error
BoolData[8]: Send processing: Error (TRUE)/Normal
(FALSE)
BoolData[9]: Receive processing: Error
(TRUE)/Normal (FALSE)
BoolData[10] Open processing: Error
(TRUE)/Normal (FALSE)
BoolData[11]: Close processing: Error
(TRUE)/Normal (FALSE)

* Others
BoolData[5]: Send/Receive required judgment error:
Error (TRUE)/Normal (FALSE)
BoolData[12]: Code reader error:
Error (TRUE)/Normal (FALSE)
BoolData[6..7],[13..14]: Reserved
BoolData[15]: Error occurred

36

9. Project File

Variable name Data type Description
Local_ExecFlgs | sControl Socket service instruction execution flag
(STRUCT)
Send BOOL Send Processing instruction: Executed (TRUE)/Not
executed (FALSE)
Recv BOOL Receive Processing instruction: Executed (TRUE)/Not
executed (FALSE)
Open BOOL Open Processing instruction: Executed (TRUE)/Not
executed (FALSE)
Close BOOL Close Processing instruction: Executed (TRUE)/Not
executed (FALSE)
Status BOOL TCP Status instruction: Executed (TRUE)/Not
executed (FALSE)
Local_SrcDataByte | UINT Sets the number of bytes of send data.
Local_SrcData ARRAY Send data storage area for SktTCPSend instruction
[0..2000] OF | (SktTCPSend_instance). (An area of 256 words is
BYTE secured.)
Local_RecvData | ARRAY Receive data (response) storage area for SktTCPRcv
[0.2000] OF | instruction (SktTCPRcv_instance). (An area of 256
BOOL words is secured.)
Local_ STRING[256] | Local_RecvDataReceived string data (response)
ReceiveMessage storage area. (An area of 256 characters is secured.)
Local_ BOOL Code Reader Error Judgment Instruction Execution
RecvCheckFlg Flag: Executed (TRUE)/Not executed (FALSE)
Local_ BOOL Initialization Normal Setting Flag
InitialSettingOK
Local_TONFIgs sTimerControl | Timer Execution Flag
(STRUCT)
Tfs BOOL Send Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tir BOOL Receive Processing Time Monitoring Timer
Instruction: Executed (TRUE)/Not executed (FALSE)
Topen BOOL Open Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tclose BOOL Close Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tr BOOL Next Response Receive Wait Time Monitoring Timer
Instruction: Executed (TRUE)/Not executed (FALSE)
Local_ComType | sControl Sets whether or not send processing or receive
(STRUCT) processing is required.
Send BOOL Send processing: Required (TRUE)/Not required

(FALSE)

* If send processing is required, but receive
processing is not required:
The program will skip receive processing and go to
close processing without waiting for receive data in
send processing. Specify this value when response
data is not sent back to the command sent.

37

9. Project File

Variable name

Data type

Description

Recv

BOOL

Receive processing: Required (TRUE)/Not required
(FALSE)

* If both send processing and receive processing are
required:

The program will wait for the arrival of receive data
after send processing. The program will go to receive
processing after checking the arrival of receive data.
Specify this value when response data is sent back to
the command sent.

Error

BOOL

Send/Receive Processing Required Setting Error Flag
(This flag is set if there is a setting error.)

e Variables for Initializing Socket Service Instructions

Variable name Data type Description
NULL_SOCKET | _sSOCKET | Internal socket service instruction initialization data
(Retain constants: Enabled)
Initial value (Handle:=0, SrcAdr:=(PortNo:=0, IpAdr:="),
DstAdr:=(PortNo:=0, IpAdr:="))
(Used for all socket instructions.)
NULL_ ARRAY Internal send socket service instruction initialization
ARRAYOFBYTE_1 | [0..0] OF data (Retain constants: Enabled)
BYTE Initial value [0] (Use for the SktTCPSend instruction)
NULL ARRAY Internal receive socket service instruction initialization
ARRAYOFBYTE_2 | [0..0] OF data (Retain constants: Disabled)
BYTE Initial value [0] (Use for the SktTCPRcv instruction)

38

9. Project File

9.4.2. Lists of Variables Used in User-defined Function Blocks/Functions
Below are lists of function blocks that must be user-defined in programs in order to execute

this project file.

For information on the following function block variables, refer to 9.5.3. Detailed

Explanation of Function Blocks.

Variable name Data type Description
ETN_ParameterSet_ | ParameterSet Ethernet settings (Remote IP address, etc.)
instance Monitoring time from open processing to close

processing
ETN_SendMessage | SendMessageSet | Send/receive processing required setting and

Set_instance

send message setting.

ETN_ReceiveCheck
instance

ReceiveCheck

Receive data storage and normal/error

judgment

e Timers

The following timers are used in the project file.

Variable name Data type Description

Topen_TON instance | TON Measures the monitoring time for open
processing.

Tfs_TON_instance TON Measures the monitoring time for send
processing.

Tfr_TON instance TON Measures the monitoring time for receive
processing.

Tclose_TON_instance | TON Measures the monitoring time for close
processing.

Tr_TON_instance TON Measures the processing time for the next

response receive wait time.

9.4.3. Lists of System-defined Variables
Below are lists of variables required in order to execute this project file.

e System-defined Variables (External Variables)

Variable name

Data type

Description

__EIP_EtnOnlineSta

BOOL Built-in EtherNet/IP port’'s communications status:

TRUE: Available, FALSE: Not available

@ Note

For information on system variables and communications instructions, refer to EtherNet/IP
Communications Instructions in Section 2 Instruction Descriptions of the Machine
Automation Controller NJ/NX-series Instructions Reference Manual (Cat. No. W502).

39

9. Project File

I 9.5. Programs (ST Language)

9.5.1. Functional Components of the ST Language Program
This project file is written in the ST language. The functional components of the project file
are as follows.

Category Subcategory Description
1. Communications | 1.1. Communications Executes communications
Processing Processing Start processing.

1.2. Communications
Processing Status Flag
String Clearing

1.3. Communications
Processing Executing

Status
2. Initialization 2.1. Processing Time Sets Ethernet parameters and
Monitoring Timer initializes the error code storage area.
Initialization Sets whether or not the send/receive
2.2. Socket Service processing is required, send data,

Instruction Initialization and receive data.

2.3. Socket Service
Instruction Execution
Flag Initialization

2.4. Processing Time
Monitoring Timer
Execution Flag
Initialization

2.5. Error Code Storage Area
Initialization

2.6. Processing Monitoring
Time Setting and
Ethernet-related
Parameter Setting

2.7. Send/Receive
Processing Required
Setting and Send Data
Setting

2.8. Send Data Conversion
from String to Byte Array

2.9. Receive Data Storage
Area Initialization

2.10. Initialization End
Processing

3. Open Processing | 3.1. Open Processing Status | Executes TCP open (active)

Judgment and Execution | processing.

Flag Setting Processing starts after

3.2. Open Processing Time communications processing is started
Monitoring Timer and initial setup is done.
Execution

3.3. Open Instruction
Execution (TCP Active
Open Processing)

40

9. Project File

Category Subcategory Description
4. Send Processing | 4.1. Send Processing Status | Starts processing if the Send
Judgment and Execution | Processing Required Flag is set to
Flag Setting Required and open processing has
4.2. Send Processing Time ended normally.
Monitoring Timer
Execution
4.3. Send Instruction
Execution
5. Receive 5.1. Receive Processing Starts processing if the Receive
Processing Status Judgment and Processing Required Flag is set to
Execution Flag Setting Required and send processing has
5.2. Receive Wait Time ended normally.
Monitoring Timer If receive data arrives in segments,
Execution receive processing is repeated.
5.3. Receive Processing Stores and checks the receive data.
Time Monitoring Timer
Execution
5.4. Receive Instruction
Execution
5.5. Get TCP Status
Processing Execution
5.6. Code Reader Error
Judgment Instruction
Execution
6. Close Processing | 6.1. Close Processing Status | Executes close processing.
Judgment and Execution | Processing starts in the following
Flag Setting cases.
6.2. Close Processing Time * Receive Processing Required Flag
Monitoring Timer is set to Not required and send
Execution processing has ended normally.
6.3. Close Instruction * Receive processing ends normally.
Execution * Open processing, send processing,
6.4. Get TCP Status or receive processing ends with an

Processing Execution

error.

