OMmRON

Omron TM Collaborative
Robot: TMSript Language
Manual

OOOOO

Original Instruction

The information contained herein is the property of Techman Robot Inc. (hereinafter referred to as the
Corporation). No part of this publication may be reproduced or copied in any way, shape or form without
prior authorization from the Corporation. No information contained herein shall be considered an offer or
commitment. It may be subject to change without notice. This Manual will be reviewed periodically. The
Corporation will not be liable for any error or omission.

M and M logos are registered trademarks of TECHMAN ROBOT INC. and the company reserves
the ownership of this manual and its copy and its copyrights.

The textual descriptions and images contained in this Manual may differ from the actual product; in the
event of any discrepancies, the actual product shall prevail.

™ TECHMAN ROBOT INC.

Terms and Conditions Agreement
Warranty Limitations of Liability

Warranties

® Exclusive Warranty
Omron’s exclusive warranty is that the Products will be free from defects in materials and
workmanship for a period of twelve months from the date of sale by Omron (or such other period

expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

® Limitations
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF
THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based

on infringement by the Products or otherwise of any intellectual property right.

® Buyer Remedy
Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form originally
shipped with Buyer responsible for labor charges for removal or replacement thereof) the
non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an
amount equal to the purchase price of the non-complying Product; provided that in no event shall
Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the
Products unless Omron’s analysis confirms that the Products were properly handled, stored,
installed and maintained and not subject to contamination, abuse, misuse or inappropriate
modification. Return of any Products by Buyer must be approved in writing by Omron before
shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from
the use of Products in combination with any electrical or electronic components, circuits, system
assemblies or any other materials or substances or environments. Any advice, recommendations or
information given orally or in writing, are not to be construed as an amendment or addition to the

above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

http://www.omron.com/global/

e

Limitations of Liability: Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL
LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS
BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the
Product on which liability is asserted.

Application Considerations

Suitability of Use
Omron Companies shall not be responsible for conformity with any standards, codes or
regulations which apply to the combination of the Product in the Buyer’s application or use of the
Product. At Buyer’s request, Omron will provide applicable third party certification documents
identifying ratings and limitations of use which apply to the Product. This information by itself is
not sufficient for a complete determination of the suitability of the Product in combination with the
end product, machine, system, or other application or use. Buyer shall be solely responsible for
determining appropriateness of the particular Product with respect to Buyer’s application, product
or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS AWHOLE HAS BEEN DESIGNED
TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED
AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR
SYSTEM.

Programmable Products
Omron Companies shall not be responsible for the user’s programming of a programmable
Product, or any consequence thereof.

Disclaimers

Performance Data
Data presented in Omron Company websites, catalogs and other materials is provided as a
guide for the user in determining suitability and does not constitute a warranty. It may
represent the result of Omron’s test conditions and the user must correlate it to actual
application requirements. Actual performance is subject to the Omron’s Warranty and
Limitations of Liability.

e Change in Specifications

Product specifications and accessories may be changed at any time based on improvements
and other reasons. It is our practice to change part numbers when published ratings or
features are changed, or when significant construction changes are made. However, some
specifications of the Product may be changed without any notice. When in doubt, special part
numbers may be assigned to fix or establish key specifications for your application. Please
consult with your Omron representative at any time to confirm actual specifications of
purchased Product.

Errors and Omissions
Information presented by Omron Companies has been checked and is believed to be
accurate; however, no responsibility is assumed for clerical, typographical or proofreading
errors or omissions.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 0

e

Statement of Responsibilities for Cybersecurity Threats

To maintain the security and reliability of the system, a robust cybersecurity defense program
should be implemented, which may include some or all of the following:
Anti-virus protection
. Install the latest commercial-quality anti-virus software on the computer connected to the
control system and keep the software and virus definitions up-to-date.
. Scan USB drives or other external storage devices before connecting them to control
systems and equipment.
Security measures to prevent unauthorized network access
. Install physical controls so that only authorized personnel can access control systems and
equipment.
Reduce connections to control systems and equipment via networks to prevent access from
untrusted devices.
Install firewalls to block unused communications ports and limit communication between
systems. Limit access between control systems and systems from the IT network.
Control remote access and adopt multifactor authentication to devices with remote access to
control systems and equipment.
Set strong password policies and monitor for compliance frequently.
Data input and output protection
Backup data and keep the data up-to-date periodically to prepare for data loss.
Validate backups and retention policies to cope with unintentional modification of
input/output data to control systems and equipment.
. Validate the scope of data protection regularly to accommodate changes.
Check validity of backups by scheduling test restores to ensure successful recovery from
incidents.
Safety design, such as emergency shutdown and fail-soft operations in case of data
tampering and incidents.
Additional recommendations
When using an external network environment to connect to an unauthorized terminal such
as a SCADA, HMI or to an unauthorized server may result in network security issues such as
spoofing and tampering.
You must take sufficient measures such as restricting access to the terminal, using a
terminal equipped with a secure function, and locking the installation area by yourself.
. When constructing network infrastructure, communication failure may occur due to cable
disconnection or the influence of unauthorized network equipment.
. Take adequate measures, such as restricting physical access to network devices, by means
such as locking the installation area.

When using devices equipped with an SD Memory Card, there is a security risk that a third party may
acquire, alter, or replace the files and data in the removable media by removing or unmounting the media.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 1

REVISION HISTORY TABLE ... e 11
1. OVERVIEW ..o 12
2. EXPRESSION ..ottt 13
2.1 137 015 T PP 13
2.2 Variables and CONSTANTScoiiiiiiiii e 14
2.3 N (= | PP 17
2.4 Operator SYMDOIS ... 18
2.5 D= U= R Y/ o 1= T @01 £ V=T £ o o 21
2.6 Endianness and CONVEISIONcouuuueiiiiie et 24
2.7 LAY = T 1 o ST 26
3. SCRIPT PROJECT PROGRAMMINGcctuiiiiiiiiii e 28
3.1 (0 11 1 = PSPPSRI 28
3.2 0= 28
3.3 ClO S S O ettt 29
3.4 LT 0] £ K0 o PP 30
3.5 CUSTOMIZEA FUNCLION e e et e e e e e e e eenees 31
3.6 (6701 1010 1T 0| ST TPPPPPT PSPPI 32
3.7 RV T = o] PR 33
3.8 Y TN T L= 1 o LU 36
3.9 Conditional StatEMENTSooeeiiiiiie e e e e 37
3.9.1 | SR PPPPPUPPR 37
3.9.2 L1111 (o o PP 38
3.10 (Yo o IS) €=V (=] 1 01T 01 PSPPI 41
3.10.1 (0] PSPPSR 41
3.10.2 WL et e e e e e e e e e e e e e e e e aara 42

0 700 0 TC T o (o IV o1 [SRR 43
3.11 Branching Stat@mMentsccoco oo 44
3.11.1 0] 1= = 1R 44
0 5 0 o 1 11011 = 45
3.11.3 (] L0 o PP P TP PPPT PP 45
3.12 TREA .. 46
0 2 R I a1 (== To | U] o TR 46

I 2 111 =Y- o [01 TE RPN 47

O 2 B I a1 (== To 1] = (=T) TR 48
3124 THIEAUEXIL() ..vevvveeeeeeeeeeeteee ettt ettt ettt ee et et et et e e et e e et et e s et eteetete et aeeeeeteeeateeeeeeeeanas 48

4. GENERAL FUNCTIONS ... 51
4.1 = 32 = 0 1 G 51
4.2 o A =T o] [0} 02) TSP 53
4.3 BYte_TOFIOAL() «eeiieeiiiiiiiiiiiiiiiiieee e 54
4.4 Byte _TODOUDBIE()..u i 55
4.5 BYte_TOINTLOATTAY() +eeeeeeeeeeeiiiiiiiiiiiiiiiii ittt ettt e e e e e e e e e e eeeees 56

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

4.6 Y o] [oY eC 2y N g 7= | P 58
4.7 BYte TOFIOALATTAY () errrrrrueiiieeeeieieieiee e e e et e e e e e e et e e e e e e e e e eeann e e eeeees 59
4.8 Byte _TODOUDBIEATTAY () .vvveiieieeiieieiiiee e 60
4.9 o YA oS 4 T Yo T 61
4.10 = YA =R Ofo] o Yot |) I 62
4.11 Y (Lo T e 1 L] =0 L= o ISR 65
4.12 Y1 o T e] (o X= L (PSSP 67
4.13 StriNg_TODOUDIE() .uvueniie e 69
4.14 S (Lo T e =24 =T T RURPPRRR 71
4.15 SHNG _INAEXOT() 1errriniiiiie e e e e e e e e e e e e e e e e e eeeennes 72
4.16 StriNg_LastiNdeXOF()...ooeeeieeieiiiiie e 74
4.17 String_DIffINAd@XOF() ..uuiie e 76
4.18 SHNG_SUDSTIING () .ereuieie it e e e e e e e eeeeaa e e e e e e eeeeeees 77
4.19 Y (Lo ST o 11 PSRRI 80
4.20 SEING_REPIACE() ..ttt 81
4.21 Y (Lo T I 1 P USPPTRN 82
4.22 SEING _ TOLOWET ().t 84
4.23 S (Lo T e 10 o7 o L=) USRI 85
4.24 ATTAY _APPENA() 1o 86
4.25 F - V2 L 1T PR 87
4.26 AITaY _REMOVE().ciiiiiiiiiiiiiiieeeee 88
4.27 F - V2 =o [V = 1 £ SR 89
4.28 ATTaY_INAEXOT() coieiiiiiiiiieei e 91
4.29 Array _ LastindeXOf()..ooovuuriiieee e 93
4.30 ATTAY _REVEISE().ciiiiiiiiiiiiiiieiee 95
4.31 F N VS o] (PR 97
4.32 Array_SUDEIEMENTS() ..o 98
4.33 ValUBREVEISE() .uuiiieeiiiieeee ettt e e e e e e e e e e e e e s 100
4.34 GEEBYTES() -ttt 103
4.35 (1= A 4 1 Lo | O RRRPRRN 107
4.36 GETOKEN() -t 114
4.37 GELAIITOKENS() e eieeetitiie e ettt eeeeannes 122
4.38 GBENOW() - 124
4.39 GEINOWSEAMP() wevvrrriiie e e e e e e e e e e e e e e et e e e e eeeeeennns 126
4.40 GEEVAINVAIUE(). . 129
4.41 SEtVArVaAIUE() ..ceeeeeeiiii ettt e e e e e e e aaaaa 130
4.42 LeNGTN() i 131
4.43 3 1) 133
4.44 KO R B () et 135
4.45 SUMBI() -ttt nnnnnnnen 137
4.46 Y 1§ 139
4.47 Y 111/ 52§ N 141
4.48 O O3 I N 143
4.49 O O 7 () N 145
4.50 LISTENPACKET() .. eviieiiiiiiiiiiiiiiii ettt 147
451 ST =T oIS o I TSP 148
4.52 VAISYNC() o oeiieiiiiiiiii e 150
5. GENERAL FUNCTIONS (SCRIPT) ciititiieiiiii et 152

Omron TM Collaborative Robot: TMScript Language Manual (1664)

5.1 g) I 152
5.2 o T S (P 154
5.3 TS T £ 1= () PR 155
5.4 LAYz UL o T () 156
5.5 Y 12T o1 USSR 157
5.6 D15 01 = Y) PP 158
6. MATH FUNCTIONS ... e 160
6.1 =1 o 1= (USSR 160
6.2 [T X1V 161
6.3 ST o (U URPPPPPRN 163
6.4 (o =T SRR 164
6.5 L1001) PR 165
6.6 0T Lo 1) 166
6.7 =Yg Yo [0 0 41 TSN 168
6.8 CS1 U 0 1 RPN 169
6.9 BV EIAGE() -+ttt 170
6.10 S (0 1=V oY () ISP 171
6.11 STV S () oo 172
6.12 AT T 173
6.13 TYVBIX () -+ttt 174
6.14 (0 2 175
6.15 220 1) 176
6.16 S 1 RPN 177
6.17 COS () 178
6.18 1= 0 1) 179
6.19 BISTIT () 180
6.20 = oo 1= () TSP 181
6.21 BIEAIN () - 182
6.22 =1 C= 1 12) USSP 183
6.23 Lo Yo | (N 184
6.24 oY i 0 186
6.25 L0 00 2) N 187
6.26 (0 TS 188
6.27 EFANS() e 189
6.28 LV A= =L =T LT (R 191
6.29 AP PIYTEANS ()i 192
6.30 LN =T o X1 01 () S 194
6.31 N ANG T ()i 195
6.32 (O o XN gL £Sy-XoT e Yo] o I PSS 197
6.33 LN fodeTo] o (IS 199
6.34 (oTo T 0] £53 11 1 () PSPPI 200
7. FILE FUNCTIONS ... e e e e e 201
7.1 FIle _REAUBYTES() ..uiiiiiiiiiiiiiiii ettt e e e e e e e e eaaaas 202
7.2 File_REAATEXT() . iieeiiiiiiiiiiiiiiiiiiiei ettt 203
7.3 FIle _REAALINES().ruuiiiiiiiii ittt e e e e aa e e e eaaaas 204
7.4 L= N[t T =T TP 206

Omron TM Collaborative Robot: TMScript Language Manual (1664) 4

e

7.5 =T N Lo g =] TP 209
7.6 A AV =1 = A €= TS) PO 210
7.7 FIE WIITETEXE() «ooeeeeeeeeeieiiie ettt e e e e e e e e e e e e e eeeannnn s 214
7.8 LAY (=T BT 1= PO 217
7.9 FIle _WIITELINES() cooeeeeeeeiiiiiie ettt e e e e e e e e aeanan s 220
7.10 L = 1= S PO 223
7.11 L =T o o PP 224
7.12 L 1= 1= = PO 225
7.13 L= O] o V7 (PP 226
7.14 L O] VA [= Vo 1=) PO 227
7.15 LR C =T A [g = To 1= PP 229
7.16 L =T 01 = o =) PO 231
7.17 L =T e =] o 1 (PR 232
7.18 L Lo N L e =T g 1= (P 236
7.19 FIlE _GEEFIIES (). iiiiiiiiiiiiiiiiiieieeeeeeee e 238
7.20 LI o T VAV =Y PO 240
8. SERIAL PORT FUNCTIONS 242
8.1 Y= g = 1 o g O = 1 SRR 242
8.2 (o304 0 0 1= o 1 () ISR 243
8.3 COM _CIOSE() ettt 244
8.4 [odo] ¢ T (=T T I ISR 245
8.5 COM_TEAU_STITNG() uuuuuunutunnnnniitiiii e 251
8.6 [odo T ¢ 4 1 (= TSR 256
8.7 COM _WITEEIINME() - 258
9. SOCKET FUNCTIONSce e e e e 260
9.1 Yo T o] = A O = T SRR 260
9.2 Yo 1o = A 0] o 1= 1 (PRSPPI 261
9.3 SOCKEL_ClOSE() 1 oiee e 262
9.4 Yo 1o = A == Lo [PO URRPPPRRN 263
9.5 SOCKEt_read_STrNG() ..cceeeee e 269
9.6 Yo 1o = AT = o 1 IO URRPPPPTN 274
9.7 SOCKEL_SeNAIINE() ..ccoeeeeeeeeeeeee e 276
10. MANUAL DECISION FUNCTIONSce e 278
10.1 IMDECISION ClASS ... ittt e e e e e e e s 278
LO.1.1 RESEU() e oeeeeee e 279
0 2 111 1= TSROSO 279
10.1.3 DESCIIPLON() ..o e et eeeeeeeeee e 279
1014 THMEOUL()- .ot ee et ettt e et eeee et ee e e et e et e st e et e e es e s e e eeeeeas 279
10.1.5 TimeoutDefaultCaSE()ccevee e 280
L0168 CASE() cvuvvereeeeeee et ee et e ettt e ettt ettt n et 280
L1017 SROW() oo 282
11. PARAMETERIZED OBJECTS ...t 284

Omron TM Collaborative Robot: TMScript Language Manual (1664) 5

11.1 0T | U PRT 285
11.2 B S e 286
11.3 TP e 287
11.4 VPOINT e 288
115 1 289
11.6 RODOT .. 292
11.7 e 294
12. ROBOT TEACH CLASS ..ot e e e e e 296
12.1 TPOINT ClaSS oo 296
12.2 TBASE ClaSS . ettt e e e e e e eaaae 300
D N 1= A £ 11T (RSP 301
K STV V7 (1= | OO 301
12.2.3 CONVSIIFL) ettt ettt ettt e et ettt e et e et e et et e et e et e et ee e e e e 302
12.3 LI 1 = T SRR 304
13. ROBOT MOTION & VISION JOB FUNCTION ..o 307
13.1 QUEUEBTAG () -+t 307
13.2 AT U@ LU =T U = 1=V | (U 308
13.3 CHECKQUEUEBTAG (). uuvuuunununnnniiiiiiiitiii e 309
13.4 StopANdClearBUffer()coovveeiiii e 311
13.5 CRANGEBASE() ...ttt 312
13.6 (O g F= T g Lo [= 1@ = (SRR 314
13.7 CRANGELOAA() -ttt 317
13.8 e I8) P 319
13.9 AV o A= T i I = 324
13.10 [= PP 325
13.11 IMOVE_LINE() ceieiiiiiiiiiiiieee ettt 328
13.12 O o] T (N 331
13.13 PLINE() +ettteeeeeiiee ettt 334
13.14 Y To XY 2T o T 1= PO 335
13.15 LiN@SINQUIAITEY() +eveeeieiiiiiiiiiiiiiieiee ettt 336
13.16 (0701 1 TE=1 101 4 104 a T=Tod 1 (PSRRI 337
13.17 PVTENTEIN() . eeeeieieieieieeeeeeeee ettt 339
13.18 A I =0 g1) P 340
13.19 AV I =0 Y01) 341
13.20 AV I == U0 EY = (PP 343
13.21 AV I = =TS U T 4 =T P 344
13.22 PathOffSEt _SeL() .uuiiiiiiiiii e 345
13.23 = U8 1@ EST = A = U PP 348
13.24 PathOffset ISENabled().......ccooieiiiiiiii e 349
13.25 PathOffset_AIPhaFIlter() ... 350
13.26 PathOffset MaxOffSet() ...ccuuuiieiiiiii e e 351
13.27 AV 7] Lo Tod 1 4§ IR 354
13.28 0 1] 10T o PP 358
13.29 SEtTCPSPEEALIMIT() ..uuuuvuiiiiiiiiiiiiiiiiiitiii e 362
13.30 SEEACCTABIE() +uuiiiiiii e 364
13.31 (1= 0 oo 1= o] 1= ISR 367