7. Processing Error
Processing

7. Processing No. Error

Processing

Executes error processing if a
non-existent processing number is
detected.

41

9.5.2.

9. Project File

Detailed Explanation of the Main Program
A detailed explanation of the project file is given below.
Communication settings that need to be changed depending on the code reader, send data
(command) settings, and receive data (response data) are checked in function blocks
(ETN_ParameterSet_instance, ETN_SendMessageSet_instance, and
ETN_ReceiveCheck_instance). For how to change the values of these settings, refer to
9.5.3 Detailed Explanation of Function Blocks.

Main Program: ProgramO
1. Communications Processing

* c=—=======z=====z===z=========z===== ¥)
* Name: NJ Series Ethernet Communications Program *)

* Function: Ethernet Communications Main Program]

* Ethernet Unit: NJ501 (Built-in EtherMet/IP Port) *)

* Remarks: *)

(

(

(

(

(

(* ")

(* Version Information: V1.00, Created August 1, 2011)
(
(
(

. o)
* (C)Copyright OMRON Corporation 2011 All Rights Reserved. %

* ——=—===z ¥
(* 1. Communications Processing *)

(* Variable Description: Communications Processing for Control ====================z============================)
()

(Input Start Flag : Input_Start)

()

[Communications Processing Status Flag String : Local_Status<STRUCT=)

(l)

(F Communications Processing Executing Flag (Busy) : Local_Status.Busy }

(- Communications Processing Normal End Flag (Done) : Local_Status.Done)

(= Communications Processing Error End Flag (Error) : Local_Status.Error)

()

(State Processing No. Local_State)

(10: Initialization)]

(11: Open Procassing)

(12: Send Processing)

(13: Receive Processing)

(14: Close Processing)

(99: Processing No. Error Processing)

()
(==-=========================== ¥

(* 1.1. Communications Processing Start
Starts communications processing when Input Start Flag is turned ON with Communications Processing Status Flag String cleared. ¥)
IF Input_Start AND
MNOT(Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEN
Local_Status.Busy:=TRUE;
Local_State:=10; /f Go to 10: Initialization.
END_IF;

(* 1.2, Communications Processing Status Flag String Clearing

Clears Communications Processing Status Flag String if Input 5Start Flag is turned OFF when communications processing is not executed. *)
IF NOT{Local_Status.Busy) AND NOT(Input_Start) THEN

Local_Status.Done:=FALSE;

Local_Status.Error=FALSE;
END_IF;

(* 1.3. Communications Processing Executing Status

Executes processing according to State Processing No. (Local_State) *)
IF Local_Status.Busy THEN

CASE Local_State OF

42

9. Project File

2. Initialization

10;(* == ¥
(* 2. Initialization *)
(* = Executes various types of initialization and parameter setting for overall communications.)
(* = Sets send data and initializes receive data storage area. *)
(== ¥}

(* 2.1. Processing Time Menitoring Timer Initialization *)
Topen_TON_instance (In:=FALSE,PT:=TIME#0ms);
Tfs_TOM_instance ({Im:=FALSE,PT:=TIME#0ms);
Tr_TOM_instance (In:=FALSE,PT:=TIME#0ms);
Tfr_TOM_instance (In:=FALSE.PT.=TIME#0ms);
Tclose_TOM_instance(ln:=FALSE.PT:=TIME#0ms);

(* 2.2. Socket Service Instruction Initialization *)
SktTCPConnect_instance(
Execute:=FALSE SrcTepPort:=UINT#0,DstTepPort:=UINT#0,DstAdr:=");
SKtTCPSend_instance(
Execute:=FALSE Socket:=NULL_SOCKET,Size:=UINT#0,
SendDat:=NULL_ARRAYOFBYTE_1[0]);
SktTCPRov_instance(
Execute:=FALSE Socket:=NULL_SOCKET,Size:=UINT#0, TimeOut:=UINT#0,
RcvDat:=NULL_ARRAYOFBYTE_2[0])
SkTclose_instance(
Execute:=FALSE Socket:=NULL_SOCKET);
SktGetTCPStatus_instance(
Execute:=FALSE Socket:=NULL_SOCKET);

* 2.3. Socket Service Instruction Execution Flag Initialization *)
* Variable Description: Socket Service Instruction Execution Flag (for Execute Parameter) ================)
)
Socket Service Instruction Execution Flag String: Local_ExecFlgs<STRUCT =)
| })

F Send Instruction Execution Flag (SktTCPSend) : Local_ExecFlgs.Send)]

FReceive Instruction Execution Flag (SkiTCPRcv) : Local_ExecFlgs.Recy)

I Open Instruction Execution Flag (SktTCPConnect) : Local_ExecFlgs.Open }

I Close Instruction Execution Flag (SkTclose) : Local_ExecFlgs.Close)

L TCP Get Status Instruction Execution Flag)
(SktGetTCPStatus) : Local_ExecFlgs.Status)|

Local_ExecFlgs.Send:=FALSE;
Local_ExecFlgs.Recw:=FALSE:
Local_ExecFlgs.Open:=FALSE;
Local_ExecFlgs.Close:=FALSE;
Local_ExecFlgs.Status:=FALSE;

(* 24. Processing Time Monitoring Timer Execution Flag Initialization *)

(* Wariable Description: Processing Time Monitoring Timer Execution Flags (for Input Parameters) =====================)
()

(Processing Time Monitoring Timer Execution Flag String: Local_TONFIgs<STRUCT =)
C | l)

(I Send Processing Time Menitoring Timer Execution Flag (Tfs_TON): Local_TOMNFIgs.Tfs)
(I Receive Processing Time Monitaring Timer Execution Flag (Tfr_TON): Local_TOMNFigs.Tfr)
(F Open Processing Time Monitoring Timer Execution Flag (Topen_TON))]

(| . Local_TONFlgs.Topen)

(| Close Processing Time Monitoring Timer Execution Flag (Tclose_TON))

(| : Local_TONFIgs.Tclose)

(“ Receive Wait Time Monitoring Timer Execution Flag (Tr_TON))

((Next Message Wait Time) : Local_TONFlgs.Tr)

Local_TONflgs.Tfs:=FALSE;
Local_TOMflgs.Tfrn=FALSE;
Local_TOMflgs.Topen:=FALSE;
Local_TOMflgs.Tclose:=FALSE;
Local_TOMflgs. Tr=FALSE:

(* 2.5. Error Code Storage Area Initialization *)
Local_ErrCode WordData:=WORD#16#0000;
Qutput_ErrCode:=WORD#16%#FFFF;
Qutput_MErrCode:=DWORD#16#FFFFFFFF;
Qutput_SktCmdsErrorlD:=WORD#16#FFFF;
Qutput SkTcloseErrorlD:=WORD#16#FFFF;

43

(* 2.6. Processing Monitoring Time Setting and Ethernet-related Parameter Setting *)
ETN_ParameterSet_instance(
Execute:=TRUE);