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

13.32 VISION_DOJOD() et 368
13.33 ViSioN_D0OJOD_PTP() ciiiiiiiiiiiiiii e 369
13.34 AT Lo T g I B o N Ko o I IR o =T § PR 370
14. VISION FUNCTIONS 372
14.1 Vision _ISJODAVAIlADIE() ..uuvuiiie e 372
14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks................ 373
14.2.1 Vision_GetOUIPULAITAYSIZE() . .ceeieeeiiiiiie e e ee et e e e e e et e s e e e e e e e et e e s e e e e e e eaanra s 373
14.2.2 Vision_GetOULPULAITAYVEAIUE()cooeeeieeeeeeeeeeee e 375
14.3 Vision_GetTriggerJobOutputCouNt() ...oooeeeeveeeiiiiiei e 383
14.4 Vision_GetTriggerJobOutputValue()cccccvvviiiiiiiiiiiiiiiieeeeeeeeeeee 384
15. EXTERNAL SCRIPT L. 386
151 Y (= 0 T N [Yo PP 386
15.2 CommuNICAtION ProtOCOuuiiiiiiiiiiiiiiiiiiiii e 387
15.3 11151 2 SRR 389
154 LI S I PP UPPPPPPPPTIN 391
15.5 CPERR R . ettt e e e e e e e et e e e e eeeeanne 394
15.6 Yot g1 o) 4 IS (= o 1 U URRTN 396
15.7 SCITPEEXTT() -ttt 398
15.8 Priority COMMANASoouviiiiii e e e e e e e 399
16. MODBUS FUNCTIONSt e e e e e 402
16.1 MOADBUSTCP ClaSS ...t e e e e e 402
T T A = 1YY { () TP SUPPPPSTOTPRR 402
o (1] 0] = =YY=y [OO 404
16.2 MOADUSRTU ClaSS...ciiiiiiiiiiiiiiiiiiiiiiieeeee ettt e 405
L16.2.1 PrESEU() oo oee e e e 405
16.2.2 TODDPIESE) ...t ee et e ettt ettt et ettt 407
16.3 gaToTo ko TU KT o] o1=] o 1 IR 408
16.4 (gaYo o] U T od Fo 1 =T I 409
16.5 gaToTo L o 10 KT g7 To L) IR 410
16.6 gaYo o] oW ETN g=T= To HN T 0L 1 G (P 413
16.7 galoTo L o] UK g=T- To I 1 1 £C 22 (RN 415
16.8 MOodbus_read float().....ccooeeeiiiiieee e 417
16.9 MOdbus_read_dOUDIE().......uuuuuiiiiiiiiiiiiiiiiiii i 419
16.10 MOADbUS_read _STHNG() «.ooevrrieeiiiii e 421
16.11 aToTo ko TU KT Y] =T TN 423
17. TM ETHERNET SLAVE ..o e 427
17.1 (0 BT 4 o TR RURPPRRT 427
17.2 D= U= 1= o] P 428
17.3 Communication ProtOCOl.........uuiiiiiiiiiic e 430
17.4 LISV R 432
17.4.1 Mode = 0 (the status the server responds to the client command processing)............... 433
17.4.2 MOAE = 1 BINARY oottt et e e e e e e e et e e e et b e e e e et e e e e et s 435

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

17.4.3 Mode = 2 STRING......cooii e
17.4.4 MOAE = 3 ISON ...
17.45 Mode = 11 BINARY (Requestread) ...
17.4.6 Mode = 12 STRING (Request read)cc.eceevvvevriiiiiieeeeeeeeeiiiinnnn.
17.47 Mode = 13 JSON (Requestread).........cccoeeeiiiiiiiiiiieeeeeeeeeeeeeee
17.5 3V A G (= o [(I
17.6 SVI_WITEE() 1o eeeeeeeeiii ettt e e
18. PROFINET FUNCTIONS. ...,
18.1 profinet_read iNPUL() .ccccoevieeeiiieecee e,
18.2 profinet_read_input_int().....ccccermiriiiiniieicee e
18.3 profinet_read_input_float()......cccocoeeeeeeiieiiiiiiiii e,
18.4 profinet_read_input_String()ccccoeeenneeeeiiiieeiiiiee e
18.5 profinet_read _input_bit()......cccovrviiiiiii e,
18.6 profinet_read_OUTPUL()........uuvurummmmmmmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees
18.7 profinet_read_output_int()cccccoeeiiiiiiiieiiiice e,
18.8 profinet_read_output_float()cccuvvvvmmmmmiimiiiiiiiiiiiiiiiiiiins
18.9 profinet_read_output_String()....cccoeeeeeeeeeiiiiiiiiiiiieee e,
18.10 profinet_read_output_bDit()ccccermmmmmmmmimiiiiiiiiiiiiiiiiiiiiiees
18.11 profinet_write_ oUtpPUL()ccovrrrimiiiiii e
18.12 profinet_write_output_Dit().......cccovvmmmmmmiiiiiiiiiiiiiiis
19. ETHERNET/IP FUNCTIONS ...
19.1 €IP_read_INPUL() ...ueeeeennieiiiiiiiiiiiii e
19.2 eip_read _input_int()......ccoorrrmmiiiii e
19.3 eip_read_input_float()........ccooooummmmmmmmiiiiiiiiiiiiiie
19.4 eip_read_input_String()cccvvvriiiiiii e,
19.5 eip_read_iNPUt_Dit()ccooooimmmmiiiiiiiiiii
19.6 eip_read _OULPUL() c..uueeeeee e
19.7 eip_read_oUtPUL_INT()......uummmmmmmiiiiiiiiiiiiiiiiiiaes
19.8 eip_read_output_float()ccccoeeeeeeiieeiie e,
19.9 eip_read_output_String()ccoooemmmmmmmmmmmiiiiiiiiiiiiiiiiiiiiiiinaens
19.10 eip_read_output _bit()......cccommriiiii e,
19.11 EIP_WIITE _OUTPUL() ..uvveeieiiiiiiiiiiiiiiiiiiiiiii e
19.12 eip_write_output_bit().....cccovvmriiiiie e,
20. ETHERCAT FUNCTIONS ...,
20.1 ethercat_read _INPUL()......cccoooummmmmmmmiiiiiiiiiiiaees
20.2 ethercat_read_input_int()cccoeeveeiiiiiiiiii e,
20.3 ethercat_read_input_float()ccccummmmmmmmiiiiiiiiiiiiiiiiiiiiias
20.4 ethercat_read_input_string().......ccceeiiviiiiiiiieeec e,
20.5 ethercat_read_iNput_Bit()ccooummmmmmmmmiiiiiiiiiiias
20.6 ethercat_read _oULPUL()vvveerieiiiiei e,
20.7 ethercat_read_output_int().......cccooummmmmmmmmmiiiiiiiiiiiiiiiiiiines
20.8 ethercat_read_output_float()........cccoeeiveiiiiiiiiiiiiii,
20.9 ethercat_read_output_String()ccccoeuvmmmmmmmmmmmiiiiiiiiiininnns
20.10 ethercat_read_output _bit()....ccccooeeririiiiiiii,

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

20.11 ethercat_Writ€_OUTPUL() ..ooeeeeeeeeiiiee ettt e e e e eeeeees 535
20.12 ethercat_write_output_Dit() cccoooeeeieei i 541
21. REAL-TIME REMOTE SERVER ... 547
21.1 GUI SBEEINMG - 547
21.2 CommuUNICAtION ProtOCO]uuiiiiiiiiiiiiiiiiiiiiii e 548
21.3 07 S P 550
22.3.1 Mode = 0 (the server status response to the client command processing) 552
22.3.2 MOAE = L BINARY ...ooeeeiieeeieeeeee ettt ettt ettt et et e e et e e et e et e e et e e et et et et e et aaaaaaaaa—aas 556
22.3.3 Mode =7 START/STOP Data Streamingcceeeeeeeiiieiiiiiieeeeeeeeeeriies e e e e e e eerrrn e e 558
22.3.4 Mode = 8 SET Streaming FrEQUENCYcceeiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeee et 559
22.3.5 Mode =9 SET Streaming Data.........cccceeeviiiiiiiiiiii e e e e e et e e 560
21.4 1017 561
22.4.1 Mode = 0 (the server status response to the client command processing) 563
22.4.2 MOAE = L BINARY ...ttt a et et 567
22.4.3 Mode =7 START/STOP MOotion CONLIOl.......cccvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 568
22.4.4 Mode = 8 SET Motion Control SEtHNGSccvvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 569
22. COMPLIANCE FUNCTIONS ... e 571
22.1 COMPHANCE CIASS ...ttt nnenenne 571
122G T80 O == Y=) SRR R S 571
23,12 FTAME() ceeeeeeiiiiiiiiiieee ettt ettt ittt e 571
23.1.3 HIghRESISIANCE()......ceeiiieiii i e e e e e e e e e e e e e e e e e e e rraaa e e e aeeeas 572
P22 R 0 S | o | 1= PP 572
122G T80 O T 1= Vo o T USRS 572
23.1.6 MUIIPIE() ceeeeeeeeeieeeeee et 573
23.1.7 T gToT=To F= T aTot =T (USSP UURRPPPPRRRR 574

P2 TR 8 1 14T To 10 T PP PP P PP PP PPPPPPPPPPP 574
122G T80 LS T I [o U RSSO SS 575
20 0 (O 13 10 R 575

2 Tt 0t R O o Vo 11 o o PSPPSR 576

p T N I - 4) PP PP PPPPPPPPPPPPP 577
P22 T80 00 S (o o) USRS 577
23. TOUCHSTOP FUNCTIONS ... e 580
23.1 TOUCNSIOP ClaSS ..o, 580
S O = (=Y~) PSSRSO 581
O o £ 11 1T IR PP PP PPPPPPPPPPP 581
Pt G T o 10| 0 2 L= T[S = Vg o T 581
24.1.4 BraKeDISTANCE() . eeeeeiiiiiiiiiiiiiiiiiiie ettt 582
Pt T (= Toto 0 | =0] o1 582
24.1.6 SINGIE() teeteiiiiiiiiiiii i 583
2 O 1= Vo o T USRS 584
24.1.8 AQVSEI() ceeeeeieiiiiiiiiiiiii ettt 585
2 L N 14T~ T (SRS 586
P KO B 1 o o 10 PP P PP PPPPPPPPPPP 586
2 O R 1 [o 11 SRS SS 587

Omron TM Collaborative Robot: TMScript Language Manual (1664) 9

e

o I ©7o] To 11T o [PP P PP PP PP PPPPPPPPPPPP 588
R T = (1Y 1S3 (=T o [TSRS 588
I S I = = Tod 1= o [PRSP 589
R T - 1 1 (S 590
2 O TS (o] o (PP 590
N A € 1= 6] (] o] 01T | =0 1=) PSS 591
24.1.18 GEtTrQOEIEAPOS() «oeveeeeeeeiiieiiiiiiiiiiii ettt ettt ettt ettt et e et et e e e e e e e e e e e e e e eeeeeees 591
24.1.19 GetMOVINGDISTANCE()..errruuiiieeeiieeeiiiie et e e e e e e e et e e e e e e e et a e e e e e e e e aarra e aeaes 592
24. FORCE CONTROL FUNCTIONS 597
24.1 e IS Y=Y 0 1 o] O = T SRR 597
S Tt Nt R © o T= o) S 599
25.1.2 ClOSE() +ereeeeeeeieiiiiiiiiiie ettt ettt ———_o 599
24.2 o oI O = 1S3 PP 599
25.2.1 RESEI() tittiiiiiiiiiiiiii ittt ————————————————————————— 600
A A = -1 1=) ISR 600
25.2.3 DISTANCE() .. tteteeiiiiiiiiiiiiiie ettt 602
25.2.4 ProteCONSPEEU() ...ceevrriuieiieeei e e et eee e e e e e et e e e e e e e e e e e e e e rar e aaas 602
25.2.5 T SEI() e iiitiiiiiiiiiiiii ittt ettt ————————————— 602
I A T I - V(=T (o] () TSRS 604
1230 A 1 41~ To 11 PSPPI 605
I s T AN | (o AV =0 T3 o PSR 605
12T R 1] 10 PP 606

P2 Y00 O AN [o o 11 SRR USSP 606

P2 T 5 R i I == Tod 1= o [PP 607
LI A O] o To [1 1o o PP 608
T G TS - 1 1) PP 609

P2 T S (o o) SRS 610

Omron TM Collaborative Robot: TMScript Language Manual (1664) 10

e

REVISION HISTORY TABLE

Revision Date Description
A June, 2023 Original release
B March, 2024 Minor revision
C August, 2024 Minor revision
D August, 2025 Minor revision

Omron TM Collaborative Robot: TMScript Language Manual (1664)

1

e

1. Overview
TMscript is the programming language of Techman Robot applicable to Flow projects and
Script projects. Refer to the table below for the main scope of applications.

® Scope of Applications

Flow Projects
o Set Node Listen Node Script

Application (& other | (external Script Node | Projects

nodes) scripts)
Expression v v v v
define/main/closestop/errorstop v
Customized Function v
Comment v v v
Global variables in the Project v v v v
Local variables in the Function v v v
Multiline Input v v v
Conditional Statement v v v
Loop Statement v v v
Branching Statement v v v
Thread Function v
General Function v v v v
General Function (Script) v v v
Math Function v v v v
File Function v v v v
Serial Port Class v v v
Serial Port Function v v v v
Socket Class
Socket Function v v v v
MDecision Class v v v
Parameterized Object v v v v
Robot Teach Class v v v
Robot Motion & Vision Job Function v v v
Vision Function v v v v
ScriptListen Function v v v
External Script/Priority Command v
Modbus TCP/RTU Class v v v
Modbus Function v v v v
TM Ethernet Slave Function v v v v
Profinet Function v v v v
EtherNet/IP Function v v v v
EtherCAT Function v v v v
CC-Link Function v v v v
Real-Time Remote Server Function
Compliance Class v v v
TouchStop Class v v v
FTSensor Class v v v
Force Class v v v

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

2. Expression
2.1 Types

Different data types of variables can be declared in Variable Manager.
byte 8bit integer unsigned | 0 to 255 significant digit 3
int 32bit integer signed -2147483648 to 2147483647 significant digit 10
float 32bit floating- | signed -3.4028235E+38 to significant digit 7
point 3.4028235E+38
double | 64bit floating- signed -1.7976931348623157E+308 significant digit 15
point to 1.7976931348623157E+308
bool Boolean true or false
string | string
n function terms, the integer type further goes by int16 and int32. The default is int32.
int16 | 16bit integer signed -32768 to 32767 significant digit 5
int32 | 32bit integer signed -2147483648 to 2147483647 significant digit 10

Omron TM Collaborative Robot: TMScript Language Manual (1664)

13

e

2.2 Variables and Constants

1. Variables
Users can only use numeric or English character combinations without special characters
or other characters, and the name after the combination cannot be a numeric value, a
string, or a Boolean value.

Numbers 0123456789

Characters a-z, A-Z, _
Example

Inti=0

string s = "ABC"

string s1 = "DEF"
string s2 = "123"

Without double quotation marks, strings will be taken as variables.
s=s1+"and" +s2 //s="DEFand 123"
Il's, s1, s2 are variable, and " and " is a string.

In addition to variables, the naming rule also applies to constants, numbers, strings, and
Booleans except that string constants need to be enclosed in double quotes.

When a variable is generated in TMflow, a prefix is added based on the source. To use the
variable for writing or reading, users must enter the full name including the prefix word such
as var_s1 or g_s2. For the rules of adding prefixes, refer to the respective description in
variable setting pages.

2. Numbers
® Decimal integer, decimal floating-point, binary, hexadecimal integer and scientific

notation are supported.

Decimal integer 123
-123
+456
Decimal float 34.567
-8.9
Binary 0b0000111
0B1110000
Hexadecimal integer 0x123abc
0X00456DEF
Scientific notation 3.4e5
2.3E-4

® For binary and hexadecimal notation, there is no floating-point.
® The notation of number is not case sensitive.
For example:
0b0011 equals 0B0011
OxabcD equals 0XABCD, OxABCd, 0Xabcd etc.
3.4e5 equals 3.4E5
® The system determines the data types of numbers automatically when using numbers
as constants. The rule is to conclude bit types from the smaller to the greater such as
100 // data type: byte // 100 is in the value range of data type: byte.
1000 // data type: int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 14

e

1.1 // data type: float //1.11 is in the value range of data type: float.

To assign the data type, use variable declaration or conversion to do so such as

byte b = 100 // variable b = 100 as data type: byte

inti=100 //variable i = 100 as data type: int

(int)100 /l constant 100 as data type: int

(float)100 // constant 100 as data type: float

For function calls, the system determines the data types of arguments and selects

the respective syntax. If there is no respective syntax, the system determines the

compatible syntax with the rule concluding bit types from the smaller to the greater

such as

GetBytes(100, 0, 0) /I {0x64,0x00,0x00,0x00} // 100 and the Os come with the data type:
byte, but the syntax goes with GetBytes(int, int, int). The system, therefore,
converts 100 and the Os into the data type: int to proceed with the call syntax.

GetBytes(100) /7 {0x64} // 100 comes with the data type: byte. in the syntax GetBytes(?) to go
with any data types. Therefore, the system takes 100 as a constant in data type:
byte to proceed the call syntax.

® Byte can only present unsigned numbers in 8 bits ranging from 0 to 255. As a result,
if a negative sign is assigned to the byte type or through calculation, it will still save
the 8-bit unsigned value only.

For example:
byte b =-100 /I Error /[-100 mismatches with the value range of byte.
byteb=0-100 //b=156

// 0-100=-100 (OxFFFFFF9C). Saved 8 bits as 0x9C. The value equals 156.
b=0-1 /I b =255 // 0-1=-1 (OXFFFFFFFF) Saved 8 bits as OXFF The value equals 255.
b=255+1 IIb=0 [/ 255+1=256 (0x100) Saved 8 bits as 0x00 The value equals 0.

e Int can present signed numbers in 32 bits ranging from -2147483648 to 2147483647 .
If the calculation exceeds the value range, it will still save the 32-bit signed integer
value only.

For example:

inti=-2147483648 - 1 /i = 2147483647 /] -2147483648 - 1 = -2147483649 (OXFFFFFFFF
7FFFFFFF) Saved 32 bits as Ox7FFFFFFF. The value equals 2147483647.

i =2147483647 + 1 Il i = -2147483648 [/ 2147483647 + 1 = 2147483648 (0x80000000)
Save 32 bits in the method of signed integer value. The value equals -2147483648

3. String

When inputting string constant, double quotation marks shall be placed in pairs around the
string to avoid the recognition error of variable and string..

For example

"Hello World! "

"Hello TM""5" (If " is one of the character in the string, use two ("") instead of one
(*)-
® Control character in double quotation mark are not supported.

For example:
"Hello World\r\n" (the output would be Hello World!\r\n string)

® \Without double quotation marks, the compiling will follows the rules below
1. Numbers will be viewed as numbers
2. The combination of numbers and characters will be viewed as variable as long as
the variable does exist.
3. If the variable does not exist, it will be compiled as string with a warning message.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 15

e

® The combination of string and variable
1. Inside double quotation marks, variables will not be combined as variables
For example:
s ="TM5" Il's ="TM5"
s1 ="Hi, s Robot" /I s1 = "Hi, s Robot"
2. Standard syntax. Double quotation marks need to be placed around the string, and
plus sign (+) shall be used to link variables and numbers
Example:
s1 ="Hi," +s + " Robot" //s1="Hi, TM5 Robot"
3. Compatible syntax (not recommended). The single quotation marks can be placed
around the variables, but a warning message will be sent out

For example:
single quotation marks "Hi, ’s’ Robot" /I s1 = "Hi, TM5 Robot"
"Hi, 'x’ Robot" I/ s1 = "Hi, ‘x’ Robot" // Because variable x does not exist, ‘X’ is

viewed as string

4. Single quotation marks do not support element value retrieval with array indexes.
The standard format with double quotation marks should be used.

For example
string[] ss = {"Techman", "Robot"}
"Hi, ‘s’ ‘ss[0]’ Robot" // s1 ="Hi, TM5 ‘ss[0]’ Robot"
/ ‘ss[0]’ is invalid
"Hi,"+ s+""+ss[0] +" Robot" /I s1 ="Hi, TM5 Techman Robot"

5. Single quotation marks cannot be presented by " If users would like to
input ’(variable name)’, The standard format with double quotation marks should
be used.

For example
"Hi, ‘s’ Robot" /I s1 = "Hi, TM5 Robot"
/l'If s1 = "Hi, ‘s’ Robot" is what you want, please use the following syntax.
"Hi, " + "s" + " Robot" // s1 = "Hi, ‘s’ Robot"
® For control character, e.g. new line, please use Ctrl() command.
For example
s1="Hi, " + Ctrl("\r\n") + s + " Robot" or "Hi, " + NewLine + s + " Robot"
Hi,
TM5 Robot
® Reserved characters is similar to variables, no double quotation marks is needed. (But
single quotation mark is not supported)

1. empty empty string, equals ™"
2. newline or NewLine new line, equals Ctrl("\r\n") or Ctrl(OxODOA)
4. Boolean
True or false value of logic.
Denote true value true
True
Denote false value false
False

The Boolean value is case sensitive. Misuses of capital letters such as TRue will be taken
as a variable or a string.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 16

e

2.3 Array

® Array is a set of data with the same data type. The initial value is assigned with {}, and
every element remains the characteristic of its data type.
For example

int[] i = {0,1,2,3} /I elements in number data type
string[] s = {"ABC", "DEF", "GHI"} // elements in string data type
bool[] bb = {true, false, true} Il elements in boolean data type

® By utilizing index, the value of specified element can be get, the index is start from 0
For example
index 0 1 2 3 4 5 6 7
array eight elements in total

A[0] A[1] A[2] A[3] Al4] A[S] Al6] A[7]

Valid index values [0] .. [7].
An error will occur if accessing beyond the range, such as A[8].

® Only one degree array is supported. The maximum index number is 2048.

® The array size may alter according to the return value of functions or assigned values. The
maximum element number is 2048. This feature makes array meet the needs of different
functions and applications in Network Node.
For Example:

string[] ss = {empty, empty, empty} /I The initial size of string array is 3 elements
ss = String_Split("A_ B C D F_ G _H"," ") // After splitting string, the string array has 7
elements

len = Length(ss) INen=7
ss = String_Split("A,B", ",") /I After splitting string, the string array has 2 elements
len = Length(ss) Il'en =2

Omron TM Collaborative Robot: TMScript Language Manual (1664) 17

e

2.4 Operator Symbols

® The operator table is listed below.
® The calculation follows the precedence of operator first then the associativity.

For example
left-to-right associativity
A=A*B/C %D =2 (A=

\ 2 J
L '~ 3
r J

((A*B)/C)%D

\

4
right-to-left associativity

A-=B +=10 & ! ID> (A-=(B+= 108&(!(ID))))

\ 5 "~ J
® The calculation will proceed by the type of the operand.
1. When both values come as the integer type, the calculation will proceed by the integer
type such as
intvar_ a=10
intvar b=3
floatvar_ c=var_a/var b
By the operator priority, the calculation goes / first and then =.
var_ a/var b=10/3=3 (both var_a and var_b are integers)
var c=3 (The integer 3 assigns to the floating point number var_c)
2. When one of the two values comes as the floating-point type, the calculation will
proceed by the floating-point type such as
intvar_ a=10
float var b =3
floatvar_ c=var_a/var_ b
var_a/var_b=10/3=3.333333 (for var_b is a floating-point number)
var_c = 3.333333 (the floating-point 3.333333 assigns to var_c)
var c=var_a/3
var a/3=10/3=3 (both var_a and 3 are integers)
var c=3
var c=var_a/ 3.0
var_a /3.0 =10/3.0 =3.333333 (for 3.0 is a floating-point)
var_c = 3.333333
Precedence Operator Name Example Requirement | associativity
High to low
++ Postfix increment I++ Integer
-- Postfix decrement i-- variable
17 0 Function call int x = f() left-to-
Array fight
1 Allocate storage array[4] =2 variable
16 ++ Prefix increment ++i Integer right-to-
-- Prefix decrement i variable left
Omron TM Collaborative Robot: TMScript Language Manual (1664) 18

e

Precedence , L
High to low Operator Name Example Requirement | associativity
+ Unary plus inti=+1 Numeric
U . inti=-1 variable,
- nary minus inti=- Constant
! Logical negation | if (done) ... Boolean
~ Bitwise NOT flagl = ~flag2 Integer
* Multiplication inti=2*4 Numeric
14 / Division float f = 10.0/ 3.0 | variable,
% Modulo (integer | intrem =4 % 3 Constant
+ Addition inti=2+3 Numeric
13 - Subtraction inti=5-1 variable,
Constant
<< Bitwise left shift int flags =33 <<1 Integer
12 o . : B variable,
>> Bitwise right shift int flags =33>>1 Constant
< Less than if (1<42) ... _
» <= Less than or equalto | if (i <=42) ... NumE:‘IC left-to-
> Greater than if (i > 42) ... vanab'e, right
— Constant
>= Greater than or equal | if (i >=42) ...
10 == Equal to if (1==42) ...
I= Not equal to if (1'=42) ...
9 & Bitwise AND flagl = flag2 & 42 | |nteger
8 A Bitwise XOR flagl = flag2 ~ 42 | variable,
7 | Bitwise OR flagl = flag2 | 42 | Constant
. if (condition A &&
6 && Logical AND condition B)
. if (condition A ||
S I Logical OR condition B)
4 c?t:f Ternary conditional inti=a>b?a:b
= BaS|.c. assngn_ment inta=">b Left side:
+= Addition assignment |a+=3 Numeric
-= Subtraction b-=4 variable
= Multiplication a=5 Right
1= Division assignment | a/=2 side: right-to-
3 Numeric left
%= Modulo assignment | a %= 3 variable,
Constant
) Bitwise left shift . Left side:
<<= . flags <<= 2 Integer
assignment :
variable
Omron TM Collaborative Robot: TMScript Language Manual (1664) 19

e

Precedence , L
High to low Operator Name Example Requirement | associativity
N . _ Right
. Bitwise right shift flags >>= 2 side:
assignment Integer
_ variable,
&= Bitwise AND | flags &= | constant
= Bitwise XOR | flags A=
|= Bitwise OR | flags |= new_flags

Omron TM Collaborative Robot: TMScript Language Manual (1664)

20

e

2.5 Data Type Conversion

® Data types can be converted to each other and used in variables/constants or arrays.
® Conversions must be in the same format of the containers such as variable/constant
conversions or array conversions. It is not permitted to convert a variable to an array or an

array to a variable.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 21

e

Native Conversion
Example Result
type type
int inti= (int)100 i =100
float float f = (float)100 f=100
byte double double d = (double)100 | d =100
bool bool flag = (bool)0 flag = false (0 equals false)
string string s = (string)100 s ="100"
byte byte b = (byte)1000 b =232
float float f = (float)1000 f=1000
int double ?(;);*fg‘fe‘;laoo d = 1000
bool bool flag = (bool)1000 flag = true (non 0 equals true)
string string s = (string)1000 s ="1000"
byte byte b = (byte)1.23 b=1
int inti=(int)1.23 i=1
float double double d = (double)1.23 | d = 1.23
bool bool flag = (bool)1.23 flag = true (non 0 equals true)
string string s = (string)1.23 s="1.23"
byte byte b = (byte)1.23 b=1
int inti=(int)1.23 i=1
double float float f = (float)1.23 f=1.23
bool bool flag = (bool)1.23 flag = true
string string s = (string)1.23 s="1.23"
byte byte b = (byte)True Error
int inti= (int)False Error
float float f = (float)true Error
bool
double double d = Error
(double)false
string string s = (string)True s = "true" (shown in lower-case)
" " 1
byte Eﬁ: E; ; Egﬁgisg Error (Unable to convert "XYZ" to
value)
int inti=(int)"1.23" 1
" " 1.23
float ;:82; g ; g:g:gilzs Error (Unable to convert "Al" to
value)
string double d =
double (double)"1.23" 1.23
bool flagl f (bool)true flagl = true (string "true" as true)
bool flag2 = LS N
(bool)"false” fIagZ=_faIse (string "false as false)
bool bool flag3 = flag3 = true (non-empty string as
(bool)"1.23" true) - |
bool flag4 = (bool)™ flag4 = false (empty string for false)

® The conversion method of arrays is in accordance with the table above. The conversion is
performed for each element in the array.
string[] ss = {"1.23", "4.56", "0.789"}

int[] i_array = (int[])ss

/l'i_array ={1, 4, 0}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

22

e

float[] f_array = (float[])ss /I f_array = {1.23, 4.56, 0.789}
® Error messages will be returned should the conversions below occur.

B Fail to convert to numeric correctly such as Booleans (true/false) or non-numeric
strings ("XYZ").
int value = (int)true Il Error
int value = (int)"XYZ" I Error

B Invalid floating-point numbers to convert to floats or doubles such as NaN or Infinity.
string dvalue ="1.79769e+308"
float f = (float) dvalue // Error 1.79769e+308 is a valid double type and unable to convert to the

float type.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 23

e

2.6 Endianness and Conversion

Endianness refers to the applications in the memory or the communication networks in which
data comes in multiple bytes for the expressions of the order to sort among multiple bytes because
the minimal unit comes in bytes.

® Little Endian. Place the low bits of the multibyte at smaller addresses and the high bits at

larger ones.
32-bit integer
0OA0BOCOD Memory

n 0D
n+1 0C
” n+2 0B

n+3 0A

Big Endian. Place the high bits of the multibyte at smaller addresses and the
low bits at larger ones.
32-bit integer

Memory 0A0BOCOD
n OA%‘
n+10B/<
n+20C

n+3 0D

It is a factor to consider because different orders to sort may cause different conversion results.
For example, an integer type is 32 bits. Namely, it occupies 4 bytes. If the int value is 300, the
expression in 16-bit is 0x0000012C. If using Little Endian for memory storing or communication
networks, the order is
[01 [11 [2] [3]
2C 01 00 OO0
It fetches 0x0000012C if adopting Little Endian while 0x2C010000 if Big Endian. These are two
completely different values, which may cause different results.

TMscript provides a variety of robot programming functions. Among the functions, the
conversions of the numeric types, such as int, float, and double, also follow the general
endianness rules, which usually apply to file functions, communication-related functions (such as
SerialPort, Socket, Modbus), or value-to-byte conversion-related functions. Unless specified
otherwise, the function defaults to go by Little Endian. For the string types, it goes by the UTF-8
encoding format that features ASCII character compatibility and fixes endianness without the byte
order distinction. For the bool types, it turns the Boolean value true to 1 and false to 0. Refer to
the table organized below.

Type Bit/Byte Conversion Method Example Result

byte 8 bits/1 byte Little Endian byte b = 100 0x64

int 32 bits /4 bytes | Little Endian inti= 300 0x2C 0x01 0x00 0x00
float 32 bits /4 bytes | IEEE-754, Little Endian | float f = 300 0x00 0x00 0x96 0x43

Omron TM Collaborative Robot: TMScript Language Manual (1664) 24

e

Type Bit/Byte Conversion Method Example Result
. . , _ 0x00 0x00 0x00 0x00
double | 64 bits /8 bytes | IEEE-754, Little Endian | double d = 300 0x00 0XCO Ox72 Ox40
bool bool value True:1, False:0 bool bf = true 0x01
string string value UTF-8 "TM Robot" 0x54 0x4D 0x20 0x52
Ox6F 0x62 Ox6F 0x74
The value conversion method is an essential basis for communication network applications.
Both sides of the applications should recognize the same conversion method to parse the data

content correctly. For example,

Omron TM

socket_send("ntd_a", 9000)

By the function definition, it sends 0x28,0x23,0x00,0x00 (int, Little Endian) to the device
ntd_a.

It gets various values if the receiving device uses different methods to parse. Such as

int, Big Endian, 0x28 0x23 0x00 0x00 = 673382400
float, Little Endian, 0x00 0x00 0x23 0x28 = 1.2612E-41
string, UTF-8, 0x28 0x23 0x00 0x00 = "(#"

int, Little Endian, 0x00 0x00 0x23 0x28 = 9000
socket_send("ntd_a", (float)9000)
By the function definition, it sends 0x00,0xA0,0x0C,0x46 (int, Little Endian) to the device
ntd_a.
It gets various values if the receiving device uses different methods to parse. Such as

int, Big Endian, 0x00 0xA0 0x0C 0x46 = 10488902

int, Little Endia, 0x46 0xO0C 0xAO0 0x00 = 1175232512

float, Big Endian, 0x00 0xA0 0x0C 0x46 = 1.4698082E-38

string, UTF-8, 0x00 O0xAO0 0xOC 0x46 ="" // The string ends if encountered
0x00.

float, Little Endian, 0x46 0xO0C 0xAO0 0x00 = 9000

Collaborative Robot: TMScript Language Manual (1664) 25

e

2.7 Warning

A warning message will prompt, under the condition listed below.

Double quotation marks does not placed around the string constant.
string s = Hello I warning Hello
There is single quotation mark inside the string constant.
string sO = "World"
string s1 = "Hello ‘'sO™ // warning ‘s0’
When assigning float value to integer constant, some digits may get lost such as

inti=0
float f = 1.234
i=f /l warning i=1
When assigning value to variables with fewer digits, some digits may get lost such as
byte b = 100
inti=1000
float f = 1.234
double d = 2.345
b=i /l warning b =232 // byte can contain values from 0 to 255
f=d /l warning f = 2.345

When assigning a string value to the numeric variable or a numeric value to the string
variable, the attempts to convert the string to a number or the number to a string take place
automatically. If the conversion is executable, a warning message will prompt, or the project
will be stopped by error such as

inti="1234" /I warning i= 1234

int j = "Ox89AB" /l warning j = 35243

intk ="0b1010" /l warning k = 10

string s1 =123 Il warning s1 = "123" // Number to string

string s2 = "123"

int x =s2 /l warning x = 123 // string to number

/I The following code can be compiled with warning, but will be stopped by error when executing.
S2 ="XYZ"

X =82 /I warning // Stop executing by error // s ="XYZ" cannot be converted to
number

s2=""

X =s2 /I warning // Stop executing by error // s =" cannot be converted to number

® String parameters are used as numeric parameters in functions such as

Ctrl(0OxOAOBOCODOE) // warning // 0xOAOBOCODOE is not int type (over 32bit)
/I Because there is another syntax, Ctrl(string), the parameter would be applied
to Ctrl(string)

Although the project can still be executed with a warning message, correcting all the errors in a
warning message is highly recommended to eliminate unpredictable problems and prevent the
project being stopped by errors.

® How to fix the error messages

1. Use double quotations with the string constants
string s = "Hello"

2. Use + to link the string constant and the string variable
string sO = "World"
string s1 = "Hello " + sO

Omron TM Collaborative Robot: TMScript Language Manual (1664) 26

e

3. Specify the type clearly for numerical conversions
float f=1.234
inti=(int) f /I Use (int) for type conversion, i = 1 while processing // It turns the number
in floating-point to an integer.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 27

e

3. Script Project Programming
3.1 define

This function defines the global variables in the same project. When the project is running, it
prioritizes all the variables in the definition section of the project.

Syntax
define
For example:
define

{
}

string text = "Hi TM Robot"

3.2 main

This function is the first function to call when the project is running, and it is the initial function
of the project.

Syntax
main
For example:
define

{
}

main

{

string text = "Hi TM Robot"

Display("Hello Techman Robot")
Display(text)
Y
The project begins by running the main function as the result of
Hello Techman Robot
Hi TM Robot /ISince the dashboard shows the last Display content only, the dashboard content
is Hi TM Robot.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 28

e

3.3 closestop

When the project is in the halt state without any error, it goes to this function. Not until this
function ends will the project stop for sure.

Syntax
closestop
For example:

closestop

{
IO["ControlBox"].DO = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
/I Set the control box DO to Low.

}

After the project is running, pressing the STOP button results in the project running the
closestop function.

Important
IMBORTANT This function does not go with motion commands and will close mandatory after 12

seconds of execution at most.

When the closestop function is running, if errors occur (including other errors occur in the
system), it will not run the errorstop function but end the project running directly.

For example:
main
{
Exit()

/I Stop the project. Suppose errors did not occur; it runs the closestop function consecutively.
}
closestop
{

intzero=0

int k =100 / zero // A dividing by zero error occurred in the closestop function. It ends the project

running directly.
Display("closestop™) // This line does not run due to an error occurring.
Note

Note When the project enters the halt state, the TMflow operation interface will depart from the

running state , but it will still continue to run the function. Not until this function ends does
the project running stop exactly. Before the project stops running, pressing the Play
button to run the project returns errors.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 29

e

3.4 errorstop

When the project is in the halt state with any error, it goes to this function. Not until this
function ends will the project stop for sure.

Syntax
errorstop

For example:

main
{
intzero=0
intk =100 / zero /I A divide by zero error occurs.
}
errorstop
{

IO["ControlBox"].DO = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
/I Set the control box DO to Low.

}

After the project is running, the project will generate errors by dividing by zero and go to the
errorstop function.

Important
IMPORTANT This function does not go with motion commands and will close mandatory after 12

seconds of execution at most.

When the errorstop function is running, if errors occur (including other errors occur in the
system), it will not run the errorstop function but end the project running directly.

For example:
main
{
int k =100/ (byte)"0.1" /I A dividing by zero error occurred.
}
errorstop
{
intk =100/ (byte)"0.1" // A dividing by zero error occurred in the errorstop function. It ends
the project running directly.
Display("errorstop ") // This line does not run due to an error occurring.
Note
Note When the project enters the halt state, the TMflow operation interface will depart from the

running state , but it will still continue to run the function. Not until this function ends does
the project running stop exactly. Before the project stops running, pressing the Play
button to run the project returns errors.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 30

e

3.5 Customized Function

Inadditional to he built-in define, main, closetop, and errorstop functions, Script projects
provide customized functions for users. The customized Show() function below does not take any
parameters nor return any values. (It defines the return type as void.)

For example:
main
{
Show() // Call the customized function Show().
}
void Show()
{
Display("Hello TM Al Cobot")
}

Customized functions support parameter input and output. There are two functions
customized in the example below. The Add() can add up the two values users input and return the
added up result; the Sub() subtracts the two values users input and return the subtraction result.
Note that as long as the return value is not a void type, it requires to return the value of the same
type as the definition. Such as the Add() adopts the float type, and the returned variable must be
the float type as well.

For example:
main
{
string Add_Result = "Add:" + Add(5.9, 3.6)
string Sub_Result = "Sub:" + Sub(5.9, 3.6)
Display("Green", "Yellow", "Result", Add_Result + newline + Sub_Result)

}

float Add(float augend, float addend)

{
float result = augend + addend
return result

}

float Sub(float minuend, float subtrahend)

{
float result = minuend - subtrahend
return result

}

Important
IMPORTANT If the function defines the return type, it must return with the same type. If the definition is
void, it is not required to use return.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 31

e,

3.6 Comment

Use part of the code as a comment. The compiler ignores the commented code. Users can
comment a single line or multi-lines on the code not to execute.

® Single Line Comment

Uses can comment at the very beginning of the code with // to complete a single-line
comment, as shown below. The compiler will ignore a =a + 1.

main
{
inta=0
la=a+1
Y

® Multi Line Comment

Users can comment with /* as the start of the comment and */ as the end of the comment. As
below, between /* and */, the compiler will ignoreinta=0anda=a + 1.

main

{
/*
inta=0
a=a+l1l
*/

Y

Omron TM Collaborative Robot: TMScript Language Manual (1664) 32

e

3.7 Variable

By variable declaration, users can proceed with applications such as calculation, reading and
writing, and parameter conveyance. Variables come with the global variables and the local
variables.

IMPORTANT Important
Variables are case sensitive such as TMrobot and TMROBOT are two different variables.

® Project Variable

Once declared a variable in the definition section, the variable is a global variable in the
project. This variable can be read and written in functions of the same project. As shown below, if
the define declares the variable b, and the main function runs, it calls Test1() first and sets the
variable as 20. When it displays the variable value next, it gets b as 20 for the last set value.

define
{
intb=0
}
main
{
Test1()
Display("B Value: " + b)
¥
void Test1()
{
b =20
¥
/I B Value: 20
Important

The project variables in the project are different from the global variables in the global

MPORTANT variable manager of the robot. The global variables in the project indicate they can operate
across functions in the project. Other than across functions in the project, the global

variables in the global variable manager of the robot operate across functions of different
projects.

Important
IMPORTANT Users can create global variables in the global variable manager in the TMflow operation
interface only but not with TMscript syntax.

® Local Variable

If variables are declared outside of the definition section such as main, closestop, errorstop,
and customized functions, the variables are local variables and good in the functions only.

int sum(int s)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 33

e

{
}

I/ Defined two variables int s and int a. When sum() ends, the two local variable are gone.

inta=0

Neither can variable names in the definition section of the same function be duplicated, nor
can they replicate with the global variables in the define section and in the global variable
manager of the robot.

define
{
intb=0
stringg_s1="" // Suppose the global variable manager defines g_s1; there will be
variable duplication.
}
void sum(int s)
{
inta=0

intb =1 // Duplicated with int b in define.
floata=0 // Duplicated with int a.

}

Local variables are independent of different function sections. Such declared a variable a in
both Test1() and Test2(). Because of being in disparate functions, the two variables are
independent and valid only in each function section.

void Test1()

{

inta=0
}
void Test2()
{

inta=2
}

The scope of the local variables can be valid in a top-down coverage. Users can also declare
variables in the conditional statement or the loop statement, and the variables are present in the
conditional statement or the loop statement. The variables are absent from the outside of the
scope. Therefore, once the variables exit from the scope, the variables will release the variable
data. For variables declared by the class, such as SerialPort, Socket, and Modbus, the variables
will close the devices.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 34

e

void Test1()

{) variable a effective scope

inta=10

if (a>5)

{ variable b effective scope
intb =20
Display("A Value: " + a)

}

Display("B Value: "+ b) // Warning. b will be taken as a string instead of a

variable.