(* 2.7. Send/Receive Processing Required Setting and Send Data Setting *)
ETN_SendMessageSet_instance(
Execute:=TRUE);
(* Send/Receive Processing Required Setting Error Judgment *)
(* <Variable Notes>
> Local_ComType.Send: Send Processing Required Flag
> Local_ComType.Recv: Receive Processing Required Flag
= Local_ComType.Error: Send/Receive Processing Reguired Setting Error *)
Local_ComType.Send:=TestABit(ETN_SendMessageSet_instance.ComType,0);
Local_ComType.Recv:=TestABit{(ETN_SendMessageSet_instance.ComType, 1);
Local_ComType.Error:=NOT(Local_ComType.Send OR Local_ComType.Recv);
IF Local_ComType.Error THEN
Output_ErrCode:=WORD#16#0020;
Local_InitialSettingOK:=FALSE;
ELSE
Local_InitialSettingOK:=TRUE;
END_IF;

(* 2.8. Send Data Conversion from String to Byte Array *)
Local_SrcDataByte:=
StringTeAry(ETN_SendMessageSet_instance.Send_Data,Local_SrcData[0])

(* 2.9. Receive Data Storage Area Initialization *)
Clear5tring(Local_ReceiveMessage);
Clear5tring(Qutput_RecvMess);
Local_RecvCHNo:=0;

Local_RecvDatalength:=0;
Local_ReceiveSize:=UINT#256;

(* 2.10. Initialization End Processing *)
IF Local_InitialSettingOK THEN

Local_State:=11; // Go to 11: Open Processing.
ELSE

Local_Status.Busy:=FALSE:

Local_Status.Erron=TRUE;

Local_State:=0: /f Go to 0: Communications Mot Executed State.
END_IF;

9. Project File

44

3. Open Processing

11 (* == 7%
(* 3. Open Processing)
(* - Connects to remote TCP port by active open. *)

(* <Variable Notes>
> Local_ExecFlgs.Open: Open Instruction Execution Flag
> Local_TOMFIgs.Topen Open Processing Time Monitering Timer Execution Flag *)

(* 3.1. Open Processing Status Judgment and Execution Flag Setting *)

(* 3.1.1. Timeout Processing *)

IF Topen_TOM_instance.Q THEN
Local_ErrCode.BoolData[10]:=TRUE;
Qutput_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Open:=FALSE;

Local_TONflgs.Topen:=FALSE;
Local_State:=14; // Go to 14: Close Processing.

(* 3.1.2. Normal End Processing *)
ELSIF SktTCPConnect_instance.Done THEM
Local_ErrCode BoolData[2]:= FALSE:
Qutput_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE:
Local_TONflgs.Topen:=FALSE:
(* <Variable Notes:
> Local_ComType.Send: Send Processing Required Flag
> Local ComType.Recv: Receive Processing Required Flag *)
IF Local_ComType.Send THEM

Local_States=12; // Go to 12: Send Processing.
ELSIF Local_ComType.Recv THEN

Local_State:=13; // Go to 13: Receive Processing.
END_IF;

(* 3.1.3. Error End Processing *)

ELSIF SktTCPConnect_instance.Error THEN
Local_ErrCode.BoolData[2]:=TRUE:
Output_SktCmdsErrorlD:=5ktTCPConnect_instance.ErrorlD;
Local_ExecFlgs.Open:=FALSE:

Local_TONflgs.Topen:=FALSE:
Local_State:=14: // Go to 14: Close Processing.

(* 3.1.4. Open Instruction Execution Flag Setting and Timer Execution Flag Setting ™)
ELSE

Local_ExecFlgs.Open:=TRUE:

Local_TONflgs.Topen:=TRUE;
END_IF;

(* 3.2. Open Processing Monitoring Timer Execution *)
Topen_TON_instance(
In:=Local_TOMflgs.Topen,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance.TopenTime));

(* 3.3. Open Instruction Execution (TCP.Active Open Processing)
Executes Open instruction when built-in ETN is available (_EIP_EtnOnline5ta is ON). ®)
SktTCPConnect_instance(
Execute:=Local_ExecFlgs.Open AND _EIP_EtnOnlina5ta,
SrcTepPort:=ETN_ParameterSet_instance.SrcPort,
DstTcpPort:=ETM_ParameterSet_instance.DstPort,
DstAdr=ETN_ParameterSet_instance.DstiPAddr);

9. Project File

45

9. Project File

4. Send Processing

12:(* == %)
(* 4. Send Processing *)
(* « Sends data from specified TCP port.)
(* =================================z================================= ¥)
(* «<Variable Notes>
> Local_ExecFlgs.Send: Send Instruction Execution Flag
> Local_TONFIgs.Tfs: Send Processing Time Monitoring Timer Execution Flag *)

(* 4.1. Send Processing Status Judgment and Execution Flag Setting *)

(* 4.1.1. Timeout Processing *)

IF Tfs_TON_instance.Q THEN
Local_ErrCode.BoolData[8]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Send:=FALSE;
Local_TONflgs. Tfs:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.2. Normal End Processing *)
ELSIF SktTCPSend_instance.Done THEM
Local_ErrCode.BoolData[0]:=FALSE;
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Send:=FALSE;
Local_TOMflgs.Tfs:=FALSE:
(* <Varniable Notes>
> Local_ComType.Recv: Receive Processing Required Flag *)
Local_State:=SEL(Local_ComType.Recv,14,13); // Go to 13: Receive Processing.
// Go to 14: Close Processing.

(* 4.1.3. Error End Processing *)
ELSIF SktTCPSend_instance.Error THEN
Local_ErrCode.BoolData[0]:=TRUE;
Output_SktCmdsErrorlD:=
SktTCPSend_instance.ErrorlD:;
Local_ExecFlgs.Send:=FALSE:
Local_TOMflgs.Tfs:=FALSE;
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.4. Send Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Send:=TRUE;

Local_TONflgs.Tfs:=TRUE;
END_IF;

(* 4.2. Send Processing Time Monitoring Timer Execution ™)
Tfs_TOM_instance(

In:=Local_TONflgs.Tfs,

PT:=MULTIME(TIME#10ms, ETN_ParameterSet_instance. TfsTime));

(* 4.3, Send Instruction Exscution

Executes Send instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktTCPSend_instance{

Execute:=Local_ExecFlgs.5end AND _EIP_EtnOnlineSta,

Size:=Local_SrcDataByte,

Socket:=SktTCPConnect_instance Socket,

SendDat:=Local_SrcDatal0]);

46

9. Project File

5. Receive Processing

13:(* ==z=======z====xz %
(* 5. Receive Processing *)
(* + Reads receive buffer data from specified TCP socket.)
[f=================z=======z=========z==============z============z=======z %)

(* <Variable Notes>
> Local_ExecFlgs.Recv: Receive Instruction Execution Flag
= Local ExecFlgs.Status: Get TCP Status Instruction Execution Flag
> Local_TONFIgs.Tfr: Receive Processing Time Monitoring Timer Execution Flag
> Local_TONFIgs.Tr: Receive Wait Time Monitoring Timer Execution Flag
(Next Message Wait Time) *)

(* 5.1. Receive Processing Status Judgment and Execution Flag Setting *)

(* 5.1.1. End of Receive Processing *)
IF Tr_TON_instance.Q THEN
Local_ExecFlgs.Status:=FALSE:
Local_TOMNflgs.Tfr:=FALSE:
Local_TONflgs.Tr:=FALSE;

(* Receive Data Conversion from Byte Array to String *)
Local_ReceiveMessage:=
AryToString(Local_RecvData[0].Local_RecvDatalength):

(* Code Reader Error Judgment Instruction Execution Flag Setting *)
Local_RecvCheckFlg:=TRUE;

Local_State:=14; // Go to 14: Close Processing.

(* 5.1.2. Timeout Processing *)

ELSIF Tir_TON_instance.Q THEN
Local_ErrCode.BoolData[9]:=TRUE:
Output_SktCmdsErrorlD:=\WORD#16#FFFF;
Local_ExecFlgs.Recv:=FALSE
Local_ExecFlgs.Status:=FALSE;

Local TONflgs. Tfr:=FALSE;
Local_State:=14; // Go to 14: Close Processing.

(* 5.1.3. Normal End Processing ”}|
ELSIF SktTCPRev_instance.Done THEN
Local_RecvDatalength
:=Local_RecvDatalength+5SktTCPRev_instance.RevSize;
Local_RecvCHNo:=Local_RecvDatalength:

Local_ExecFlgs.Recv:=FALSE;
Local_TONflgs.Tfr:=FALSE:
Local_TONflgs. Tr=TRUE; /f Go to 5.1.5. Receive Data Read Processing.

(* 5.1.4. Error End Processing *)
ELSIF SktTCPRev_instance.Error THEN;
Local_ErrCode.BoolData[1]:=TRUE;
Output_SktCmdsErrorlD:=
SktTCPRev_instance.ErrorlD;

Local_ExecFlgs.Recv:=FALSE:
Local_TONflgs. Tfr:=FALSE:

Local_State:=14; // Go to 14: Close Processing.

(* 5.1.5. Receive Data Read Processing *)
ELSIF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE:

(* If there is data to read: Continues receive processing. *)
IF SktGetTCPStatus_instance.DatRevFlag THEN
Local_ExecFlgs.Recv:=TRUE;
Local_TONflgs.Tfr=TRUE;
Local_TONflgs.Tr:=FALSE:
END_IF;
(* If there is no data to read:
« If no data is received, processes nothing and
executes Get TCP Status again in next cycle.
« If data is already received, monitors response wait time and,
if timeout occurs without next response,
reads already received data to end receive processing.

M

47

(* 5.1.6. Get TCP Status Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Status:=TRUE;

Local_TONflgs.Tfr:=TRUE;

(* Code Reader Error Judgment Instruction Execution Flag Initialization *)
Local_RecvCheckFlg:=FALSE:
END_IF:

(* 5.2. Receive Wait Time Monitoring Timer Execution (Next Response Wait Time) *)
Tr_TOM_instance(

In:=Local_TONflgs.Tr,
:=MULTIME(TIME#100ms,ETN_ParameterSet_instance.TrTime));

(* 5.3. Receive Processing Time Monitoring Timer Execution *)
Tfr_TON_instance(
In:=Local_TONflgs.Tfr,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance. TfrTime));

(* 5.4. Receive Instruction Execution
Executes Receive instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktTCPRcv_instance(
Execute:=Local_ExecFlgs.Recv AND _EIP_EtnOnline5ta,
Socket:=SktTCPConnect_instance.Socket,
TimeQOut:=ETN_ParameterSet_instance. TrTime,
Size:=Local_ReceiveSize,
RevDat:=Local_RecvData[Local_RecvCHNo])

(* 5.5. Get TCP Status Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.Socket);

(* 5.6. Code Reader Error Judgment Instruction Execution *)

ETN_ReceiveCheck_instance(
Execute:=Local_RecvCheckFlg,

ocal_ReceiveMessage,

:=Output_RecvMess,

tlength:=Local_RecvDatalength,

ErrorlD:=Local_ErrCode WordData,

ErrorlDEx:=0utput_MErrCode);

9. Project File

48

9. Project File

6. Close Processing

14;(* ===========================-======================================= %
(* 6. Close Processing *)
(* = Closes specified socket *)
x

(* <Variable Notes>
> Local_ExecFlgs.Close: Close Instruction Execution Flag
> Local_ExecFlgs.Staus: Get TCP Status Instruction Execution Flag
> Local_TONFIgs.Tclose: Close Processing Time Menitoring Timer Execution Flag *)

(* 6.1. Close Processing Status Judgment and Execution Flag Setting *)

(* 6.1.1. Timeout Processing *)

IF Tclose_TON_instance.Q THEN
Local_ErrCode.BoolData[11]:=TRUE;
Output_SkTcloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE:
Local_ExecFlgs.Status:=FALSE;
Output_EtnTcpSta:=5ktGet TCPStatus_instance. TepStatus;
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WordData;
Local_Status.Busy:=FALSE;
Local_Status.Error:=TRUE;

Local_State:=0; /{ Go to 0: Communications Mot Executed 5State.

(* 6.1.2. Normal End Processing *)
ELSIF SkTclose_instance.Done THEN
Local_ExecFlgs.Status:=TRUE:
IF SktGetTCPStatus_instance.Done
OR 5ktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;

IF SktGetTCPStatus_instance. TepStatus = _CLOSED THEN
Local_TONflgs.Tclose:=FALSE;
Output_SkTcloseErrorlD:=WORD#16#0000;
Output_EtnTepSta:=SktGetTCPStatus_instance. TepStatus;
Local_ExecFlgs.Close:=FALSE;

(* Processing Result Judgment for Overall Communications Processing *)
Local_Status.Busy:=FALSE

(* Normal End of Communications Processing *)

IF Local_ErrCodeWordData = WORD#16#0000 THEN
Local_Status.Done:=TRUE:
Local_ErrCode.BoolData[15]:=FALSE:

(* Error End of Communications Processing *)
ELSE

Local_Status.Error:=TRUE;

Local_ErrCode.BoolData[15]:=TRUE;
END_IF;
Qutput_ErrCode:=Local_ErrCode.WordData;

Local_State:=0; /{ Go to 0: Communications Not Executed State.

END_IF;
END_IF;

(* 6.1.3. Error End Processing *)

ELSIF SkTclose_instance.Error THEN
Local_ErrCode.BoolData[3]:=TRUE;
Output_SkTcloseErrorlD:=5kTclose_instance.ErrorlD;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE:
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCodeWordData;
Local_Status.Busy:=FALSE;
Local_Status.Error=TRUE;

Local_State:=0; // Go to 0: Communications Not Executed State.

(* 6.1.4. Close Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Close:=TRUE

Local_TOMNflgs. Tclose:=TRUE;

END_IF;

49

9. Project File

(* 6.2. Close Processing Time Monitoring Timer Execution *)
Tclose_TOMN_instance(
In:= Local_TOMNflgs.Tclose,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance.TcloseTime)):

(* 6.3. Close Instruction Execution
Executes Close instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). ¥)

SkTclose_instance(
Execute:=Local_ExecFlgs.Close AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

(* 6.4. Get TCP 5tatus Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)

SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

7. Processing No. Error Processing

9%: (* ==
(* 7. Processing No. Error Processing *)
(* = Error processing when non-existent state processing number is set *)

Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE;
Local_Status.Erran=TRUE:

Local_State:=0; // Go to 0: Communications Not Executed State.
ELSE
Local_State:=99; /{ Go to 99: Processing No. Error Processing.
END_CASE;
END_IF;

50

9.5.3. Detailed Explanation of Function Blocks
This project file uses the following function blocks.

9. Project File

In the printout of function blocks given below, data that is variable depending on the code

reader is shown in red frames.

e Details of the ETN_ParameterSet_instance Function Block (ParameterSet)

Instruction Name FB/FUN Graph[c ST expression
expression
Ethernet ETN_ParameterSet_instance
o (Execute, TfsTime, TrTime, TfrTime, ,
ParameterSet | Communications FB None) .
Parameter Settings TopenTime, TcloseTime, SrcPort,
DstIPAddr, DstPort);
* In-out Variable Table
* Input
Variable Data _ Valid . | Initial
Name Description Unit
name type range value
Executes the function block D d
when the value changes from ep()jert] s
Execute BOOL Execute OFF (FALSE) to ON (TRUE). ton ea a --- ---
(Always TRUE) ype.
* Output
Variable Data L Valid .. | Initial
Name Description Unit
name type range value
. Open Sets the monitoring time for open | Depends
TopenTime | UINT Monitoring | processing in increments of 10 on data - -
Time ms. type.
] Send Sets the monitoring time for send | Depends
TfsTime UINT Monitoring | processing in increments of 10 on data - -
Time ms. type.
. SVZ?E’NG Sets the arrival standby time for | Depends
TrTime UINT L receive data in increments of 100 | on data --- ---
Monitoring ms tvpe
Time) ype.
. Receive Sets the monitoring time for Depends
TfrTime UINT Processing | receive processing in increments | on data -- -
Time of 10 ms. type.
. Close Sets the monitoring time for Depends
TcloseTime UINT Monitoring | close processing in increments on data -- --
Time of 10 ms. type.
Source Depends
SrcPort UINT Sets the local port. on data - -
Port No.
type.
STRING - Depends
DstIPAddr Destination | g4 the remote IP address. on code -- --
[256] IP Address reader
Destination Depends
DstPort UINT Sets the remote port number. on code - -
Port No.
reader.
Busy BOOL Busy
Normal
Done BOOL End
Error BOOL Error End | Not used o S
Error (Not used in this project.)
ErrorlD WORD .
Information
ErrorlDEx | DWORD | ET"
Information