}
void Test2()
{

if (true)

{ variable bbb effective scope
Socket bbb ="127.0.0.1",12345
socket_open("bbb™)

Sleep(5000)

} /1 After a 5-second waiting, variable bbb will be released for exiting the f conditional

statement scope and close the connection.

Sleep(10000)

}

In the Flow project, if users want to create a global variable in the project, they need to do it in
the variable manager or device manager. Users cannot create a global variable in the flow project
with the Script. Moreover, because each process node is an independent function, including the
Script node, if declaring variables in the node, they are all local variables. When exiting the node,
the variables in the node will no longer exist, and the variable data will be released.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 35

e

3.8 Multi-Line Input

Once an expression to input goes with more contents, it is a disadvantage to maintain or
debug. Users can add \ at the end of the line to fulfill the multi-line input of consecutive contents.
The multi-line input contents will be taken as an expression in the same line until there is no \, and

it goes with a new line character at the end.

While using multi-line input, it is still required to maintain the correctness of wording but not to
use \ at random for multi-line continuations among words.

byte[] bb = {0x31,0x32,0x33}

Display(GetString(bb) + newline + GetString(bb,16) + newl

Display(\

GetString(bb) + newline + \
GetString(bb,16) + newline + \
Byte ToString(bb))

LD'O(~N o v N e

Pl eipisplay(y T T T T T T T T T T TT T
I |10 GetString(bb) +

: 12 GetString(bb,16) + newline + \

| |13 Byte ToString(bb))

/IBeyond the viewable scope, which requires scrolling to read the
content.

/lUse multi-line input, \, to continue for easy content viewing.

/lIncorrect multi-line put, where newline is a reserved word and

cannot be cut.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 36

e

3.9 Conditional Statements

During the project running, it might be necessary to consider different approaches, such as
task fails, function, and communication errors, to various situations. Users can use conditional
statements to adopt different paths to the result values at this time. Two conditional statements, if
and switch, are available so far.

3.9.1 if

The if statement can judge the conditional expression in the brackets. It enforces statement 1
if the condition meets.

if (conditional expression)

{
}

statement 1 /I the condition satisfies.

Or vice versa. If the condition satisfies, it goes to statement 1. If not, it goes statement 2.

if (conditional expression)

{
statement 1 /I the condition satisfies.
}
else
{
statement 2 /I the condition not satisfies.
}

Users can also check more possibilities with the if .. else if .. else statement to judge the
condition 1, 2, 3, and the last otherwise condition in sequence.

if (conditional expression 1)

{

statement 1 // the condition 1 satisfies.
}
else if (conditional expression 2)
{

statement 2 /l the condition 2 satisfies.
}
else if (conditional expression 3)
{

statement 3 // the condition 3 satisfies.
}
else
{

statement 4 /l the condition 1, 2, and 3 not satisfy at all.
}

Take the example below. If the Score is 100, it displays "Full Score." Between 60 and 99,
"Excellent"; otherwise, "Failed." Users can write the condition with the if statement.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 37

e

void Test1()

{
int Score = 65

if (Score == 100)
{

}

else if (Score >= 60)

{
}
else

{
}

Display("Green", "Yellow", "Full Score", ")

Display('Green”, "Yellow", "Excellent", ")

Display("Red", "Yellow", "Failed”, ")

}

/l Excellent

Note NOTE:
== of if (Score==100) stands for comparison, and = of int Score = 65,
assignment.

The criteria to evaluate conditional expressions are as follows, but boolean values have much
to recommend for evaluation.
® Boolean values true or True for the condition satisfies, false or False, not satisfies.
® Numeric values non-zeros for the condition satisfies, zeros, not satisfies.
® String values true or True for the condition satisfies, other string values, not satisfies.

3.9.2 switch
The switch statement is similar in condition judgment to the if statement. The switch
statement goes with the other way of writing for similar conditions.

switch (variable or expression)

{
case condition 1 satisfies
statement 1 /I the condition 1 satisfies.
break
case condition 2 satisfies
statement 2 /I the condition 2 satisfies.
break
default
statement 3 // the condition 1 and 2 both not satisfy.
break
Y

As the example below, it can match various results by the content value of the variable.

void Test1()

{
string di_st = (string)IO["ControlBox"].DI[1] + (string)IO["ControlBox"].DI[0]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 38

e,

switch (di_st)
{
case "00"
Display("DI[0]=0, DI[1]=0")
break
case "01"
Display("DI[0]=1, DI[1]=0")
break
case "10"
Display("DI[0]=0, DI[1]=1")
break
default
Display("DI[0]=1, DI[1]=1")
break
Y
}
// DI[0]=0, DI[1]=0

Besides, the switch statement supports expressions. Like the example below, if the Score is
100, it displays "Full Score." Between 60 and 99, "Excellent"; otherwise, "Failed."

void Test1()

{
int Score = 65
switch (Score)
{
case >= 100
Display("Green", "Yellow", "Full Score", ")
break
case >= 100-40
Display("Green", "Yellow", "Excellent", ")
break
default
Display("Red", "Yellow", "Failed", ")
break
}
}
/Il Excellent

The differences from the if statement is

® The switch statement retrieves the value once and compares the result value multiple
times, and the if statement retrieves every time it compares. This makes the switch's
judgment on the DI status more accurate.

® As the reason above, the switch statement cannot apply to the conditions of different
natures, and the if statement can. Such as

void Test1()

{
int Payload = 4
int Length = 130

Omron TM Collaborative Robot: TMScript Language Manual (1664) 39

e

if (Payload > 4)

{

Display("Green", "Yellow", "Payload", ")
}
else if (Length > 70)
{

Display("Green", "Yellow", "Length", ")
}

/I This statement of if .. else if .is unable to be written with the switch statement.

Omron TM Collaborative Robot: TMScript Language Manual (1664)

40

e

3.10 Loop Statements

During the project running, it may be necessary to repeatedly calculate certain values or
check whether the conditions are comprehended. In these cases, it requires the loop statements
that go on iterative processing the code in the statement until the condition is comprehended.
Three loop statements, for, while, and do-while, are available so far.

3.10.1 for
The for loop syntax comprises four sections, the initialization section, the loop condition
section, the statement, and the iterative operation section.

for (the initialization section; the loop condition section; the iterative operation section)

{
}

statement

The execution sequence is as below.

1. The initialization section: When it goes to the for syntax, it executes the initialization
section one time. It is usually used to declare variables. (The variables are the local
variables in the for syntax.)

2. The loop condition section: It decides whether to go on the for loop condition execution.

Once comprehended (true) or not existed, it goes on the for loop execution. It exits the for

loop until the condition is not comprehended (false).

The execution statement: The statement to execute.

4. The iterative operation section: After the statement execution, it executes the iterative
operation section once and then goes back to the loop condition section for the condition
judgment.

w

The example is a basic application of the for loop. It adds the number from 0 to the input K
value.

int sum(int k)

{
int result=0
for (inti=0;i<Kk;i++)
{
result +=i
}
return result
}

Users can use multiple for loops together. The example presents the multiplication table by
the for loop.

void Test1()
{

string result =
for (inti=1;i<=9;i++)
{

for (intj=1;j<=9;j++)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 41

e

{
}

result += newline

result +=j +"X"+i+"="+| *j +

}

Display("Green", "Yellow", "multiplication table", result)

}

Users can adopt the four sections in for loop optionally.

void Test1()
{
inti=0
for(i=3;i<4;)
1++
I1i=3
Ili<4a Il i++ =4
IIi<4 /I false, exit for
for (;i<5;it++)
{
Y

/I Since the value of i is not reset, it will continue using i =4.
Ii<5 1 I[i++,i=5
IIi<5 /I false, exit for

for (;;) /I Execution continues because the loop condition section does not exist.

{
}

...

}

3.10.2 while

The while loop comes with one boolean conditional expression only. Once the condition
satisfies (true), it executes the statement until the condition does not satisfy (false) and exit the
while loop. Therefore, the number of the while loop execution is zero or more, and it may exit for
the condition does not satisfy at the first time.

while (conditional expression)

{
}

statement

The example below adopts an arithmetic progression to count the number from 0, 1, 2, 3, ...,
and N until the total is 500500 and gets the value of N.

void Test1()
{

intsum=0
intN=0
while (sum != 500500)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 42

e

{
N +=1
sum += N
}
Display(N)

}
/I N = 1000

3.10.3 do while

The syntax of the do while loop is similar to that of the while loop. The while loop checks
whether if the condition satisfies first before executing statements in the code block; however, the
do while loop executes the command first and then check whether if the condition satisfies.
Accordingly, the do while loop executes the statement one time at least.

do
{

statement
} while (conditional expression)

For example as below, if using the do while loop, it displays Hello TM Robot.

void Test1()

{
intresult=0
do
{
Display("Hello TM Robot")
} while(result > 5)
}

On the contrary, if using the while loop, it does not display any result.
void Test1()

{
int result = 0
while(result > 5)
{
Display("Hello TM Robot")
}
}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 43

e

3.11 Branching Statements
3.11.1 break

It applies to exit the last loop statement of for, while, or do while without satisfying the loop
condition and exit. As the example below, once i is larger than 10, it exits and ends the for loop.

int sum(int k)
{ intresult=0
for (inti=0;i<Kk;i++)
{
if (i>10)
{

}

result +=i

break Exit the closest for i loop directly.

}

return result <

}
void Test1()

{
string result = ""
for (inti=1;i<=9;i++)
{
for (intj=1;j<=9;j++)
{
result +=j+ "X"+i+"="+i*j+"" | |
if (j > 4) break Exit the closest for j loop directly.

}

result += newline <

}

Display("Green", "Yellow", "multiplication table", result)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 44

e

3.11.2 continue

It applies to the loop statements of for, while, and do while, but it is different from the break
statement in that it ends the closest and current loop and begins the next loop without exiting the
loop. As the example below, if it is an even number, it ends the current loop directly and begins the
next loop. So, it registers odd numbers only.

void Test1()

{
String result =" Ends the current loop and goes back to the next loop.
for (inti=0;i<10;i++) <
{
if (i % 2 == 0)
{
continue
}
result+=i+""
}
Display("Odd value: " + result)
}

// Odd value: 1, 3,5,7, 9

3.11.3 return
The return statement ends the statement execution in the function and returns the value to
the function caller. For example,

main
{
int num = sum(10) /l num =3
Display(num)
}
int sum(int k)
{
int result =0
for (inti=0;i<Kk;i++)
{
if (i == 3) return result // Once i == 3, it returns the result directly without further statement
executions.
result +=i
}

return result

Omron TM Collaborative Robot: TMScript Language Manual (1664) 45

e

3.12 Thread

During the process of project programming, when it comes to asynchronous parallel
operations, users need to use threads. By creating new threads for operations, users can make
the project go with the multi-tasking concept. However, users also have to pay attention to no
priority among threads in execution, and each operates independently when with multiple ones.

The main function to be called first during the project running acts as a thread also. What'’s
different about this thread from others is that the main function called by this thread and other
customized functions called in the main function come with the privilege to call robot motion
functions. Calling robot motion functions is not granted to other newly created threads. This is to
ensure the consistency of the robot motion process because each thread processes
independently. It is easy to confuse or interrupt the robot motion processes if granting other
threads to use the robot motion functions.

Other than the other threads, the main thread comes with the privilege of the robot motion
function call. The other newly created threads are not allowed for the robot motion function call. It
is to ensure the consistency of the robot motion process. Since each thread operates
independently, if others are for the robot motion function call, it gets the robot motion to be
interrupted or confused easily.

In addition to the privilege of the robot motion function call, users can set the thread to
whether continuously execute or not, which means if the project pausethread will be influenced by
the or not. Once setting the thread to continuous execution, even if the project pauses, this thread
continues to operate. Such a setting is suitable for communication applications.

When the thread-to-use works in a loop (with the loop statement), adding the additional sleep
function to free up the thread-occupied CPU usage is requisite and recommended while working
around threads, which is an attention must because excessive CPU usage may result in poor
execution efficiency.

3.12.1 ThreadRun()

Create a new thread and use the new one to execute the statement. The previous one will
continue proceeding.

Syntax 1
int ThreadRun(
?,
bool
)
Parameters
? statement or customized function
boolWhether the thread will continue the execution without being paused
true continue the execution without being paused
false to be paused (default)
Return
int return the ID of the newly created thread.
>0 created successfully
<=0 created unsuccessfully

Omron TM Collaborative Robot: TMScript Language Manual (1664) 46

e

*The ID of the newly created thread goes by the system, and it is not a fixed value.
The thread number in the process will not be repetitive, but the number might be
recurring once the thread stops.

Syntax 2
int ThreadRun(
?
)
Note
Same as Syntax 1. The default is to set whether the thread will continue the execution to
false.

3.12.2 ThreadID()

Retrieve the ID of the current thread.

Syntax 1
int ThreadID(
)
Parameter
void No parameter
Return
int return the ID of the thread
Note
main Create a new thread and and continue executiing
{ ThreadTest1().
int tid = ThreadRun(ThreadTest1(), false)
s|eep(1 000) The previous thread continues proceeding.
ThreadRun(ThreadTestZ(tid), true) Create a new thread and and continue executiing
} ThreadTest2().
void ThreadTest1() <«
{
Display("Hello ThreadTest1() " + ThreadID())
}
void ThreadTest2(int k) <
{
Display("Hello ThreadTest2() " + ThreadID() + " " + k)
}

// Hello ThreadTest1() 18
/l Hello ThreadTest2() 61 18

The following description denotes the execution order of creating new threads for running
statements.
main
{
int tid = ThreadID()
ThreadRun(ThreadTest3(tid, ThreadID()), false)

}
void ThreadTest3(int k1, int k2)

{

Omron TM Collaborative Robot: TMScript Language Manual (1664) 47

e

Display('Hello ThreadTest3() " + ThreadID() + " " + k1 + " " + k2)

}
I/l Hello ThreadTest3() 65 47 65

The execution order goes by

Retrieve the thread ID in the main thread and assign the value the local variable tid.

Create a new thread and execute the statement of ThreadTest3(tid, ThreadlD()).

As tid is a local variable, the value of tid is available to lead in.

Since ThreadID() is a function and it uses a new thread for the function call, the

obtained thread ID will be different from the tid.

5. Again, call the ThreadTest3() function, and lead it and the obtained thread ID into k1
and k2 in the function, respectively

6. Call the ThreadID() function in the ThreadTest3() function to get the thread ID.

Because it is the same thread as the ThreadTest3() function is in, k2 will go with the

same ID and k1 with a different ID.

PN o

3.12.3 Thread State()

Retrieve the status of the assigned thread ID.

Syntax 1
int ThreadState(
int
)
Parameter
int thread ID
Return
int return the status of the dedicate thread
-1 The thread does not exist.
0 The thread is in execution.
1 The thread is requesting to stop.
2 The thread stopped.
Syntax 2
int Thread State(
)
Note
Same as Syntax 1. The default is to set the thread ID with the current thread ID of the
function call.

3.12.4 ThreadExit()

Request the assigned thread ID to stop execution.

Syntax 1
int ThreadExit(
int
)
Parameter
int thread ID
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 48

e

int return the result of requesting the assigned thread to stop
-1 The thread does not exist.
0 The requested thread stopped execution.
Syntax 2
int ThreadExit(
)
Note
Same as Syntax 1. The default is to set the thread ID with the current thread ID of the
function call.
define
{
inttid=0
}
main
{
intst=0
int t4 = ThreadRun(ThreadTest4())
do
{

Sleep(100)

st = ThreadState(4)

Display("t4 " + st) 1/t4 0
} while (st != 2) Il Use the loop statement to wait for the thread t4 to stop.
/I Since there is no loop in ThreadTest4, the thread stops after the execution ends.
Display("t4 " +st+""+tid) //t4251

}
void ThreadTest4()
{
Sleep(1000)
tid = ThreadID()
}
define
{
string title ="
}
main
{
intst=0
title = "t5 " + st //t50

int t5 = ThreadRun(ThreadTest5())

bool flag = WaitFor((st = ThreadState(t5)) == 2, 1000)

/I Use WaitFor to wait for the thread t5 to stop.

title ="t5" +st+"" +flag /[t5 0 false

/I Since there is a loop in ThreadTest5, the thread will not stop.
/I Therefore, WaitFor quits after a 1000 ms timeout. So, flag = false.
Sleep(1000)

if (flag == false)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 49

e

{

}
flag = WaitFor((st = ThreadState(t5)) == 2, 1000)

/I Use WaitFor to wait for the thread t5 to stop.
/I Since the system requested the thread t5 to stop, the WaitFor condition sustains.
Display("t5" + st + " " + flag, "Hello main() " + ThreadID())// t5 2 true

ThreadExit(t5) /I Request the thread t5 to quit.

}
void ThreadTest5()
{
while (true) // the loop statement
{
Display(title , "Hello ThreadTest5() " + ThreadlD())
Sleep(100)
/' While using the loop statement, applying the additional sleep function is
recommended to free up the thread-occupied CPU usage.
}
}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 50

e

4. General Functions
4.1 Byte_Tolnt16()

Transform the first two bytes of the assigned byte array to integer, and returns in int type.

Syntax 1
int Byte_Tolnt16(
bytef],
int,
int
)
Parameters
byte[] Byte array
int Byte array follows the Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
int Transfer to signed int16 (Signed Number) or unsigned int16 (Unsigned Number)
0 signed int16 (Default)
1 unsigned int16
Return
int A signed or unsigned int16 formed by 2 bytes beginning at index [0].
Because only 2 bytes is needed, the index of byte array will be [0][1]. If the data
is not long enough, it would be filled to 2 bytes before transforming.
Note

byte[] bb1 = {0x90, 0x01, 0x05}
byte[] bb2 = {0x01}
/I Cause bb2[] does not fill 2 bytes. It would be filled to 2 bytes before transforming.

value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16
value = Byte_TolInt16

bb1,0,0) //0x0190 value = 400
bb1,0,1) //0x0190 value = 400
bb1,1,0) //0x9001 value = -28671
bb1,1,1) //0x9001 value = 36865
bb2, 0,0) //0x0001 value = 1
bb2,0,1) //0x0001 value = 1
bb2,1,0) //0x0100 value = 256
bb2, 1, 1) // 0x0100 value = 256

o~ o~ o~ A~ o~

Syntax 2

int Byte_Tolnt16(
byte(],
int

)

Note
Similar to Syntax 1 with return value as signed int16
Byte Tolnt16(bb1, 0) => Byte TolInt16(bb1, 0, 0)

Syntax 3

int Byte_Tolnt16(
byte(]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 51

e,

)
Note

Similar to Syntax 1 with little endian input and return value as signed int16
Byte Tolntl16(bb1) => Byte Tolnt16(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

52

e

4.2 Byte_Tolnt32()

Transform the first four bytes of byte array to integer, and return in int type.

Syntax 1
int Byte_Tolnt32(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return
int An unsigned int32 formed by 4 bytes beginning at index [0].
Because only 4 bytes is needed, the index of byte array will be [0][1][2][3]. If the
data is not long enough, it would be filled to 4 bytes before transforming.
Note

byte[] bb1 = {Ox01, 0x02, 0x03, Ox4F, 1}
byte[] bb2 = {0x01, 0x02, 0x03}
/I Cause bb2[] does not fill 4 bytes. It would be filled to 4 bytes before transforming.

value = Byte_TolInt32
value = Byte_TolInt32
value = Byte_TolInt32
value = Byte_TolInt32

bb1, 0) // 0x4F030201 value = 1325597185
bb1, 1) // 0x0102034F value = 16909135
bb2, 0) //0x00030201 value = 197121
bb2, 1) // 0x01020300 value = 16909056

A~ A~ A~ A~

Syntax 2
int Byte_Tolnt32(
byte[]
)
Note
Similar to Syntax 1 with little endian input
Byte Tolnt32(bb1) => Byte Tolnt32(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 53

e

4.3 Byte_ToFloat()

Transform the first four bytes of byte array to floating-point number, and return in floating-point

type.
Syntax 1
float Byte_ToFloat(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return
floatA floating-point number formed by 4 bytes beginning at index [0].
Because only 4 bytes is needed, the index of byte array will be [0][1][2][3]. If the
data is not long enough, it would be filled to 4 bytes before transforming.
Note
byte[] bb1 = {Ox01, 0x02, 0x03, Ox4F, 1}
byte[] bb2 = {0x01, 0x02, 0x03} // Cause bb2[] does not fill 4 bytes. It would be filled to 4 bytes before
transforming.
value = Byte_ToFloat(bb1, 0) // 0x4F030201 value = 2.1979466E+09
value = Byte_ToFloat(bb1, 1) // 0x0102034F value = 2.3879603E-38
value = Byte_ToFloat(bb2, 0) // 0x00030201 value = 2.76225E-40
value = Byte_ToFloat(bb2, 1) // 0x01020300 value = 2.387938E-38
Syntax 2
float Byte_ToFloat(
byte(]
)
Note

Similar to Syntax 1 with little endian input
Byte ToFloat(bb1) => Byte ToFloat(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 54

e

4.4 Byte_ToDouble()

Transform the first eight bytes of byte array to floating-point number, and return in double type.

Syntax 1
double Byte_ToDouble(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return

double A floating-point number formed by 8 bytes beginning at index [0].
Because only 8 bytes is needed, the index of byte array will be
[O[11[2][3][4][5][6][7]. If the data is not long enough, it would be filled to 8 bytes
before transforming.

Note
byte[] bb1 = {0x01, 0x02, 0x03, 0x4F, 1} // Cause bb1[] does not fill 8 bytes. It would be filled to 8
bytes before transforming.
byte[] bb2 = {0x01, 0x02, 0x03} // Cause bb1[] does not fill 8 bytes. It would be filled to 8 bytes before
transforming.
bb1, 0) // 0x000000014F030201 value = 2.7769278203E-314
bb1, 1) // 0x0102034F01000000 value = 8.20840179153173E-304
bb2, 0) // 0x0000000000030201 value = 9.73907E-319
bb2, 1) // 0x0102030000000000 value = 8.207852449261364E-304

value = Byte_ToDouble
value = Byte_ToDouble
value = Byte_ToDouble
value = Byte_ToDouble

o~~~ o~

Syntax 2
double Byte_ToDouble(
byte(]
)
Note
Similar to Syntax 1 with little endian input
Byte _ToDouble(bb1) => Byte_ToDouble(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 55

e

4.5 Byte Tolnt16Array()

Transform byte array to integer every 2 bytes, and return in int[] type.

Syntax 1
int[] Byte_Tolnt1l6Array(
bytef],
int,
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
int Transfer to signed int16 (Signed Number) or unsigned int16 (Unsigned Number)
0 signed int16 (Default)
1 unsigned int16
Return
int[] A integer array formed by every 2 bytes of byte array beginning at index [0]
Note

byte[] bb1 = {0x90, 0x01, 0x02, 0x03, 0x04}
/[When the remaining part does not fill 2 byte, it would be filled to 2 bytes before transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_TolInt16Array(bb1, 0, 0) // {0x0190, 0x0302, 0x0004} value = {400, 770, 4}
value = Byte_TolInt16Array(bb1, 0, 1) // {0x0190, 0x0302, 0x0004} value = {400, 770, 4}
value = Byte_TolInt16Array(bb1, 1, 0) // {0x9001, 0x0203, 0x0400} value = {-28671, 515, 1024}
value = Byte_Tolnt16Array(bb1, 1, 1) // {0x9001, 0x0203, 0x0400} value = {36865, 515, 1024}

value = Byte_Tolnt16Array(bb2, 0, 0) // {0x0201, 0x0403} value = {513, 1027}
value = Byte_TolInt16Array(bb2, 0, 1) // {0x0201, 0x0403} value = {513, 1027}
value = Byte_Tolnt16Array(bb2, 1, 0) // {0x0102, 0x0304} value = {258, 772}
value = Byte_TolInt16Array(bb2, 1, 1) // {0x0102, 0x0304} value = {258, 772}

Syntax 2

int[] Byte_Tolnt16Array(
byte],
int

)

Note
Similar to Syntax 1 with return value as signed int16
Byte_Tolntl6Array(bb1, 0) => Byte_ Tolntl6Array(bb1, 0, 0)

Syntax 3
int[] Byte_Tolnt16Array(
byte[]
)
Note

Omron TM Collaborative Robot: TMScript Language Manual (1664) 56

e,

Similar to Syntax 1 with little endian input and return value as signed int16
Byte Tolntl6Array(bb1) => Byte_Tolntl6Array(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

57

e

4.6 Byte Tolnt32Array()

Transform byte array to integer every 4 bytes, and return in int[] type

Syntax 1
int[] Byte_Tolnt32Array(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return
int[] A integer array formed by every 4 bytes of byte array beginning at index [0]
Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x04, 0x05}
I When the remaining part does not fill 4 byte, it would be filled to 4 bytes before transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_Tolnt32Array(bb1, 0) // {0x04030201, 0x00000005} value = {67305985, 5}

value = Byte_Tolnt32Array(bb1, 1) // {0x01020304, 005000000} value = {16909060, 83886080}
value = Byte_TolInt32Array(bb2, 0) // {0x04030201} value = {67305985}

value = Byte_TolInt32Array(bb2, 1) // {0x01020304} value = {16909060}

Syntax 2
int[] Byte_Tolnt32Array(
byte(]
)
Note
Similar to Syntax 1 with little endian input.
Byte Tolnt32Array(bb1) => Byte_Tolnt32Array(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 58

e

4.7 Byte_ ToFloatArray()

Transform byte array to integer every 4 bytes, and return in float[] type.

Syntax 1
float[] Byte_ToFloatArray(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return
float(] A floating-point number array formed by every 4 bytes of byte array
beginning at index [0]
Note

byte[] bb1 = {Ox01, 0x02, 0x03, 0x04, 0x05}
/I When the remaining part does not fill 4 byte, it would be filled to 4 bytes before
transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_ToFloatArray(bb1, 0)

/1 {0x04030201, 0x00000005} value = {1.5399896E-36,7E-45}
value = Byte_ToFloatArray(bb1, 1)

/1 {0x01020304, 0x05000000} value = {2.3879393E-38,6.018531E-36}
value = Byte_ToFloatArray(bb2, 0) // {0x04030201} value = {1.5399896E-36}
value = Byte_ToFloatArray(bb2, 1) // {0x01020304} value = {2.3879393E-38}

Syntax 2
float[] Byte_ToFloatArray(
byte(]
)
Note
Similar to Syntax 1 with little endian input
Byte ToFloatArray(bb1) => Byte ToFloatArray(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 59

e

4.8 Byte _ToDoubleArray()

Transform byte array to double every 8 bytes, and return in double[] type.

Syntax 1
double[] Byte_ToDoubleArray(
bytef],
int
)
Parameters
byte[] The input byte array
int The input byte array follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
Return
double[] A floating-point number array formed by every 8 bytes of byte array beginning at
index [0]
Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x04, 0x05} // When the remaining part does not fill 8 byte, it would
be filled to 8 bytes before transforming.
byte[] bb2 = {1, 2, 3, 4} /I When the remaining part does not fill 8 byte, it would be filled to 8 bytes
before transforming.

value = Byte_ToDoubleArray(bb1, 0) // {0x0000000504030201} value = {1.064323253E-313}
value = Byte_ToDoubleArray(bb1, 1)
/1 {0x0102030405000000} value = {8.207880398492326E-304}

value = Byte_ToDoubleArray(bb2, 0) // {0x0000000004030201} value = {3.3253575E-316}
value = Byte_ToDoubleArray(bb2, 1)
/1 {0x0102030400000000} value = {8.207880262684596E-304}

Syntax 2
double[] Byte_ToDoubleArray(
byte(]
)
Note
Similar to Syntax 1 with little endian input
Byte_ToDoubleArray(bb1) => Byte_ToDoubleArray(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 60

e,

4.9 Byte_ToString()

Transform byte array to string

Syntax 1
string Byte_ToString(
bytef],
int
)
Parameters
byte[] The input byte array
int The character encoding rules applied to input byte array
0 UTF8 (Default) (0x00 END)
1 HEXBINARY
2 ASCII (0x00 END)
Return
string String formed by byte array. The transformation begins from index [0].
Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, Ox4F, 1}

byte[] bb2 = {0x01, 0x54, 0x4D, 0x35, OXE6, 0xA9, Ox9F, OXE5, 0x99, OXA8, OXE4, OXBA,
OXBA}

value = Byte_ToString(bb1, 0) // value = "123" (UTF8 stop at 0x00)

value = Byte_ToString(bb1, 1) // value = "313233004F01"

value = Byte_ToString(bb1, 2) // value = "123" (ASCII stop at 0x00)

value = Byte_ToString(bb2, 0) // value = "\u01TM5#&: A" (UTF8)

value = Byte_ToString(bb2, 1) // value = "01544D35E6A99FE599A8E4BABA"
value = Byte_ToString(bb2, 2) // value = "\u01TM5??2???????" (ASCII)

*\u01 represents the SOH control character, not the string value.

Syntax 2
string Byte_ToString(
byte(]
)
Note
Similar to Syntax 1 with UTF8 character encoding rules
Byte ToString(bb1) => Byte ToString(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 61

e

4.10 Byte_Concat()

Concatenate two byte arrays, or concatenate one array with a byte value.

Syntax 1
byte[] Byte_Concat(
bytef],
byte
)
Parameters
byte[] The input byte array
byte The byte value concatenated after the byte array
Return
byte[] The byte array formed by the input byte array and byte value
Note
byte[] bb1 = {Ox31, 0x32, 0x33, 0x00, Ox4F, 1}

value = Byte_Concat(bb1, 12) // value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0XOC}

Syntax 2
byte[] Byte_Concat(
byte[],
byte(]
)
Parameters
byte[] The input byte array1
byte[] The input byte array2, would be concatenated to the end of array1
Return
byte[] Byte array formed from concatenating input arrays.
Note
byte[] bb1 = {Ox31, 0x32, 0x33, 0x00, Ox4F, 1}
byte[] bb2 = {Ox01, 0x02, 0x03}

value = Byte_Concat(bb1, bb2)
Il value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02, 0x03}

Syntax 3

byte[] Byte_Concat(
bytef],
byte(],
int

)

Parameters
byte[] The input byte array1
byte[] The input byte array2, would be concatenated after the end of array1
int The number of element in array2 to be concatenated

0..the length of array2 Valid number

<0 Invalid. Length of array2 will be applied instead.
> the length of array2 Invalid. Length of array2 will be applied instead.

Return

Omron TM Collaborative Robot: TMScript Language Manual (1664)

62

e

byte[]
Note

Byte array formed from concatenating input arrays.

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, Ox4F, 1}
byte[] bb2 = {0x01, 0x02, 0x03}

value = Byte_Concat(bb1, bb2, 2) I value = {0x31, 0x32, 0x33, 0x00, Ox4F, 0x01, 0x01, 0x02} //

Concatenate only 2 elements from array2

value = Byte_Concat(bb1, bb2,-1) I value = {0x31, 0x32, 0x33, 0x00, Ox4F, 0x01, 0x01, 0x02,

0x03} // -1 is invalid value

value = Byte_Concat(bb1, bb2, 10) I value = {0x31, 0x32, 0x33, 0x00, Ox4F, 0x01, 0x01, 0x02,

0x03} // 10 exceeds the array size

/I Length() can be utilized to acquire the array size

value = Byte_Concat(bb1, bb2, Length(bb2))

Syntax 4

/I value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02,
0x03}

byte[] Byte_Concat(

bytef],
int,
int,
bytef],
int,
int

)

Parameters
byte[]
int

int

byte(]
int

The input byte array1

The starting index of array1

0..(length of arrayl)-1 Valid

<0 The starting index would be 0

>=(length of arrayl) The starting index would be the length of array2 (For index
over the length of array2, an empty value would be captured)

The number of element in array1 to be concatenated

0.. (length of arrayl) Valid

<0 Invalid , length of arrayl will be applied instead

>(length of arrayl) Invalid , length of arrayl will be applied instead

If the total number of starting index and assigning elements exceeds the length
of arrayl, the surplus index will be suspended.

The input byte array2 , would be concatenated after the end of array1

The starting index of array2

0.. (length of array2)-1Valid

<0 The starting index would be 0

>=(length of array2) The starting index would be the length of array2 (For index

over the length of array2, an empty value would be captured)

Int

The number of element in array2 to be concatenated

0.. (length of array2) Valid

<0 Invalid. Length of array2 will be applied instead.
>(length of array?) Invalid. Length of array2 will be applied instead.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 63

e

If the total number of starting index and assigning elements exceeds the length
of array2, the surplus index will be suspended.
Return
byte[] Byte array formed from concatenating input arrays.
Note
byte[] bb1 = {Ox31, 0x32, 0x33, 0x00, Ox4F, 1}
byte[] bb2 = {0x01, 0x02, 0x03}

value = Byte_Concat(bb1, 1, 3, bb2, 1, 2) // value = {0x32, 0x33, 0x00, 0x02, 0x03}
value = Byte_Concat(bb1, -1, 3, bb2, 3, -1) // value = {0x31, 0x32, 0x33}

Syntax 5
byte[] Byte_Concat(
byte or byte[],
byte or byte[],

)

Parameters (active parameter amount)

byte The input byte value

byte[] The input byte array

It concatenates the content of each parameter in order. It ignores the parameter if it is not

a byte or a byte array and continues to concatenate the next parameter.
Return

byte[] Concatenate the parameters in byte and return a new byte array.
Note

byte[] bb1 = {Ox31, 0x32, 0x00, Ox4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

byte bb3 = 0x5A

value = Byte_Concat(bb1, bb2, bb3)

/I value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03} // Syntax 3

value = Byte_Concat(bb1, bb2, ", bb3)

/I value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03,0x5A}

value = Byte_Concat(bb2, 0x10, bb1)

/I value = {0x01,0x02,0x03,0x10,0x31,0x32,0x00,0x4F,0x01}

value = Byte_Concat(bb1, "AB", bb2, 10)

/I value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03,0x0A}

/I Parameter "AB" is the string type. Ignored.

value = Byte_Concat(bb1, "AB", bb2, 1000) // value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03}
/I Parameter "AB" is the string type. Ignored.
/I Parameter 1000 is the integer type. Ignored.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 64

e

4.11 String_Tolnteger()

Transform string to integer (int type)

Syntax 1
int String_Tolnteger(
string,
int
)
Parameters
string The input string.
int The input string’s notation is decimal, hexadecimal or binary
10 decimal or auto format detecting (Default)
16 hexadecimal
2 binary
String’s notation
123 decimal
Ox7F hexadecimal
Ob101 binary
Return
int The integer value formed from input string. If notation is invalid, returns 0.
Note
value = String_Tolnteger("1234", 10) Il value = 1234
value = String_Tolnteger("1234", 16) Il value = 4660
value = String_Tolnteger("1234", 2) Il value = 0 /I Invalid binary format
value = String_Tolnteger("1100", 2) Il value = 12
value = String_Tolnteger("0x1234", 10)// value = 4660

/I Hexadecimal format by auto detecting
value = String_Tolnteger("0x1234", 16)// value = 4660
value = String_Tolnteger("0x1234", 2) /I value = 0 // Invalid binary format
value = String_Tolnteger("0b1100", 10)// value = 12 // Binary format by auto detecting
value = String_Tolnteger("0b1100", 16)// value = 725248 // Valid Hexadecimal number
value = String_Tolnteger("0b1100", 2) /l value = 12
(
("-
(
("

value = String_Tolnteger("+1234", 10) Il value = 1234
value = String_Tolnteger("-1234", 10) Il value = -1234
value = String_Tolnteger("-0x1234", 16) //value =0 Il Invalid hex format
value = String_Tolnteger("-Ob1100", 2) // value = 0 I Invalid binary format
Syntax 2
int String_Tolnteger(
string
)
Note

Similar to syntax1 with decimal format or auto format detection
String_Tolnteger(str) => String_Tolnteger(str, 10)

Syntax 3
int[] String_Tolnteger(
string(],
int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 65

e

)

Parameters

string[] Input string array

Int

Return
int[]
Note

The notation of element in input string array is decimal, hexadecimal or

binary

10 decimal or auto format detecting (Default)
16 hexadecimal

2 binary

String’s notation

123 decimal

Ox7F hexadecimal

0b101 binary

* The notations of all the elements in a single array have to be identical

The integer array formed from input string array. If notation is invalid, returns 0.

SS = {"12"’ Ilabll’ "CC"’ llddll’ II1OII}
value = String_Tolnteger(ss) Il value = {12, 0, 0, 0, 10}

/I "ab","cc","dd" are invalid decimal numbers

value = String_Tolnteger(ss, 2) //value ={0, 0, 0, 0, 2}

//"12""ab","cc","dd" are invalid binary numbers

value = String_Tolnteger(ss, 16) // value = {18, 171, 204, 221, 16}
value = String_Tolnteger(ss, 10) //value = {12, 0, 0, 0, 10} / "ab","cc","dd" are invalid decimal

numbers

Omron TM Collaborative Robot: TMScript Language Manual (1664) 66

e

4.12 String_ToFloat()

Transform string to floating-point (floating-point type)

Syntax 1
float String_ToFloat(
string,
int
)
Parameters
string Input string
int Input string’s notation is decimal, hexadecimal or binary format
10 decimal or auto format detecting (Default)
16 hexadecimal
2 binary
String’s notation
123 decimal
Ox7F hexadecimal
Ob101 binary
Return
float The floating-point number formed from input string. If notation is invalid, returns 0.
Note

value = String_ToFloat("12.34", 10) Il value = 12.34

value = String_ToFloat("12.34", 16) Il value = 0 /I Invalid hexadecimal format
value = String_ToFloat("12.34", 2) Il value = 0 Il Invalid binary format
value = String_ToFloat("11.00", 2) Il value = 0 Il Invalid binary format

value = String_ToFloat("0x1234", 10)

value = String_ToFloat("0x1234", 16)
value = String_ToFloat("0x1234", 2)
value = String_ToFloat("0Ob1100", 10)
value = String_ToFloat("0b1100", 16)
value = String_ToFloat("0b1100", 2)
value = String_ToFloat("+12.34", 10)
value = String_ToFloat("-12.34", 10)

/l value = 6.53E-42

/I Hexadecimal format by auto detecting

/l value = 6.53E-42

/' value =0 /I Invalid binary format

/I value = 1.7E-44 |/ Binary format by auto detecting
/I value = 1.016289E-39 // Valid hexadecimal format
[l value = 1.7E-44

/I value = 12.34

/I value = -12.34

value = String_ToFloat("-0x1234", 16) // value =0 Il Invalid hex format
value = String_ToFloat("-0b1100", 2) //value =0 Il Invalid format
Syntax 2
float String_ToFloat(
string
)
Note

Similar to syntax1 with decimal format or auto format detection
String_ToFloat(str) => String_ToFloat(str, 10)

Syntax 3
float[] String_ToFloat(
string(],
int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 67

e

)
Parameters
string[] Input string array
int The notation of elements in input string array is decimal, hexadecimal or
binary
10 decimal or auto format detecting (Default)
16 hexadecimal
2 binary
String’s notation
123 decimal
Ox7F hexadecimal
0b101 binary
* The notation of all the elements in a single array have to be identical
Return
float(] The floating-point number array formed from input string array. If notation is
invalid, returns O.
Note
ss = {"12.345", "ab", "cc", "dd", "10.111"}
value = String_ToFloat(ss) /l value = {12.345,0,0,0,10.111}
value = String_ToFloat(ss, 2) Il value = {0,0,0,0,0}

value = String_ToFloat(ss, 16) Il value = {0,2.4E-43,2.86E-43,3.1E-43,0}
value = String_ToFloat(ss, 10) /l value = {12.345,0,0,0,10.111}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 68

e

4.13 String_ToDouble()

Transform string to floating-point number (double type)