* Internal Variable Table: None

51

* Program

kt —==================—=—=—=—==—==========—=—=—==—===========—=—======================== %]
(* Name: NJ series Ethernet communication parameter setting function block *)

(* Function: Each processing monitoring time setting and Ethernet related parameter setting *)
* ")

(* Target device: *)

(* Manufacturer name: Omron Corporation *)

(* Device name: Code reader *)

(* Series/Type: V430-F Series *)

(* Remarks : *)

* "

(* Version information: V1.00 Created November 30, 2018 *)

* !

(

§

(* Variable Description: Argument Return Value ==)
()

(Arguments: name data type content)

(-Input : Execute BOOL start flag)

()

(-QOutput : TopenTime UINT Open processing monitoring time)

(TfsTime UINT Transmission processing monitoring time)

(TrTime UINT Receive wait processing monitoring time)

(TfrTime UINT Receive processing monitoring time)

(TeloseTime UINT Close process monitoring time)

(SrcPort UINT own PortNo)

(DstlPAddr UINT Destination device IP address)

(DstPort UINT Destination device PortNo)

(Busy BOOL unused)

(Done BOOL unused)

(Error BOOL unused)

(ErrorlD WORD unused)

(ErrorlDEx DWORD unused)

()

(-Input/output: none)

()

(return value: none)

()

[== ¥

IF Execute THEN

(* Ethernet related parameter setting *)

SrcPort:= UINT#0; // own port number

DstlPAddr= "192.168.188.2"; // Destination IP address
DstPort:= UINT#2001; // Destination pert number

(* Processing menitoring time setting: maximum time from start to end of processing *)

TopenTime := UINT#500; // Open processing monitoring time setting: setting unit 10ms <500 = 5s>
TfsTime:= UINT#500: // Transmission processing monitoring time setting: setting unit 10ms <500 = 5s>
TfrTime:= UINT#500; // Receive processing monitoring time: setting unit 10ms <500 = 5s>
TcloseTime:=UINT#500; // Close processing monitoring time: setting unit 10ms <500=5s>

(* The maximum waiting time between packets when the response is divided and received in multiple packets (receive command)
and the maximum waiting time for the next response (receiving waiting time monitor timer) *)
TrTime:= UINT#3; //Receiving wait monitoring time: setting unit 100ms<3=300ms>
END_IF;

RETURN:

52

e Details of the ETN_SendMessageSet_instance Function Block (SendMessageSet)

9. Project File

. Graphic .
Instruction Name FB/FUN expression ST expression
Ethernet ETN_SendMessageSet_
SendMessageSet | Communications FB None instance (Execute, Send_Data,
Sequence Setting ComType);
* In-out Variable Table
* Input
Variable Data - Valid .| Initial
Name Description Unit
name type range value
Executes the function block
when the value changes Depends
Execute | BOOL Execute from OFF (FALSE) to ON ?n gata — | -
(TRUE). (Always TRUE) ype.
* Output
Variable Data L Valid . | Initial
Name Description Unit
name type range value
STRING Send Sets the send command to the Depends
Send_Data on data - -
[256] Data code reader. type
Sets whether to execute send,
Communi | receive, or send and receive
ComType BYTE cation processing. 1t03 - -
Type 1: Send only, 2: Receive only,
3: Send and receive
Busy BOOL Busy
Normal
Done BOOL End
Error BOOL Error End | Not used o — |
Error (Not used in this project.)
ErrorlD WORD !
Information
ErrorlDEx | DWORD | E™
Information
* Internal Variable Table
et Data type Name Description Vel Unit it
name range value
Depends
Send_ STRING[5] Send Send message header on data -—- -—-
Header Header type
Send Code Depends
- STRING[5] Reader Code reader address on data - -
Addr
Address type.
Depends
Send_ STRING[256] | Send Data Send command to the code on data . .
Command reader type
Send Depends
Send_ STRINGI5] Check Send message check on data N .
Check code
Code type.
Depends
Sgnd_Ter STRING[5] Send. Send message terminator on data - -
minate Terminator type

53

* Program

(* Name: NJ-series general-purpose Ethernet communication transmission/reception sequence setting function block)
(* Function: Necessity of sending/receiving processing and sending data setting)
* Wl

(* Target device:)

(* Manufacturer name: Omron Corporation *

(* Device name: Code reader)

(* Series/Type: V430-F Series *

(* Remarks : *)

* Bl

(* Version information: V1.00 Created November 30, 2018 *)

* "

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. l

=

(* Variable Description: Argument Return Valug ================c=-=---=--=----=-c-c—-c-—-ooooooooooo—oooo)
()
(Arguments: name data type content)
[-Input : Execute BOOL start flag)
)
-Qutput : SendData STRING[256] Send data }
ComType BYTE transmission/reception processing necessity setting)
Busy BOOL unused)
Done BOOL unused 3}
Error BOOL unused)
ErrorlD WORD unused)
ErrorlDEx DWORD unused]

Input/output: none)

return value: none)]

IF Execute THEN

(* Necessity setting for sending/receiving processing *)
ComType:= BYTE#16#03; // 1: send only. 2: receive only, 3: both send/receive

(* Transmission data setting *)
Send_Header="; // header
Send_Addr= " // address
Send_Command:= "< >'; // Destination device command: read execution
Send_Check:=" /f SUM calculation
Send_Terminate:= "; // Terminator

(* concatenation of transmission data *)
Send_Data:=
CONCAT(Send_Header,5end_Addr.5end_Command.Send_Check.5end_Terminate):
END_IF;

RETURN;

54

9. Project File

e Details of the ETN_ReceiveCheck_instance Function Block (ReceiveCheck)

. Graphic .
Instruction Name FB/FUN expression ST expression
Etct]rirmnﬁaications ETN_ReceiveCheck_instance
ReceiveCheck Recei FB None (Execute, Recv_Data, Recv_Buff,
eceive .
P . Error, ErrorlD, ErrorlDEX);
rocessing
* In-out Variable Table
* Input
Variabl D L . . Initial
HElE CIE] Name Description Valid range | Unit 1]
name type value
Executes the function block Depends on
Execute BOOL Execute when the value changes from datz tvoe - -
OFF (FALSE) to ON (TRUE). ype.
Receive .
tLength UINT Data Byte length of receive buffer | Dependson | .
data data type.
Length
* In-out
U Data type Name Description Valid range | Unit Jul 1
name value
Recv_Data | STRING[256] Receive Receive data Dependson | .
Data storage result data type.
Recv_Buff | STRING[256] | ~eceve Receive data buffer | DSPendson |
Buffer data type.
Error code:
Error Code reader error =
ErrorlD WORD . #16#1000 --- --- -
Information _
FCS error =
#16#2000
Error: code:
Error FCS receive
ErrorlDEx | DWORD Information result/Code reader | o -
error code
* Output
Uil Deits Name Description Valid range | Unit Ji el
name type value
Busy BOOL Busy Not used _ _ .
Done BOOL Elocrjmal (Not used in this project.)
n
Error BOOL Error End | Error end - - -
* Internal Variable Table
Variabl L . . Initial
HEIS € Data type Name Description Valid range | Unit a
name value
Receive STRING[5] Receive FCS | FCS receive result Dependson | .
Check of receive data data type.
Calc_ STRING[5] Receive FCS | FCS calculation
. . Depends on
Check Calculation result of receive -—-
data type.
Value data