Syntax 1
double String_ToDouble(
string,
int
)
Parameters
string Input string
int Input string’s notation is decimal, hexadecimal or binary format
10 decimal or auto format detecting (Default)
16 hexadecimal
2 binary
String’s notation
123 decimal
Ox7F hexadecimal
Ob101 binary
Return
double The floating-point number formed from input string. If notation is invalid, returns
0.
Note
value = String_ToDouble("12.34", 10) // value = 12.34
value = String_ToDouble("12.34", 16) //value =0 /I Invalid hexadecimal format
value = String_ToDouble("12.34",2) //value =0 Il Invalid binary format
value = String_ToDouble("11.00"%, 2) //value =0 I Invalid binary format
value = String_ToDouble("0x1234", 10)// value = 2.3023E-320 // Hexadecimal format by auto
detecting
value = String_ToDouble("0x1234", 16)// value = 2.3023E-320
value = String_ToDouble("0x1234", 2) //value =0 I Invalid binary format
value = String_ToDouble("0b1100", 10)// value = 6E-323 // Binary format by auto detecting
value = String_ToDouble("0Ob1100", 16)// value = 3.5832E-318 // Valid hexadecimal format
value = String_ToDouble("0b1100", 2) // value = 6E-323
value = String_ToDouble("+12.34", 10) // value = 12.34
value = String_ToDouble("-12.34", 10) // value = -12.34
value = String_ToDouble("-0x1234", 16)// value = 0 Il Invalid hex format
value = String_ToDouble("-0b1100", 2)// value = 0 I Invalid binary format
Syntax 2
double String_ToDouble(
string
)
Note
Similar to syntax1 with decimal format or auto format detection
String_ToDouble(str) => String_ToDouble(str, 10)
Syntax 3
double[] String_ToDouble(

string(],

Omron TM Collaborative Robot: TMScript Language Manual (1664) 69

e

int
)

Parameters

string[] Input string array

Int

Return
double[]

Note

The notation of elements in input string array is decimal, hexadecimal or
binary

10 decimal or auto format detecting (Default)
16 hexadecimal

2 binary

String’s notation

123 decimal

Ox7F hexadecimal

Ob101 binary

* The notation of all the elements in a single array has to be identical

The floating-point number array formed from input string array. If notation is
invalid, returns 0.

ss = {"12.345", "ab", "cc", "dd", "10.111"}

value = String_ToDouble(ss) Il value = {12.345, 0, 0, 0, 10.111}

value = String_ToDouble(ss, 2) //value ={0, 0, 0, 0, 0}

value = String_ToDouble(ss, 16) // value = {0,8.45E-322,1.01E-321,1.09E-321,0}
value = String_ToDouble(ss, 10) // value = {12.345, 0, 0, 0, 10.111}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 70

e

4.14 String_ToByte()

Transform string to byte array

Syntax 1
byte[] String_ToByte(
string,
int
)
Parameters
string Input string
int The character encoding rules applied to input string
0 UTF8 (Default)
1 HEXBINARY /I Stop at invalid Hex value
2 ASCII
Return
byte[] The byte array formed from input string
Note

value = String_ToByte("12345", 0) // value = {0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("12345", 1) // value = {0x12, 0x34, 0x50} // the insufficient part will be
filled with O

value = String_ToByte("12345", 2) // value = {0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("0x12345", 0) // value = {0x30, 0x78, 0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("0x12345", 1) // value = {0x00} /I Only 0 be transformed, cause x is
an invalid Hex value

value = String_ToByte("0x12345", 2) // value = {0x30, 0x78, 0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("TM5#23 A", 0) // value = {0x54, 0x4D, 0x35, OXES, OxA9, 0X9F, OXES, 0x99, OXAS,
OxE4, OxBA, OxBA}

value = String_ToByte("TM5#23 A", 1) // value = {0x00} /I T is an invalid Hex value

value = String_ToByte("TM5#28 A", 2) // value = {0x54, 0x4D, 0x35, Ox3F, Ox3F, 0x3F}

value = String_ToByte("0123456", 1) // value = {0x01, 0x23, 0x45, 0x60}

value = String_ToByte("01234G5", 1) // value = {0x01, 0x23, 0x40} // G is an invalid Hex value

Syntax 2
byte[] String_ToByte(
string
)
Note
Similar to syntax1 with UTF8 format
String_ToByte(str) => String_ToByte(str, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 71

e

4.15 String_IndexOf()
Search the address of the first occurrence of a specified strin from left to right.

Syntax 1

int String_IndexOf(
string,
string,
int

)

Parameters
string Input string
string The specified string to search

int The initial address to start searching
Return
int 0..(Length of string)-1 If the specified string is found, returns the index number
-1 Not found
0 The specified string is "" or empty
Syntax 2
int String_IndexOf(
string,
string
)
Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from
the leftmost.

int index = String_IndexOf("012314", "1") /1

index = String_IndexOf("012314", ") /10

index = String_IndexOf("012314", empty) //0

index = String_IndexOf("012314", "d") -1

index = String_IndexOf("", "d") -1

index = String_IndexOf("012314", "1", 1) //1 // Start searching with the 1stindex number
index = String_IndexOf("012314", "1",2) // 4 /I Start searching with the 2" index number
index = String_IndexOf("012314", "1",10) /-1

Syntax 3

int String_IndexOf(
string(],
string,
int

)

Parameters
string The array of the input string
string The specified string to search

int The initial index of the array to start searching
Return
int 0..Array Size -1 Return the index of the string array if found the string.
-1 Not found

Omron TM Collaborative Robot: TMScript Language Manual (1664) 72

e

* The array index will start searching with the initial index from left to right.
* Will use String_IndexOf(string, string) to search if the array element available.
Return the index number of the array element but not the index number of the string.
Syntax 4
int String_IndexOf(
string(],
string
)
Note

Same as syntax 3. It defaults 0 to the initial index of the parameter int as searching from
the foremost of the array elements.

string[] ss = {"012314", "ABCDEF", "123TM"}

int index = String_IndexOf(ss, "1") /70

index = String_IndexOf(ss, ") //0 // Since using String_IndexOf to search strings, it is available
when searching for .

index = String_IndexOf(ss, "d") /-1

index = String_IndexOf(ss, "1", 1) //2

index = String_IndexOf(ss, "1", 10)// -1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 73

e

4.16 String_LastindexOf()
Search the address of the last occurrence of a specified strin from right to left.

Syntax 1

int String_LastIndexOf(
string,
string,
int

)

Parameters
string Input string
string The specified string to search

int The initial address to start searching
Return
int 0..(Length of string)-1 If the specified string is found, returns the index number
-1 Not found
(Length of string) The specified string is " or empty
Syntax 2
int String_LastindexOf(
string,
string
)
Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from
the rightmost.

int index = String_LastindexOf("012314", "1") 1/ 4
index = String_LastIndexOf("012314", ") Il'6
index = String_LastindexOf("012314", empty) //6
index = String_LastIndexOf("012314", "d") -1
index = String_LastIndexOf("", "d") -1
index = String_LastIndexOf("012314", "1",1) /1
/I Start searching with the 1stindex number
index = String_LastIndexOf("012314","1",2) /1
/I Start searching with the 2" index number
index = String_LastIndexOf("012314", "1", 10) /4
index = String_LastindexOf("012314", "4", 10) //5

Syntax 3

int String_LastindexOf(
string(],
string,
int

)

Parameters
string The array of the input string
string The specified string to search
int The initial index of the array to start searching

Omron TM Collaborative Robot: TMScript Language Manual (1664) 74

e

Return
int 0..Array Size -1 Return the index of the string array if found the string.
-1 Not found
* The array index will start searching with the initial index from right to left.
* Will use String_IndexOf(string, string) to search if the array element available.
Return the index number of the array element but not the index number of the string.
Syntax 4
int String_LastIndexOf(
string(],
string
)
Note
Same as syntax 3. It defaults O to the initial index of the parameter int as the array size as
searching from the last of the array elements.

string[] ss = {"012314", "ABCDEF", "123TM"}

int index = String_LastIindexOf(ss, "1") // 2

index = String_LastIndexOf(ss, "") /12 Il Since using String_IndexOf to search strings, it is
available when searching for ™.

index = String_LastIndexOf(ss, "d") /-1

index = String_LastIndexOf(ss, "1", 1) //0

index = String_LastIndexOf(ss, "1", 10)// 2

Omron TM Collaborative Robot: TMScript Language Manual (1664) 75

e

4.17 String_DiffIndexOf()
Compare the address where the first string difference occurs starting from the start address.

Syntax 1

int String_ DiffIndexOf(
string,
string,
int

)

Parameters
string Input string 1
string Input string 2

int The initial address to start comparing
Return
int 0..(Length of string)-1

If a difference is found, returns the index number of
the difference.

-1 No difference found. Namely, both strings match.
-2 The initial address exceeds the length of two stings.
Syntax 2
int String_DiffIndexOf(
string,
string
)
Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from
the leftmost.

string s1 = "abcdef"
string s2 = "abcDef"
string s3 = "abcdeF123"

int index = String_DiffIndexOf(s1, s2) '3

index = String_DiffindexOf(s1, s3) II'5

index = String_DifflndexOf(s1, s3, 5) II'5 Il Start comparing with index 5, f and F.
index = String_DiffIndexOf(s1, s3, 7) /17 Il Start comparing with index 7, \0" and 2.

index = String_DiffIndexOf(s1, "abcdef", 7) //-1 // Both strings match.
index = String_DiffIndexOf(s1, "ABCDEF", 7)// -2// Start comparing with index 7. Exceeded the
length of two strings.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 76

e

4.18 String_Substring()

Retrieve a substring from input string

Syntax 1
string String_Substring(
string,
int,
int
)
Parameters
string Input string
int The starting character position of sub string (0 .. (length of input string)-1)
int The length of substring
Return

string Substring
If starting character position <0, returns empty string
If starting character position >= length of input string, returns empty string
If length of substring <0, the substring ends at the last character of the input

string
If the sum of starting character position and length of substring exceeds the
length of input string, the substring ends at the last character of the input string
Note
value = String_Substring("0x12345", 2, 4) Il value = "1234"
value = String_Substring("0x12345", -1, 4) Il value ="
value = String_Substring("0x12345", 7, 4) Il value ="
value = String_Substring("0x12345", 2, -1) Il value = "12345"
value = String_Substring("0x12345", 2, 100) // value = "12345"
Syntax 2
string String_Substring(
string,
int
)
Note

Similar to syntax1 with the substring ends at the last character of the input string
String_Substring(str, 2) => String_Substring(str, 2, maxlen)

Syntax 3
string String_Substring(
string,
string,
int
)
Parameters
string Input string
string The target string to be searched, the substring will start at its position, if it is
found
int The length of substring

Omron TM Collaborative Robot: TMScript Language Manual (1664) 77

e

Return
string

string

Note

Substring

If the target string is empty, the substring start at index zero

If the target string is not found, returns empty string

If length of substring <0, the substring ends at the last character of the input

If the sum of starting character position and length of substring exceeds the
length of input string, the substring ends at the last character of the input string

This syntax is the same as String_Substring(str, String_IndexOf(str1), int)

value =
value =
value =
value =
value =

Syntax 4

String_Substring("0x12345", "1", 4) /l value = "1234"
String_Substring("0x12345", ", 4) Il value = "0x12"
String_Substring("0x12345", "7", 4) /l value = ""
String_Substring("0x12345", "1", -1) Il value = "12345"
String_Substring("0x12345", "1", 100) // value = "12345"

string String_Substring(

string,
string

)
Note

Similar to Syntax 3 with the substring ends at the last character of the input string
String_Substring(str, "1") => String_Substring(str, "1", maxlen)

Syntax 5

string String_Substring(

string,
string,
string,
int

)

Parameters
string
string
string
int

Return
string

Note

Input string

Prefix. The leading element of the substring
Suffix. The trailing element of the substring
The number of occurrence

Substring
If prefix and suffix are empty string, returns input string
If the number of occurrence<=0, returns empty string

value = String_Substring("0x12345", ", ", 0) Il value = "0x12345"
value = String_Substring("0x12345", "1", "4", 1) Il value = "1234"
value = String_Substring("0x12345", "1", "4", 2) /l value ="

value = String_Substring("0x123450x12-345", "1", "4", 1) // value = "1234"
value = String_Substring("0x123450x12-345", "1", "4", 2) // value = "12-34"
value = String_Substring("0x123450x12-345", "1", "4", 3) // value = "

(
(
(
value = String_Substring("0x12345", "1", "4", 0) Il value ="
(
(
(
(

value = String_Substring("0x12345122", "1", ", 1) // value = "12345122"// Retrieves what's

Omron TM Collaborative Robot: TMScript Language Manual (1664) 78

e

after the matched prefix

value = String_Substring("0x12345122", "1", ", 2) // value = "122" // Retrieves what's after
the matched prefix. The matched amount

moves from the front to the back.
value = String_Substring("0x12345122", "1", ", 4) //value ="

value = String_Substring("0x12345433", ", "4", 1) // value = "0x123454"// Retrieves what's
after the matched suffix
value = String_Substring("0x12345433", ", "4", 2) //value ="0x1234" // Retrieves what's

after the matched suffix. The matched amount
moves from the back to the front.

Syntax 6
string String_Substring(
string,
string,
string
)

Note
Similar to Syntax 5 with the substring start at the first occurrence

String_Substring(str, prefix, suffix) => String_Substring(str, prefix, suffix, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 79

e

4.19 String_Split()
Split the string using specified separator.

Syntax 1
string[] String_Split(
string,
string,
int
)
Parameters
string Input string
string Separator (String)
int Format
0 Split and keep the empty strings
1 Split and eliminate the empty strings
2 Split with the elements inside double quotation mark skipped, and keep the
empty strings
3 Split with the elements inside double quotation mark skipped, and eliminate
the empty strings
Return
string[] Split substring
If input string is empty, it returns a substring with array. [0] = empty and
deals with empty strings by separators.
If separator is empty, it returns substring with array [0] = Input string and
deals with empty strings by separators.
Note
value = String_Split("0x112345", "1", 0) // value = {"0x","","2345"}
value = String_Split("0x112345", "1", 1) // value = {"0x","2345"}

value = String_Split("", "1", 0) Il value = {"} /llength =1
value = String_Split(", "1", 1) Il value = {} Il length = 0
value = String_Split("0x112345", "", 0) Il value = {"0x112345"}
s1="123, ""456,67"",89"
value = String_Split(s1, ",", 0) Il value = {"123", ""456", "67"", "89"} // length = 4
value = String_Split(s1, ",", 2) Il value = {"123", ""'456,67"", "89"} /I length = 3
Syntax 2
string[] String_Split(
string,
string
)
Note

Similar to Syntax1 with splitting and keeping the empty strings
String_Split(str, separator) => String_Split(str, separator, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 80

e

4.20 String_Replace()

Return a new string in which all occurrences of a specified string in the input string are replaced
with another specified string

Syntax 1
string String_Replace(
string,
string,
string
)
Parameters
string Input string
string Old value, the string to be replaced
string New value, the string to replace all occurrences of old value
Return
string The string formed by replacing the old value with new value in input value. If the
old value is empty, returns the input string

Note
value = String_Replace("0x112345", "1", "2") // value = "0x222345"
value = String_Replace("0x112345", "", "2") // value = "0x112345"

value = String_Replace("0x112345", "1", ") // value = "0x2345"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 81

e

4.21 String_Trim()

Return a new string in which all leading and trailing occurrences of specified characters or
white-space characters from the input string are removed

Syntax 1
string String_Trim(
string
)
Parameters
string Input string
Return
string String formed by removing all leading and trailing occurrences of white-space
characters
Note
value = String_Trim("0x112345 ") Il value = "0x112345"
value = String_Trim(" 0x112345") Il value = "0x112345"

value = String_Trim(" 0x112345 ")// value = "0x112345"

White-space characters

\u0020 \1680 \u2000 \u2001 \u2002 \u2003 \u2004
\u2005 \u2006 \u2007 \u2008 \u2009 \u200A \u202F
\u205F \u3000

\u2028

\u2029

\u0009 \uOOOA \u00OB \W0OOC \u00OD \u0085 \UOOAO
\u200B \UFEFF

Syntax 2
string String_Trim(
string,
string
)
Parameters
string Input string
string Specified characters to be removed from leading occurrences
Return
string String formed by removing all leading occurrences of specified characters

Syntax 3
string String_Trim(
string,
string,
string
)
Parameters
string Input string
string Specified characters to be removed from leading occurrences
string Specified characters to be removed from trailing occurrences
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 82

e

string String formed by removing all leading and trailing occurrences of the specified

characters

Note
string s1 = "Hello Hello World Hello World"
string s2 = "HelloHelloWorldHelloWorld"

value = String_Trim(s1, "Hello") Il value ="

value = String_Trim(s1, "", "World") /I value = "Hello Hello World Hello "
value = String_Trim(s1, "Hello", "World") //value ="

value = String_Trim(s2, "Hello") Il value = "WorldHelloworld"

value = String_Trim(s2, "World") Il value = "HelloHelloWorldHelloWorld"
value = String_Trim(s2, ", "Hello") Il value = "HelloHelloWorldHelloworld"

value = String_Trim(s2, "", "World") // value = "HelloHelloWorldHello"
value = String_Trim(s2, "Hello", "World") // value = "WorldHello"

Omron TM Collaborative Robot: TMScript Language Manual (1664)

Hello World Hello World"
value = String_Trim(s1, "World") /l value = "Hello Hello World Hello World"
value = String_Trim(s1, ", "Hello") /I value = "Hello Hello World Hello World"

Hello World Hello "

83

e

4.22 String_TolLower()

Change all the characters in a string to lower case

Syntax 1
string String_ToLower(
string
)
Parameters
string Input string
Return
string The string formed by converting all the English character into lower case. Non-
English character will be remained the same.
Note
value = String_ToLower("0x11Acz34") // value = "0x11lacz34"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 84

e

4.23 String_ToUpper()

Change all the characters in a string to upper case

Syntax 1
string String_ToUpper(
string
)
Parameters
string Input string
Return
string The string formed by converting all the English character into upper case. Non-
English character will remain the same.
Note
value = String_ToUpper("0x11Acz34") // value = "0X11ACZ34"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 85

e

4.24

Array_Append()

Add new data as the elements in the end of the array.

Syntax 1
?[] Array_Append(
?[l,
? or ?[]
)
Parameters
?[] Parameter 1, the array to be appended. Available types: byte, int, float,
double, bool, and string.
?or ?[] Parameter 2, the data or the array to add. The type must be the same with
the type of the array to be appended.
*Both parameters must go with the same type.
Return
?(] The new array with the parameter 2 elements appended to the parameter
1.
Note
? byte[] nl={100, 200, 30}
byte[] n2 = {40, 50, 60}
n3 = Array_Append(n1, n2) /I n3 = {100, 200, 30, 40, 50, 60}
nl = Array_Append(n1, 100) /I n1 = {100, 200, 30, 100}
nl = Array_Append(n1, n3) /I n1 = {100, 200, 30, 100, 100, 200, 30, 40, 50, 60}
? float]n1={1.1, 2.2, 3.3}
float[] n2 = {0.4, 0.5}
n3 = Array_Append(n1, n2) /In3={1.1,2.2,3.3,0.4,0.5}
n4 = Array_Append(n3, 5.678) /Ind={1.1,2.2,3.3,0.4,0.5, 5678}
? string[] n1 ={"123", "ABC", "456", "DEF"}

string[] n2 = {"ABC", "123", "XYZ"}
n3 = Array_Append(n1, n2) /I n3 = {"123", "ABC", "456", "DEF", "ABC", "123", "XYZ"}
n4 = Array_Append(n2, "Hello World")// n4 = {"ABC", "123", "XYZ", "Hello World"}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 86

e

4.25 Array_Insert()

Insert data as the elements in the array.

Syntax1
?[] Array_Insert(
21,
int,
? or ?[]
)
Parameters
2l
int
?or?]
Return
?ll
Note

Parameter 1, the array to be inserted. Available types: byte, int, float, double,
bool, and string.
The index starting address of the parameter 1.
0 The length of the array 1 Legal value

-1
>= Thelength of the array 1 Legal value, and will insert the value in the end

of the parameter 1.

<0 lllegal value, the project will stop by error.
Parameter 2, the data or the array to insert. The type must be the same with
the type of the array to be appended.
* Both parameters must go with the same type.

The new array with the parameter 2 elements inserted to the index starting
address of the parameter 1.

? int[] n1 = {100, 200, 30}
int[] n2 = {40, 50, 60}
n3 = Array_Insert(n1, 0, n2) //n3 = {40, 50, 60, 100, 200, 30}/ Insert to the index O
n4 = Array_Insert(n1, 2, n2) //n4 = {100, 200, 40, 50, 60, 30}/ Insert to the index 2
n5 = Array_Insert(n1,-1,n2) /n5={

/I The project will stop by error. lllegal index to start with

? double[] n1={1.4, 2.6, 3.9}
double[] n2 ={0.5, 0.7}
n3 = Array_Insert(n1, 1, n2) /In3={1.4,0.5,0.7, 2.6, 3.9}
n4 = Array_Insert(n3, 4, 1.2345) //n4={1.4,05,0.7, 2.6, 1.2345, 3.9}
n5 = Array_Insert(n3, 100, 9) //n5={1.4,0.5,0.7, 2.6, 3.9, 9}

/I Out of the index. The value will insert in the end of the array.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 87

e

4.26 Array_Remove()

Delete data as the elements in the array.

Syntax1

?[] Array_Remove(

20,
int,
int

)
Parameters

?[]

int

int

Return

?[]

Syntax2

Parameter 1, the array to be inserted. Available types: byte, int, float, double,
bool, and string.

The index starting address of the parameter 1 to remove.

0 The length of the parameter 1 Legal value

-1

>= The length of the parameter 1 lllegal value, the project will stop by
error.

<0 lllegal value, the project will stop by
error.

The number of the elements to remove

>0 The number of the elements to remove from the index starting

address or until the end of the array.
<0 The number will be 0 and no element will be removed.

The new array with elements removed after the index staring address.

?[] Array_Remove(

20
int
)
Note

Same as syntax 1. The default number of the elements to remove is 1.

? int[] n1 = {100, 200, 30, 40, 50, 60}
n3 = Array_Remove(n1,-1) /n3={

/I The project will stop by error. lllegal value to start with.

n4 = Array_Remove(n1, 100) //n4={}

/I The project will stop by error. lllegal value to start with.

n5 = Array_Remove(n1, 0) //n5={200, 30, 40, 50, 60} /I Remove index 0
n6 = Array_Remove(n1, 1, 2) //n6 ={100, 40, 50, 60} // Remove 2 elements from index 1
n7 = Array_Remove(n1, 1,100) //n7={100} // Remove 100 elements from index 1 (remove

to the end of the array)

n8 = Array_Remove(n1, Length(n1)-1) // n8 = {100,200,30,40,50,60}

/I Remove from the last of index

n9 = Array_Remove(n1, Length(n1)) /n9={

/I The project will stop by error. lllegal value to start with.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 88

e

4.27 Array_Equals()
Determine whether the specified two arrays are identical.

Syntax 1
bool Array_Equals(
?ll,
2l

)
Parameters
?[] Input array1 (Data type can be byte, int, float, double, bool, string)
?(] Input array2 (Data type can be byte, int, float, double, bool, string)
* The data type of array1 and array2 must be identical.
Return
bool Two arrays are identical or not?
true two arrays are identical
false two arrays are not identical
Syntax 2
bool Array_Equals(
?[],vv
int,
?[l,
int,
int
)
Parameters
?(] Input array1 (Data type can be byte, int, float, double, bool, string)
int The starting index of array1 (O .. (length of arry1)-1)
?(] Input array2 (Data type can be byte, int, float, double, bool, string)
int The starting index of array2 (0 .. (length of arry2)-1)
int The number of elements to be compared (0: return true, <0: return false)
* The data type of array1 and array2 must be identical.
Return
bool The assigned elements in two arrays are identical or not?
true identical
false not identical (or parameters are not valid)
Note

2 byte[] nl1 = {100, 200, 30}
byte[] n2 = {100, 200, 30}

Array_Equals(n1, n2) Il true
Array_Equals(n1, 0, n2, 0, 3) Il true
Array_Equals(n1, 0, n2, 0, Length(n2)) // true

2 int[] n1 = {1000, 2000, 3000}
int[] n2 = {1000, 2000, 3000, 4000}

Array_Equals(n1, n2) I/ false
Array_Equals(n1, 0, n2, 0, Length(n2)) //false // compare 4 elements
Array_Equals(n1, 0, n2, 0, 3) Il true

? float[] n1 ={1.1, 2.2, 3.3}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

float[] n2 ={1.1, 2.2}
Array_Equals(n1, n2) Il false
Array_Equals(n1, 0, n2, 0, Length(n2)) // true /I compare 2 elements
Array_Equals(n1, 0, n2, 0, Length(n1)) // false
? double[] n1 = {100, 200, 300, 3.3, 2.2, 1.1}
double[] n2 = {100, 200, 400, 3.3, 2.2, 4.4}

Array_Equals(n1, n2) I/ false
Array_Equals(n1, 0, n2, 0, Length(n2)) // false
Array_Equals(n1, 0, n2, 0, 2) Il true
Array_Equals(n1, 3, n2, 3, 2) Il true

? bool[] n1 = {true, false, true, true, true}
bool[] n2 = {true, false, true, false, true}

Array_Equals(n1, n2) I/ false
Array_Equals(n1, 0, n2, 0, -1) I/ false
Array_Equals(n1, 0, n2, 0, 0) Il true /I compare 0 element

? string[] n1 = {"123", "ABC", "456", "DEF"}
string[] n2 = {"123", "ABC", "456", "DEF"}
Array_Equals(n1, n2) Il true
Array_Equals(n1, -1, n2, 0, 4) /l false /l Invalid starting index

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

4.28

Search for the index number of the first occurrence within array elements.

Syntax 1
int Array_IndexOf(
21,
?,
int
)
Parameters
?(] input array (Data type can be byte, int, float, double, bool, string)
? The target element to search (The data type needs to be the same as the input
array ?[], but not an array.)
int The initial index of the array to start searching
Return
int 0..(length of input array)-1 If the element is found , it returns the index number.
-1 No element found
Syntax 2
int Array_IndexOf(
21,
2
)
Note

?

Array_IndexOf()

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from
the foremost.

byte[] n = {100, 200, 30, 100}
value = Array_IndexOf(n, 200) N1

value = Array_IndexOf(n, 2000) //-1// Since 2000 is not a byte type, it will be converted to int[],

int to search.
value = Array_IndexOf(n, 100, 1) /3

int[] n = {1000, 2000, 3000, 1000}

value = Array_IndexOf(n, 200) -1
value = Array_IndexOf(n, 1000) /0
value = Array_IndexOf(n, 1000, 1) /3

float]n={1.1, 2.2, 3.3, 1.1}

value = Array_IndexOf(n, 1.1) 10
value = Array_IndexOf(n, 4.4) -1
value = Array_IndexOf(n, 1.1,1) /3

double[] n = {100, 200, 300, 3.3, 2.2, 1.1, 100}
value = Array_IndexOf(n, 1.1) II'5
value = Array_IndexOf(n, 500) -1
value = Array_IndexOf(n, 100, 1) /6

bool[] n = {true, false, true, true, true}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

91

e

value = Array_IndexOf(n, true)// 0

value = Array_IndexOf(n, false) /1
value = Array_IndexOf(n, false, 2) //-1
value = Array_IndexOf(n, true, 2) //2

? string[] n = {"123", "ABC", "456", "DEF", "123"}
value = Array_IndexOf(n, "456") //2
value = Array_IndexOf(n, "789") /-1
value = Array_IndexOf(n, "123", 1) // 4
value = Array_IndexOf(n, "AB") /-1

Omron TM Collaborative Robot: TMScript Language Manual (1664)

92

e

4.29 Array_LastindexOf{()

Search for the index number of the last occurrence within array elements.

Syntax 1
int Array_LastindexOf(
21,
?,
int
)
Parameters
?(] input array (Data type can be byte, int, float, double, bool, string)
? The target element to search (The data type needs to be the same as the input
array ?[], but not an array.)
int The initial index of the array to start searching
Return
int 0..(length of input array)-1 If the element is found , returns the index value
-1 No element found
Syntax 2
int Array_LastIndexOf(
?[l,
?
)
Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from
the foremost.
? byte[] n = {100, 200, 30}

? byte[] n = {100, 200, 30, 100}
value = Array_LastIindexOf(n, 200) N1
value = Array_LastindexOf(n, 2000) /-1 // Since 2000 is not a byte type, it will be converted to
int[], int to search.
value = Array_LastIindexOf(n, 100, 1) /o0

? int[] n ={1000, 2000, 3000, 1000}
value = Array_LastIindexOf(n, 200) -1
value = Array_LastIindexOf(n, 1000) /3
value = Array_LastIndexOf(n, 1000, 1) /70

? floatln={1.1, 2.2, 3.3, 1.1}
value = Array_LastIindexOf(n, 1.1) '3
value = Array_LastIndexOf(n, 4.4) -1
value = Array_LastIindexOf(n, 1.1,1) /o0

? double[] n = {100, 200, 300, 3.3, 2.2, 1.1, 100}
value = Array_LastIndexOf(n, 1.1) II'5
value = Array_LastIindexOf(n, 500) -1
value = Array_LastindexOf(n, 100, 1) /0

o~ o~

? bool[] n = {true, false, true, true, true}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 93

e

value = Array_LastIindexOf
value = Array_LastIindexOf
value = Array_LastindexOf
value = Array_LastIindexOf

n, true)// 4

n, false) /1
n, false, 2) //1
n, true, 2) /2

.~ A~~~

? string[] n ={"123", "ABC", "456", "DEF", "123"}
value = Array_LastindexOf(n, "456") //2
value = Array_LastIindexOf(n, "789") /-1
value = Array_LastIndexOf(n, "123", 1) //0
value = Array_LastIindexOf(n, "AB") /-1

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

4.30 Array_Reverse()
Reverse the sequence of the elements in the array

Syntax 1
?[] Array_Reverse(
?ll
)
Parameters
?(] input array (Data type can be byte, int, float, double, bool, string)
Return
?(] The reversed array
Note
? byte[] n = {100, 200, 30}
n = Array_Reverse(n) /I'n = {30, 200, 100}
? int[] n = {1000, 2000, 3000}
n = Array_Reverse(n) /I n = {3000, 2000, 1000}
? float]n={1.1, 2.2, 3.3}
n = Array_Reverse(n) IIn={3.3,2.2,1.1}
? double[] n = {100, 200, 300, 3.3, 2.2, 1.1}
n = Array_Reverse(n) /I'n={1.1, 2.2, 3.3, 300, 200, 100}
? bool[] n = {true, false, true, true, true}
n = Array_Reverse(n) Il n = {true, true, true, false, true}
? string[] n = {"123", "ABC", "456", "DEF"}
n = Array_Reverse(n) /I n = {"DEF", "456", "ABC", "123"}

Syntax 2
?[] Array_Reverse(
21,
int
)
Parameters
?(] input array (Data type can be byte, int, float, double, bool, string)
int the number of elements to be viewed as a section to be reversed
2 2 elements as a section
4 4 elements as a section
8 8 elements as a section
* The sequence of the elements in the same section will be reversed, but the
sequence of the sections will remain the same
Return
?0 The reversed array
Note

? byte[] n = {100, 200, 30}
n = Array_Reverse(n, 2) //n={200, 100, 30}
/I 2 elements as a section, that is {100,200430}
n = Array_Reverse(n, 4) //n={30, 200, 100}
/I 4 elements as a section, that is {100,200,30}
n = Array_Reverse(n, 8) //n={30, 200, 100}
? int[] n = {100, 200, 300, 400}
n = Array_Reverse(n, 2) //n={200, 100, 400, 300}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 95

e

/I 2 elements as a section, that is {100,2004300,400}
n = Array_Reverse(n, 4) //n={400, 300, 200, 100}
/I 4 elements as a section, that is {100,200,300,400}
n = Array_Reverse(n, 8) //n={400, 300, 200, 100}
? floatjn={1.1, 2.2, 3.3, 4.4, 5.5}
n = Array_Reverse(n, 2) //n={2.2,1.1,4.4,3.3,5.5}
/I 2 elements as a section, that is {1.1,2.2}3.3,4.4}{5.5}
n = Array_Reverse(n, 4) //n={4.4,3.3,2.2,1.1,5.5}
/I 4 elements as a section, that is {1.1,2.2,3.3,4.4}{5.5}
n = Array_Reverse(n, 8) //n={55,4.4,3.3,22,1.1}
? double[] n = {100, 200, 300, 400, 4.4, 3.3, 2.2, 1.1, 50, 60, 70, 80}
n = Array_Reverse(n, 2) //n={200, 100, 400, 300, 3.3, 4.4, 1.1, 2.2, 60, 50, 80, 70}
n = Array_Reverse(n, 4) //n={400, 300, 200, 100, 1.1, 2.2, 3.3, 4.4, 80, 70, 60, 50}
n = Array_Reverse(n, 8) //n={1.1,2.2, 3.3, 4.4, 400, 300, 200, 100, 80, 70, 60, 50}
? bool[] n = {true, false, true, true, true, false, true, false}
n = Array_Reverse(n, 2) //n= {false, true, true, true, false, true, false, true }
n = Array_Reverse(n, 4) //n={true, true, false, true, false, true, false, true}
n = Array_Reverse(n, 8) //n= {false, true, false, true, true, true, false, true}
? string[] n = {"123", "ABC", "456", "DEF", "000", "111"}
n = Array_Reverse(n, 2) //n={"ABC", "123" "DEF", "456", "111", "000"}
n = Array_Reverse(n, 4) //n={"DEF", "456", "ABC", "123", "111", "000"}
n = Array_Reverse(n, 8) //n={"111", 000", "DEF", "456", "ABC", "123"}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

96

e

4.31 Array_Sort()

Sort the elements in a array

Syntax 1
?[] Array_Sort(
?[l,
int
)
Parameters
?[] input array (Data type can be byte, int, float, double, bool, string)
int Sorting direction
0 Ascending Order (Default)
1 Descending Order
Return
?(] The array after sorting
Syntax 2
?[] Array_Sort(
?ll
)
Note

Similar to Syntax1 with sorting direction as ascending order
Array_Sort(array[]) => Array_Sort(array]], 0)
? int[] n= {1000, 2000, 3000}
n= Array_Sort(n) /I'n = {1000, 2000, 3000}
? double[] n = {100, 200, 300, 3.3, 2.2, 1.1}
n= Array_Sort(n, 1)/ n= {300, 200, 100, 3.3, 2.2, 1.1}
? bool[] n= {true, false, true, true, true}
n= Array_Sort(n, 1)//n= {true, true, true, true, false}
? string[]n= {"123", "ABC", "456", "DEF"}
n= Array_Sort(n) /In= {"123", "456", "ABC", "DEF"}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

97

e

4.32 Array_SubElements()

Retrieve the sub-elements from input array

Syntax 1

?[] Array_SubElements(

?[l,

int,

int
)
Parameters

?[l

int

int
Return

?[l

Syntax 2

Input array (Data type can be byte, int, float, double, bool, string)
The starting index of sub-elements. (O .. (length of array)-1)
The number of element in sub-elements

The sub-elements from input arrays

If starting index <0, sub-elements equals empty array

If starting index >= length of input array, sub-elements equals empty array

If sub-element number <0, sub-elements starts at starting index to the last
element of input array

If the sum of starting index and the number of element exceeds the length of the
input array, sub-elements starts at starting index to the last element of input
array

?[] Array_SubElements(

20,
int
)
Note

Similar to Syntax 1, but the sub-elements starts at starting index to the last element of

input array

Array_SubElements(array[], 2) => Array_SubElements(array[], 2, maxlen)
? byte[] n ={100, 200, 30}

nl= Array_SubElements(n1,0) /n1= {100, 200, 30}
nl= Array_SubElements(n1,-1)/n1=
nl= Array_SubElements(n1,0,3) //nl1= {100, 200, 30}
nl = Array_SubElements(n1,1,3) //nl1= {200, 30}
nl = Array_SubElements(n1,2) /nl1= {30}
nl= Array_SubElements(n1,3,3) /nl1={

? int[] n= {1000, 2000, 3000}
nl = Array_SubElements(n1,0) //nl1= {1000, 2000, 3000}
nl = Array_SubElements(n1,-1) /ni1= {}
nl = Array_SubElements(n1,1,3) //nl1= {2000, 3000}
nl = Array_SubElements(n1,2) //n1= {3000}

? float]]n= {1.1, 2.2, 3.3}

nl = Array_SubElements
nl = Array_SubElements
nl = Array_SubElements
nl = Array_SubElements

n1,0) /n1= {1.1,2.2, 3.3}
n1,-1)/n1= {

n1,1,3) /inl= {2.2,3.3}
n1,2) /nl= {3.3}

o~~~ o~

Omron TM Collaborative Robot: TMScript Language Manual (1664) 98

e

? double[] n = {100, 200, 3.3, 2.2, 1.1}
nl= Array_SubEIements(m 0) //n1= {100,200, 3.3,2.2, 1.1}
nl = Array_SubElements(n1,-1)/ni1= {
nl= Array_SubElements(n1 1 3) /inl1= {200,3.3,2.2}
nl = Array_SubElements(n1,2) /nl1= {3.3,22 1.1}
? bool[] n= {true, false, true, true, true}
nl= Array_SubEIements(n1 0) //nl= {true, false, true, true, true}
nl= Array_SubElements(n1,-1)/n1= {
nl = Array_SubElements(n1,1,3) //nl= {false, true, true}
nl= Array_SubElements(n1 ,2) /I'nl = {true, true, true}
? string]n= {"123", "ABC", "456", "DEF"}
nl= Array_SubEIements(m 0) //n1= {"123","ABC", "456", "DEF"}
nl = Array_SubElements(n1,-1)/ni1= {
nl= Array_SubElements(n1 1 3) /inl= {"ABC", "456", "DEF"}
nl = Array_SubElements(n1,2) /nl1= {"456" "DEF"}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

e

4.33 ValueReverse()

Reverse the sequence of byte units inside input data (int 2 bytes or 4 bytes, float 4 bytes, double
8 bytes); or reverse the sequence of character of string.