55

* Program
R —————..
(* Name: NJ series general-purpose Ethernet communication reception processing function block)
(* Function: Receive data storage and receive processing result judgment *)
* %)
(* Target device: *)
(* Manufacturer name: Omron Corporation *)
(* Device name: Code reader =)
(* Series/Type: V430-F Series)
(* Remarks H)
(" ")
(* Version information: V1.00 Created November 30, 2018 *}
*)
(* (C)Copyright OMRON Corporation 2018 All Rights Reserved.)
[*===z===================z=========z= %)
(* Variable Description: Argument Return Value ==)
{)
(Arguments: name data type content)
{ -AJ:Execute BOOL startflag)
[tlength UINT Receive data length)
{)
(-H7 :Busy BOOL unused)
(Done BOOL unused)
{ Error BOOL Error flag)
({)
{ - AHH : Recv_Data STRING[256] Received data storage area)
{ Recv_Buff STRING[256] receive buffer)
{ ErrorlD WORD error code)
(ErrorlDEx DWQORD FCS reception result or destination device error code)
()
{ return value: none)
)
(== %}

IF Execute THEN
(* CheckSUM judgment: Not required *)

(* Store data in receive buffer in receive data storage area *)
Recv_Data:= Recv_Buff;

(* Judgment of partner device error *)
(* W430 does not return an error response in serial (TCP) communication *)
Error:= FALSE; /[Error flag reset
ErrorlD:= WORD#16#0000; Jf clear error code
ErrorlDEBc= DWORD#16#00000000; // clear the destination device error code

END_IF;

RETURN;

56

] 9.6. Timing Chart

9. Project File

The timing chart for the ST language program is shown below.

Start and Setup

Input_Start _l

1
Local_Status. }

BoolData[0](Busy) _l
|

Send data j

Control data :b(

|
Common p—
parameters j

|
Receive data
IX 0000

Output_sktCmds

ErrorlD j(0000

Local_Status.
BoolData[1](Done)
or Local_Status.
BoolData[2](Error)

If Input_Start is changed from True (ON) to False (OFF) during execution, Normal End or Error

End is output for one cycle after processing is completed as shown below.

Input_Start

Local_Status.
BoolData[0](Busy)

Local_Status.
BoolData[1](Done)

Local_Status.

(1) Normal state

AL f1
B

\4
|_| Output for 1 cycle

(2) Error state

AL $]

hpn B

1
__>:__,<._.

BoolData[1](Error)

Output_SktCmdErrorlD

Output_MErrCode

o
: mer
; Output for 1 cycle 1

#0000

#0000 XXX

57

e Open Processing

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

SktTCPConnect
_instance.ErrorID

Local_ErrCode.b[2]
Open processing

Output_sktCmds

--7-- [
[}

~ y(_0000

ErrorlD

0000

SktTCPSend
_instance.Busy

—1

(Normal End)

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect

_instance.Busy _|

SktTCPConnect
_instance.Busy

SktTCPConnect

I
!
1
T
1
1
: 1
| 1
L L
! 1

I
! 1

[}
1
1
instance —p——— L o~ Fo----
- 1
- 1

SktTCPConnect

_instance.Error ——— 1

SktTCPConnect
_instance.ErrorID

Local_ErrCode.b[10]
Timeout

Output_ErrCode

SktClose
_instance.Busy

1
(0000

I

1
0000 X

1

(Timeout)

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

SktTCPConnect
_instance.ErrorID

Local_ErrCode.b[2]
Open processing

Output_SktCmds
ErrorlD

SktClose

9. Project File

_instance.Busy ______________.1)

(Error End)

58

9. Project File

e Send Processing

_instance.Error

_instance.Error

--=

SktTCPConnect e SktTCPConnect -,
_instance.Done -1 IL ______________________ _instance.DoNe 1 |t ____.
} 1
SktTCPSend SktTCPSend !
_instance.Execute _instance.Execute _I—li
1 1 I 1
Tfs_ TON | [Tfs_TON | !
_instance.Q 1 ' _instance.Q : 1
I | 1
SKtTCPSend | ! SKITCPSend | !
_instance.Busy Jl—l_ni _instance.Busy Jl—l:i
1
SkiTCPSend | v SK{TCPSend | !
_instance.Done —! : : :
1
SKITCPSend | SKITCPSend 1 \2
1
: :
+ 1
SktTCPSend —

SktTCPSend j "
_instance.ErrorlD 0000 X__ st

Local_ErrCode.b[8] !

_instance.ErrorlD _X 0000

Local_ErrCode.b[8]

|—’ _instance.Done
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1

Timeout Timeout :

I

1

Output_sktCmds Output_sktCmds 5000 e
ErrorlD 0000 ErrorlD :
SktTCPRcv | S ~ SkiClose t ___________
instance.Busy --------------- i _instance.Busy —_____________ J
(Normal End) (Error End)

SktTCPConnect - -
_instance.Done -t oo ooomoo oo
1

SktTCPSend
_instance.Execute

|

Tfs_TON
_instance.Q

SktTCPSend REETEEEEN
_instance.Busy | 1

S

1

]

SktTCPSend 1
_instance.Busy - - .: _______________________

1

1

1

1
SktTCPSend :
instance.Done — - [P S
1
SktTCPSend [1 -
1 1

1
_instance.Error — . ______ P

1
SktTCPSend —X, L
_instance.ErrorlD _X 0000 !

Local_ErrCode.b[8] T—
Timeout — |

Output_ErrCode Y
0000 X 0100
1
SktClose * ______________

_instance.Busy - _____ 1

(Timeout)

59

9. Project File

e Receive Processing

SktTCPSend

SKktTCPSend - _instance.Done - - __________

_instance.DoNe -t - oo oo SKIGe{TCPStatus ———————
! instance.DatRcvFlag
SktGetTCPStatus N
instance.DatRcvFlag) SktTCPRcv
1 ' _instance.Execute LI Ii
SktTCPRev | Y i '
instance.Execute | || Tr_TON_instance.Q : |_|
1 1 . .
Tfr_TON_.instance.Q : : SKITCPRev Receive Standby Time
Tr_TON_instance.Q ! t _instance.Busy
1 ! 1
SK{TCPRcv | Y SKITCPRev !
_instance.Busy ‘) ,”I_I |_ _instance.Busy ------------- [
1, N :
SktTCPRcv M r----- M fem e ~ SKTCPRev !
_instance.Busy - - iy K b . _instance.RevDat :
-~ ' [1 1
SktTCPRcv
SktTCPRcv : . : instance.Done l_l
_instance.RevDat ! 0000 X D - !
1
SKiTCPRov 1 | , fktTC'I’ERCV !
_instance.Error | ! ~Instance.&rror :
v v SKTCPRev '
SktTCPRcv — (o000 _instance.ErroriD 0000 X 0000
_instance.ErrorID 1
Local_ErrCode.b[9] '
Local_ErrCode.b[9] Timeout L
Timeout 1
Output_skéCmTJEs) 5000 ;
Output_sktCmds rror T
P ErrorlD 0000 v
SktClose A
instance.Busy —----_______ :
(Repetition) (Normal End)

SK{TCPSend - -,

_instance.Done -1 oo

1

SktGetTCPStatus _l—\—
instance.DatRcvFlag

1

SKtTCPRev ¢
_instance.Execute _,—‘7

1
Tfr_TON_instance.Q |
Tr_TON_instance.Q :
1

SktTCPRcv
_instance.Busy —l\—f'l—

SktTCPRcv R Ps
. [I
_instance.Busy --4--1 I .
SktTCPRcv

_instance.RcvDat

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorlD 3(0000 X

1
1
1
i
Local_ErrCode.b[9] |
1
1
1
1
1
1

Hkkk

Timeout
Output_sktCmds
ErrorlD 0000 Y
SktClose | SV
_instance.Busy - --—_________ '
(Error End)

60

9. Project File

SktTCPSend -, . SktTCPSend P
_instance.Done -+ fo_____________________. _instance.Done -+ f_ oo __________.
1
SKiGetTCPStatus | SkiGetTCPStatus |—|
_instance. _instance.
1 1
SKiTCPRev © SKtTCPRev | rm— ==
instance.Execute _I—‘— _instance.Execute | [
! \ 1
1 . 1
Tfr_TON \ Tfr_TON_instance.Q |
instance.Q : || i |_|
1 | 1
SKITCPRev s SKITCPRov 1 :
_instance.Busy X E _instance.Busy . T -i ______
1 |=-=-=-=--- RS —
SKTCPRoy | ! | SKITCPRev ! ! !
instance.Busy T S b _instance.Busy R booo--
- ~ : 1 ! 1 1 !
! 1 1 1
SktTCPRcv — " : ~ SKTCPRecv — 5000 . T
_instance.RcvDat : 0000 : : _instance.RcvDat : E :
1
SKITCPRov | : : SKITCPRov 1 : |
instance.Done :—: ________ L. _instance.Done :—:. PR
1 1
SKITCPRcy | ' - SKTCPRev ! | -
instance.Error _:—: ________ . _instance.Error —_—eeee- 3.
- | 1 1 !
1
SktTCPRcv — : _ SKITCPRov ~y 1o
_instance.ErrorlD :X* 0000 : _instance.ErrorlD :X+ :
1
! Local_ErrCode.b[9]
Local_ErrCode.b[9] - .
Timeout !_l Timeout !_l
1
1
1 Output_sktCmds |
Outpul_skiCmds —G5o00 X301 Erorfls 0000 ¥ FFFF
1
1
SktClose | SR SktClose | A
instance.BuSy - - oo : _instance.Busy —--________)
(Timeout: Receive error) (Timeout: No receive data)
SktTCPSend

_instance.Done __________________________
SktGetTCPStatus —|
instance.DatRcvFlag S
SktTCPRcv
instance.Execute || @

Tfr_TON_instance.Q
Tr_TON_instance.Q

4-1+---

SKITCPRev Receive standby time

_instance.Busy

SktTCPRcv

_instance.RcvDat il

SktTCPRcv
_instance.Done

1
|
-
1
SktTCPRcv :
1
1
1
1
1
T
1

SktTCPRcv
_instance.Error

i

SktTCPRcv !
_instance.ErrorlD 0000 X 0000

1

1

1

1

Local_ErrCode.b[12]
Code reader error

Output_MErrCode

SktClose Y.
_instance.Busy - - - ____ .

(Code reader error)

61

e Close Processing

SktTCPRcv
_instance.Done, etc. -

SkiClose |
_instance.Execute _I—‘i

Tclose_ TON |
_instance.Q :

SktClose ﬁ h
_instance.Busy N t

1
SkiClose ", ___
. \
_instance.Busy __ 1™ ¢
~ Pl Tl -
SktClose 1
_instance.Done—|
SktClose :

_instance.Error

SktClose —Y,
_instance.ErrorID:X

0000

SktGetTCPStatus
_instance.Execute

SktGetTCPStatus
_instance.Busy

,\
%
—_

SktGetTCPStatus
_instance.Done

—

SktGetTCPStatus

\
-~

_instance.TcpSta

XXX X

CLOSED

Local_ErrCode.b[3]
Close processing

Local_ErrCode.b[11]
Timeout

Output_skTclose

ErrorlD

Output_Stat.b[0] ----

(Busy)

H-t+-F=-=-F-=-

(Normal End)

FB_Rcv.Done, etc.

SktClose
_instance.Execute

Tclose_TON
_instance.Q

SktClose
_instance.Busy

SktClose
_instance.Busy

SktClose
_instance.Done

SktClose
_instance.Error

SktClose —
_instance.ErroriD

Local_ErrCode.b[3]
Close processing

Local_ErrCode.b[11]
Timeout

Output_ErrCode

Output_Stat.b[0]
(Busy)

1
1
I [
| 1
1 1
| |
: | j=----
| 1 1
1 1 1
——qmm - | E
1 1 1
. ! !
R W [
[} 1
| ! Y
I ! i
s (S
! :
¥ 0000 !
1
1
1
1
1
1
|
1
0000 X 0800
;

(Timeout)

SKTCPRev -1

_instance.Done, etc. &+ --

SktClose _l—\—
_instance.Execute

Tclose_TON
_instance.Q

SktClose
_instance.Busy m

1
1
SktClose Il

SktClose
_instance.Done

4
: 1
_instance.Busy -- -1 .

P . \

1

1

1

1

I

SktClose
_instance.Error

Hhkk

SktClose
_instance.ErrorlD 3(
Local_ErrCode.b[3]
Close processing

Local_ErrCode.b[11]
Timeout

Output_skTclose
ErrorlD

*hkk

Output_Stat.b[0]
(Busy)

(Error End)

SktTCPRcv i
instance.Done, etc. i ;

SktClose _l—\—
_instance.Exescute

Tclose_TON
_instance.Q

SktClose ,
_instance.Busy _l‘\—(’"_.i
4

SktClose
_instance.Busy - - -

SktClose !
_instance.Done

T
1
1
[

SktClose

_instance.Error

SktClose —
_instance.ErrorID J(

0000

N R

SktGetTCPStatus

_instance.TcpSta

Local_ErrCode.b[3]
Close processing

1
XXX X} # CLOSED
1

Local_ErrCode.b[11]
Timeout

Output_skTclose

1

ErrorlD

0000 X__FFFF

Output_Stat.b[0]
(Busy)

(Status Error)

9. Project File

I 9.7. Error Processing

9. Project File

9.7.1. Error Code List

This section lists error codes that can occur during the execution of the ST language

program.

e TCP Connection Status Error (Output_EtnTcpSta)
If the TCP connection status does not return to the normal state (_ CLOSED) within the
specified time after close processing, the TCP connection status code is set in the variable

Output_EtnTcpSta. (If close processing ends with an error, the variable is checked

together.)

Error code enumerator
[eCONNECTION_STATE]

Description

_CLOSED Connection closed (Normal state)

_LISTEN Waiting for a connection

_SYN SENT SYN sent in an active state

_SYN RECEIVED SYN sent and received

_ESTABLISHED Connection established

_CLOSE WAIT Waiting for a finish after FIN received

_FIN WAIT1 Finished and FIN sent

_CLOSING Finished and FIN exchanged Waiting for FIN acknowledgment (ACK)
_LAST ACK FIN received and finished Waiting for FIN acknowledgment (ACK)
_FIN WAIT2 FIN acknowledgment (ACK) received Waiting for FIN

_TIME WAIT Waiting for a silence of twice the maximum segment lifetime (2 MSL) after

a finish

63

9. Project File

e Error Codes (Output_SktCmdsErrorID, Output_SkTcloseErroriD)
If an error occurs in open processing, send processing, or receive processing, the error
code is set in the variable Output_SktCmdsErrorID before execution of close processing.
If an error occurs in close processing, the error code is set in the variable
Output_SkTcloseErrorlD and the processing ends. The table below shows the main error
codes.

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing

(SktClose instruction), o: Applicable processing)

Error
code

#16#0000 o o o o | Normal end
#16#0400 o o o | An .input pa(ameter for an instruction exceeded the valid range for
an input variable.
#16#0407 | o o | - The calculation result of the instruction exceeded the valid range
for the data area for output parameters.
#16#2000 o | --- | --- | - | The instruction was executed with a local IP address setting error.
The instruction failed to resolve the address of the remote node
#16#2002 o | == | =] - . e X
with the specified domain name.
The instruction was not executed in appropriate state.
» SktTCPConnect instruction
The TCP port specified by the input variable SrcTcpPort is
already open.
The remote node specified by the input variable DstAdr does not
exist.
The remote node specified by the input variables DstAdr and
DstTcpPort is not waiting for a connect request.
» SktTCPRcv instruction
The specified socket is in receive processing.
A connection is not established for the specified socket.
» SktTCPSend instruction
The specified socket in send processing.
A connection is not established for the specified socket.
#16#2006 -—- | -—- | o | - | Atimeout occurred for the socket service instruction.
#16#2007 - | o o o | The handle specified in the socket service instruction is invalid.
The instruction was executed in excess of the resources available
#16#2008 o o o o . L .
for simultaneously executable socket service instructions.
#16#FFFF o o o o | The instruction ended before completion of the execution.

@ Note

For details, refer to A-1 Error Codes That You Can Check with ErrorID and A-2 Error Codes in
Appendices of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

@ Note

For the details and corrections of the built-in EtherNet/IP port, refer to 8-7 Precautions in
Using Socket Services in Section 8 Socket Service of the Machine Automation Controller
NJ/NX-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506).

O | S | R | C | Description

#16#2003 o o o | ==

64

9. Project File

e Error Flags (Error End, Timeout) (Output_ErrCode)
If open, send, receive, or close processing ends with an error or times out, an error flag is

set in the variable Output_ErrCode, and an error code is stored in the variable
Output_SktCmdsErroriD or Output_SkTcloseErrorID.
(If close processing ends with error or times out, the TCP connection status error variable

Output_EtnTcpSta is also checked together.)

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing
(SktClose instruction), o: Applicable processing)

Error flag (0] S R C | Description

#16#0000 o o o o Normal end

#16#0001 o Send processing ended with an error

#16#0002 o Receive processing ended with an error

#16#0004 o Open processing ended with an error

#16#0008 o Close processing ended with an error

#16#0100 o Send processing not completed within specified time

#16#0200 Receive processing not completed within specified time

o (This includes cases where response to be received was

not received.)

#16#0400 o Open processing not completed within specified time

#16#0800 o Close processing not completed within specified time

#16#0010 Processing number error

#16#0020 Send/Receive required judgment error

#16#1000 Code reader error

#16#2000 Code reader FCS (checksum) error

#16#8000 o o o o Error occurred

* Each error flag stores the sum of error flag values detected in each processing.

e Code Reader Error Codes

If the receive data from the code reader is error data, an error code is stored in the variable

Output_MErrCode.

Error code Description
#16#00000000 | Normal End
#16#FFFFFFFF | Not executed

65

9. Project File

9.7.2. TCP Connection Status Error and Correction
This section describes the situation and corrections if a TCP connection status error
occurs.

e Effect of a TCP Connection Status Error
If, after the occurrence of a TCP connection status error, you execute the project file again
without taking any corrective action or without noticing the error, the following error may
occur: The remote node specified by the input variable DstAdr (Destination Address) or
DstTepPort (Destination Port) is not waiting for a connect request. (Hereinafter, this error is
referred to as “open processing error”.) This is considered as the effect of the TCP
connection status error at the end of the previous communications processing. Refer to
9.7.1 Error Code List for details of errors that occurred.

e Situation When a TCP Connection Status Error Occurs
Both a TCP connection status error after close processing and an open processing error in
the next communications processing due to the effect of the TCP connection status error
can occur because the close processing has not completed in the code reader. In this
situation, despite that the controller has ended all processing steps (up to close
processing) in the project file, it has not received the close completion notification from the
code reader (i.e., the completion of the close processing in the code reader is not
confirmed).

e Correction
Check whether the communications port of the code reader is closed since the close
processing may not be completed in the code reader. As a result, if the communications
port of the code reader is not closed or its state cannot be confirmed, the communications
port must be reset. To reset the communications port of the code reader, you can use
software restart or turn OFF and then ON the power supply. For details, refer to the manual
for the code reader.

[El Precautions for Correct Use

Reset the communication port of the code reader after confirming that it is not connected to
another device.

e Situation When a TCP Connection Status Error Occurs in the Controller (Built-in
EtherNet/IP Port)
When a TCP connection status error occurs, the project file has ended its processing, but
resending and time monitoring by the built-in EtherNet/IP port (TCP/IP function) may be
active, as described in Resending and Time Monitoring Using the Built-in EtherNet/IP Port
(TCP/IP) in 9.3.2. Time Monitoring Function. However, this resending will stop under the
following situations, so there is no particular need to consciously stop it.
* The project file is executed and an open processing request is issued again.
* A communications problem such as cable disconnection is resolved during resending.
* Resend processing is ended by the TCP/IP time monitoring (timeout) function.

* The controller is restarted or turned OFF.
66

10. Revision History

10. Revision History

Revision Code Revision Date Revised Page and Reason

01 March 2023 First Publication

67

OMRON Corporation Industrial Automation Company

Kyoto, JAPAN Contact : www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69, 2132 JD Hoofddorp 2895 Greenspoint Parkway, Suite 200

The Netherlands Hoffman Estates, IL 60169 U.S.A.

Tel: (31) 2356-81-300 Fax: (31) 2356-81-388 Tel: (1) 847-843-7900 Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD.

438B Alexandra Road, #08-01/02 Alexandra Room 2211, Bank of China Tower,
Technopark, Singapore 119968 200 Yin Cheng Zhong Road,

Tel: (65) 6835-3011 Fax: (65) 6835-2711 PuDong New Area, Shanghai, 200120, China

Tel: (86) 21-5037-2222 Fax: (86) 21-5037-2200

Authorized Distributor:

©OMRON Corporation 2023 All Rights Reserved.
In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. Z412-E1-01 0323

	Machine Automation Controller NJ-series General Ethernet (TCP/IP) Connection Guide Auto Focus Multi Code Reader V330-F / V430-F-series
	1. Related Manuals
	2. Terms and Definitions
	3. Restrictions and Precautions
	4. Overview
	5. Applicable Products and Support Tools
	5.1. Applicable Products
	5.2. Device Configuration

	6. Ethernet Settings
	6.1. Ethernet Communication Settings
	6.1.1. Communications Settings for Setting PC and Code Reader
	6.1.2. Communication Settings for Ethernet Unit and Code Reader

	6.2. Example of Connection Check for Communications

	7. Connection Procedure
	7.1. Operation Flow
	7.2. Code Reader Setup
	7.2.1. Setting the Parameters

	7.3. Controller Setup
	7.3.1. Starting the Sysmac Studio and Loading the Project File
	7.3.2. Checking Parameters and Executing builds
	7.3.3. Going Online and Transferring the Project Data

	7.4. Checking the Connection Status
	7.4.1. Executing the Project File and Checking the Receive Data

	8. Initializing the System
	8.1. Initializing the Controller
	8.2. Initializing the Code Reader

	9. Project File
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications Using Socket Service Instructions

	9.2. Code Reader Command
	9.2.1. Command Overview
	9.2.2. Command Settings

	9.3. Error Judgment Processing
	9.3.1. Error Judgment in the Project File
	9.3.2. Time Monitoring Function

	9.4. Variables Used
	9.4.1. Lists of Variables Used
	9.4.2. Lists of Variables Used in User-defined Function Blocks/Functions
	9.4.3. Lists of System-defined Variables

	9.5. Programs (ST Language)
	9.5.1. Functional Components of the ST Language Program
	9.5.2. Detailed Explanation of the Main Program
	9.5.3. Detailed Explanation of Function Blocks

	9.6. Timing Chart
	9.7. Error Processing
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Error and Correction

	10. Revision History
	Contact