Syntax 1
int ValueReverse(
int,
int
)
Parameters
int Input value
int The input value follows int32 or int16 format
0 int32 (Default)
1 int16. If the data does not meets int16 format, int32 will be applied instead.
2 int16. Forced to apply int16 format. For int32 data input, there could be
some bytes missing
Return
int The value formed from reversing the sequence of byte units inside the input
value. For Int32 data, reverse with 4 bytes. For int16 data, reverse with 2 bytes.
Note
inti=10000

value = ValueReverse(i, 0) // 10000=0x00002710 — 0x10270000// value = 270991360
value = ValueReverse(i, 1) /1 10000=0x2710 — 0x1027 Il value = 4135

i =100000 /1 int32 value

value = ValueReverse(i, 0) // 100000=0x000186A0 — 0xA0860100 // value = -1601830656
value = ValueReverse(i, 1) // 100000=0x000186A0 — 0xA0860100 // value = -1601830656
value = ValueReverse(i, 2) // 100000=0x000086A0 — 0xA0860000 // value = -24442

Syntax 2

int ValueReverse(
int

)

Parameters
int Input value

Note
Similar to Syntax1 with int32 input format
ValueReverse(int) => ValueReverse(int, 0)

Syntax 3
float ValueReverse(
float
)
Parameters
floatInput value
Return
float The value formed from reversing the sequence of byte units inside the input
value. For float data, reverse 4 bytes.
Note
float i = 40000

Omron TM Collaborative Robot: TMScript Language Manual (1664) 100

e

value = ValueReverse(i) // 40000=0x471C4000 — 0x00401C47 // value = 5.887616E-39

Syntax 4
double ValueReverse(
double
)
Parameters
double Input value
Return
double The value formed from reversing the sequence of byte units inside the input
value. For double data, reverse 8 bytes.
Note
double i = 80000
value = ValueReverse(i) //80000=0x40F3880000000000 — 0x000000000088F340
/] value = 4.43432217445369E-317

Syntax 5
string ValueReverse(
string
)
Parameters
string Input string
Return
string The value formed from reversing the sequence of characters of input string.
Note
string i = "ABCDEF"
value = ValueReverse(i) // value ="FEDCBA"

Syntax 6
int[] ValueReverse(
int],
int
)
Parameters
int[] Input array value
int The input value follows int32 or int16 format
0 int32 (Default)
1 int16. If the data does not meets int16 format, int32 will be applied instead.
2 int16. Forced to apply int16 format. For int32 data input, there could be
some bytes missing
Return
int[] The array formed from reversing the sequence of byte units inside every
element of the input array.
Note

int[] i = {10000, 20000, 60000, 80000}

value = ValueReverse(i, 0) / value = {270991360, 541982720, 1625948160, -2143813376}
value = ValueReverse(i, 1) Il value = {4135, 8270, 1625948160, -2143813376}

value = ValueReverse(i, 2) /l value = {4135, 8270, 24810, -32712}

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (1664) 101

e

int[] ValueReverse(

int[]
)
Parameters
int[] Input array value
Note
Similar to Syntax6 with input integer as int32
ValueReverse(int[]) => ValueReverse(int[], 0)
Syntax 8
float[] ValueReverse(
float(]
)
Parameters
float[] Input array value
Return
float[] The array formed from reversing the sequence of byte units inside every
element of the input array.
Note
float[] i = {10000, 20000}
value = ValueReverse(i) // value = {5.887614E-39, 5.933532E-39}
Syntax 9
double[] ValueReverse(
double(]
)
Parameters
double[] Input array value
Return
double[] The array formed from reversing the sequence of byte units inside every
element of the input array.
Note
double[] i = {10000, 20000}
value = ValueReverse(i) // value = {4.428251E-317,4.430275E-317}
Syntax 10
string[] ValueReverse(
string[]
)
Parameters
string[] Input string array
Return
string(] The string array formed from reversing the string inside every element of
the input string array.
Note

string[] i = {"ABCDEFG", "12345678"}
value = ValueReverse(i) // value = {"GFEDCBA", "87654321"}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 102

e

4.34 GetBytes()

Convert arbitrary data type to byte array.

Syntax 1
byte[] GetBytes(
?,
int
)
Parameters
? The input data. Data type can be int, float, double, bool, string or array.
int The input data as integers and floating points follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
The input data as string arrays separates with 0x00 0x00 for each element
0 Not separate with 0x00 0x00 (Default)
1 Separate with 0x00 0x00
Return

byte[] The byte array formed by input data

Syntax 2
byte[] GetBytes(
?
)
Note
Same as syntax 1 with Little Endian or Big Endian defaults to 0 such as returns based on
Little Endian
GetBytes(?) => GetBytes(?, 0)

? byte n=100
value = GetBytes(n) Il value = {0x64}
value = GetBytes(n, 0) // value = {Ox64}
value = GetBytes(n, 1) // value = {0x64}

? byte[] n = {100, 200} /I Convert every element of the array to byte, 1 byte as a single unit.
value = GetBytes(n) Il value = {0x64, 0xC8}
value = GetBytes(n, 0) // value = {0x64, 0xC8}
value = GetBytes(n, 1) // value = {0x64, 0xC8}

? int
value = GetBytes(123456) Il value = {0x40, OXE2, 0x01, 0x00}
value = GetBytes(123456, 0) // value = {0x40, OxE2, 0x01, 0x00}
value = GetBytes(0x123456, 0) Il value = {0x56, 0x34, 0x12, 0x00}
value = GetBytes(0x1234561, 1) // value = {0x01, 0x23, 0x45, 0x61}

? int[] n = {10000, 20000, 80000}

/I Convert every single element of the array to byte. For int32 data, works on 4 bytes sequentially.
value = GetBytes(n)
Il value = {0x10, 0x27, 0x00, 0x00, 0x20, 0x4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 103

e

value = GetBytes(n, 0)
/I value = {0x10, 0x27, 0x00, 0x00, 0x20, Ox4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}
value = GetBytes(n, 1)
/l value = {0x00, 0x00, 0x27, 0x10, 0x00, 0x00, Ox4E, 0x20, 0x00, 0x01, 0x38, 0x80}

? float
value = GetBytes(123.456, 0) // value = {0x79, OXE9, OxF6, 0x42}
float n = -1.2345
value = GetBytes(n, 0) Il value = {0x19, 0x04, Ox9E, OxBF}
value = GetBytes(n, 1) Il value = {OXBF, Ox9E, 0x04, 0x19}

2 float[] n = {1.23, 4.56, -7.89}
/I Convert every single element of the array to byte. For float data, works on 4 bytes sequentially.
value = GetBytes(n)
/I value = {OxA4, 0x70, 0x9D, 0x3F, 0x85, OXEB, 0x91, 0x40, OXE1, Ox7A, OXFC, OxCO0}
value = GetBytes(n, 0)
Il value = {OxA4, 0x70, 0x9D, 0x3F, 0x85, OXEB, 0x91, 0x40, OXE1, Ox7A, OXFC, OxCO0}
value = GetBytes(n, 1)
/I value = {Ox3F, 0x9D, 0x70, OxA4, 0x40, 0x91, OXEB, 0x85, 0xCO, OXFC, Ox7A, OXE1}

? double n=-1.2345
value = GetBytes(n, 0) //value = {0x8D, 0x97, Ox6E, 0x12, 0x83, 0xCO, OxF3, OxBF}
value = GetBytes(n, 1) //value = {OxBF, OxF3, 0xCO0, 0x83, 0x12, OX6E, 0x97, 0x8D}

2 double[] n = {1.23, -7.89}
/I Convert every single element of the array to byte. For double data, works on 8 bytes sequentially.
value = GetBytes(n)
/I value = {OXAE,0x47,0xE1,0x7A,0x14,0xAE,0xF3,0x3F,0x8F,0xC2,0xF5,0x28,0x5C,0x8F,0x 1F,0xCO0}
value = GetBytes(n, 0)
/I value = {OXAE,0x47,0xE1,0x7A,0x14,0xAE,0xF3,0x3F,0x8F,0xC2,0xF5,0x28,0x5C,0x8F,0x 1F,0xCO0}
value = GetBytes(n, 1)
/I value = {Ox3F,0xF3,0xAE,0x14,0x7A,0xE1,0x47,0xAE,0xC0,0x 1F,0x8F,0x5C,0x28,0xF5,0xC2,0x8F}

? bool flag = true /IGetBytes converts true to 1, and false to 0.
value = GetBytes(flag) Il value = {1}
value = GetBytes(flag, 0) Il value = {1}
/I Because bool is 1 byte, Endian Parameters are not sufficient.
value = GetBytes(flag, 1) Il value = {1}

? bool[] flag = {true, false, true, false, false, true, true}

value = GetBytes(flag) /lvalue ={1,0, 1,0,0, 1, 1}
value = GetBytes(flag, 0) /I value = {1, 0, 1,0, 0, 1, 1}
value = GetBytes(flag, 1) /lvalue ={1,0, 1,0,0, 1, 1}

? string n = "ABCDEFG" I/ string to encode in UTF8
value = GetBytes(n) Il value = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47}
value = GetBytes(n, 0) //value = {Ox41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47}
/I Endian Parameters not valid
value = GetBytes(n, 1) //value = {Ox41, 0x42, 0x43, 0x44, 0x45, 0x46, Ox47}
/I Endian Parameters not valid

Omron TM Collaborative Robot: TMScript Language Manual (1664) 104

e

? string[] n = {"ABC", "DEF", "ZA#%zs A" }

value =
/I value =

value =
/I value =

GetBytes(n)

{0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0XxE4,0xBA,0xBA}

GetBytes(n, 1)

{0x41, 0x42, 0x43, 0x00, 0x00, 0x44, 0x45, 0x46, 0x00, 0x00,
0xE9,0x81,0x94,0xE6,0x98,0x8E,0XE6,0xA9,0x9F,0xXE5,0x99,0xA8,0xE4,0xBA,0XBA}

*Conversion of string[] to byte[] can maintain the original contents without separation bytes, but it is unable
to turn byte[] back to string[] effectively.
*|t is effective to turn byte[] back to string[] by inserting separation bytes (2 consecutive 0x00s) between the

elements
0x00.

Syntax 3

in the array, but it is possible to find conversion errors if the value of the string come with 0x00

Convert integer (int type) to byte array.

byte[] GetBytes(

int,
int,
int
)
Parameters
int The input integer (int type)
int The input value follows Little Endian or Big Endian
0 Little Endian (Default)
1 Big Endian
int The input integer value’s data type is int32 or int16
0 int32 (Default)
1 int16. If the data does not meets int16 format, int32 will be applied instead.
2 int16. Forced to apply int16 format. For int32 data input, there could be
some bytes missing.
Return
byte[] The byte array formed by input integer. For int32 data, convert with 4 bytes. For
int16 data, convert with 2 bytes.
Note
value = GetBytes(12345, 0, 0) /l value = {0x39, 0x30, 0x00, 0x00}
value = GetBytes(12345, 0, 1) Il value = {0x39, 0x30}
value = GetBytes(12345, 0, 2) Il value = {0x39, 0x30}
value = GetBytes(0x123456, 0, 0) // value = {0x56, 0x34, 0x12, 0x00}
value = GetBytes(0x123456, 0, 1) // value = {0x56, 0x34, 0x12, 0x00}
value = GetBytes(0x123456, 0, 2) // value = {0x56, 0x34} // bytes missing
value = GetBytes(0x1234561, 1, 0) // value = {0x01, 0x23, 0x45, Ox61}
value = GetBytes(0x1234561, 1, 1) // value = {0x01, 0x23, 0x45, 0x61}
value = GetBytes(0x1234561, 1, 2) // value = {0x45, 0x61} // bytes missing
Syntax 4

Convert the integer array (int[] type) to byte array
byte[] GetBytes(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 105

e

int[] The input integer array (int[] type)

int],

int,

int
)
Parameters

Int

int
Return

byte[]
Note

The input integer array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

The input integer array’s data type is int32 or int16

0 int32 (Default)

1 int16. If the data does not meets int16 format, int32 will be applied instead
2 int16. Forced to apply int16 format. For int32 data input, there could be
some bytes missing.

The byte array formed by input integer array. Every element is converted
independently and forms an array. For int32 data, convert with 4 bytes. For int16
data, convert with 2 bytes.

i ={10000, 20000, 80000}
value = GetBytes(i, 0, 0)

/I value = {0x10, 0x27, 0x00, 0x00, 0x20, Ox4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}
value = GetBytes(i, 0, 1) // value = {0x10, 0x27, 0x20, Ox4E, 0x80, 0x38, 0x01, 0x00}
value = GetBytes(i, 0, 2) // value = {0x10, 0x27, 0x20, Ox4E, 0x80, 0x38} // bytes missing
value = GetBytes(i, 1, 0)

/I value = {0x00, 0x00, 0x27, 0x10, 0x00, 0x00, Ox4E, 0x20, 0x00, 0x01, 0x38, 0x80}
value = GetBytes(i, 1, 1) // value = {0x27, 0x10, Ox4E, 0x20, 0x00, 0x01, 0x38, 0x80}
value = GetBytes(i, 1, 2) // value = {0x27, 0x10, Ox4E, 0x20, 0x38, 0x80} // bytes missing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 106

e

4.35 GetString()

Convert arbitrary data type to string

Syntax 1
string GetString(
?,
int,
int
)
Parameters
? The input data. Data type can be int, float, double, bool, string or array.
int When the output string’s notation is decimal, hexadecimal, or binary, the output
string value is in decimal, hexadecimal, or binary.
10 decimal, such as 123
16 hexadecimal, such as 0x7B
2 binary, such as 0b01111011
When the input value is a string array, the output string value is in standard
string format or not.
0 or 10 Automatic detection. If the values in the string come with double
quotations or commas, it converse to standard string format.
1 Mandatory conversion to standard string format
Other No conversion
int The output string format
When the output is in decimal
0 Never use scientific notation
1 Use scientific notation when needed.
When the output is in hexadecimal or binary
0 Fill up digits. Add prefix Ox or Ob, e.g. 0OxOC or 0b00001100
1 Fill up digits. No prefix 0x or Ob, e.g. 0C or 00001100
2 Don’t fill up digits. Add prefix Ox or Ob, e.g. OxC or 0b1100
3 Don’t fill up digits. No prefix Ox or Ob, e.g. C or 1100
Return
string String converted from input data. If the input data cannot be converted, returns
empty string.
If the input data is array, every element is converted respectively, and returned
in"{,,}" format
Syntax 2
string GetString(
?,
int
)
Note

Similar to Syntax1 with filling up digits and adding prefix Ox or Ob.
GetString(?, 16) => GetString(?, 16, 0)

Syntax 3

string GetString(
?

Omron TM Collaborative Robot: TMScript Language Manual (1664) 107

e

)
Note

Same as syntax 1. The output string’s notation defaults to 10 and the output string format
defaults to 0.

GetString(?) => GetString(?, 10, 0)

GetString(?) => GetString(?, 0, 0) /I supposed ? is a string array

? byten=123
value = GetString(n) Il value = "123"
value = GetString(n, 10) //value ="123"
value = GetString(n, 16) // value = "0x7B"
value = GetString(n, 2) //value ="0b01111011"
value = GetString(n, 16, 3)/ value = "7B"
value = GetString(n, 2, 2) // value ="0b1111011"

? byte[] n ={12, 34, 56}
value = GetString(n) Il value = "{12,34,56}"
value = GetString(n, 10) // value = "{12,34,56}"
value = GetString(n, 16) // value = "{0x0C,0x22,0x38}"
value = GetString(n, 2) // value = "{0b00001100,0b00100010,0b00111000}"
value = GetString(n, 16, 3)/ value = "{C,22,38}"
value = GetString(n, 2, 2) // value = "{0b1100,0b100010,0b111000}"

? intn=1234
value = GetString(n) Il value = "1234"
value = GetString(n, 10) // value = "1234"
value = GetString(n, 16) // value = "0x000004D2"
value = GetString(n, 2) // value = "0b00000000000000000000010011010010"
value = GetString(n, 16, 3)/ value = "4D2"
value = GetString(n, 2, 2) // value = "0b10011010010"

? int[] n={123, 345, -123, -456}

value = GetString(n) Il value = "{123,345,-123,-456}"

value = GetString(n, 10) // value = "{123,345,-123,-456}"

value = GetString(n, 16) // value = "{0x0000007B,0x00000159,0xFFFFFF85,0xFFFFFE38}"

value = GetString(n, 2) // value = "{0b00000000000000000000000001111011,
0b00000000000000000000000101011001,
0b11111111111111111111111110000101,
0b11111111111111111111111000111000}"

value = GetString(n, 16, 3)/ value = "{7B,159,FFFFFF85,FFFFFE38}"

value = GetString(n, 2, 2) // value = "{0b1111011,
0b101011001,
0b11111111111111111111111110000101,
0b11111111111111111111111000111000}"

? floatn=12.34
value = GetString(n) /l value = "12.34"
value = GetString(n, 10) // value = "12.34"
value = GetString(n, 16) // value = "0x414570A4"
value = GetString(n, 2) // value = "0b01000001010001010111000010100100"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 108

e

value = GetString(n, 16, 3)/ value = "414570A4"
value = GetString(n, 2, 2) // value = "0b1000001010001010111000010100100"

? float[] n = {123.4, 345.6, -123.4, -456.7}
value = GetString(n) /I value = "{123.4,345.6,-123.4,-456.7}"
value = GetString(n, 10) //value = "{123.4,345.6,-123.4,-456.7}"
value = GetString(n, 16) // value = "{0x42F6CCCD,0x43ACCCCD,0xC2F6CCCD,0xC3E4599A}"
value = GetString(n, 16, 3)/ value = "{42F6CCCD,43ACCCCD,C2F6CCCD,C3E4599A}"

? double n=12.34
value = GetString(n) Il value = "12.34"
value = GetString(n, 10) //value ="12.34"
value = GetString(n, 16) // value = "0x4028AE147AE147AE"
value = GetString(n, 16, 3)// value = "4028AE147AE147AE"

? double[] n ={123.45, 345.67, -123.48, -456.79}
value = GetString(n) Il value = "{123.45,345.67,-123.48,-456.79}"
value = GetString(n, 10) // value = "{123.45,345.67,-123.48,-456.79}"
value = GetString(n, 16) // value = "{0x405EDCCCCCCCCCCD,0x40759AB851EB851F,
OxCO5EDEB851EB851F,0xC07C8CA3D70A3D71}"
value = GetString(n, 16, 3) Il value = "{405EDCCCCCCCCCCD,40759AB851EB851F,
CO5EDEB851EB851F,C07C8CA3D70A3D71}"

? bool n = true
value = GetString(n) Il value = "true"
value = GetString(n, 16) // value = "true"
value = GetString(n, 2) // value = "true"
value = GetString(n, 16, 3)// value = "true"

? bool[] n = {true, false, true, false, false, true}
value = GetString(n) Il value = "{true,false,true,false,false,true}"
value = GetString(n, 16) // value = "{true false,true,false,false,true}"
value = GetString(n, 2) // value = "{true false,true false,false,true}"
value = GetString(n, 16, 3)// value = "{true false,true false,false,true}"

? string n ="1234567890"
value = GetString(n) Il value = "1234567890"
value = GetString(n, 16) // value = "1234567890"
value = GetString(n, 2) // value = "1234567890"
value = GetString(n, 16, 3)// value = "1234567890"

? string[] n = {"123.45", "345.67", "-12""3.48", "-45A6.79"}

value = GetString(n) Il value = "{123.45,345.67,-12""3.48,-45A6.79}"

value = GetString(n, 1) //value = "{"123.45","345.67","-12""3.48","-45A6.79"}"

value = GetString(n, 2) // value = "{123.45,345.67,-12"3.48,-45A6.79}" /1 -12"3.48 displayed
as -12"3.48

value = GetString(n, 16, 3) Il value = "{123.45,345.67,-12""3.48,-45A6.79}"
value = GetString(n, 10, 3) Il value = "{123.45,345.67,"-12""3.48",-45A6.79}"
/luse automatic detection as the default

Omron TM Collaborative Robot: TMScript Language Manual (1664) 109

e

Syntax 4
string GetString(
?,
string,
int,
int
)
Parameters
? The input data. Data type can be int, float, double, bool, string or array.
string Separator for output string (Only effective to array input)
int When the output string’s notation is decimal, hexadecimal, or binary, the output
string value is in decimal, hexadecimal, or binary.
10 decimal, such as 123
16 hexadecimal, such as 0x7B
2 binary, such as 0b01111011
When the input value is a string array, the output string value is in standard
string format or not.
0 or 10 Automatic detection. If the values in the string come with double
quotations or separation symbols, it converse to standard string format.
1 Mandatory conversion to standard string format
Other No conversion
int The output string format
When the output is in decimal
0 Never use scientific notation
1 Use scientific notation when needed.
When the output is in hexadecimal or binary
0 Fill up digits. Add prefix Ox or Ob, e.g. 0xOC or 0b00001100
1 Fill up digits. No prefix Ox or Ob, e.g. 0C or 00001100
2 Don’t fill up digits. Add prefix Ox or Ob, e.g. 0xC or 0b1100
3 Don’t fill up digits. No prefix Ox or Ob, e.g. C or 1100
Return
string String converted from input data. If the input data cannot be converted, returns
empty string.
If the input data is array, every element is converted respectively, and returned
as a string with the assigned separator
Syntax 5
string GetString(
?,
string,
int
)
Note

Same as Syntax 4 with filling up digits and adding prefix Ox or Ob
GetString(?, str, 16) => GetString(?, str, 16, 0)

Syntax 6

string GetString(
2

string

Omron TM Collaborative Robot: TMScript Language Manual (1664) 110

e

)

Note

Same as Syntax 4. The output string’s notation defaults to 10 and the output string format

defaults to 0.

GetString(?) => GetString(?, 10, 0)

GetString(?) => GetString(?, 0, 0) /I supposed ? is a string array
? byten=123
value = GetString(n) Il value = "123"
value = GetString(n, ";", 10) // value = "123"
value = GetString(n, "-", 16) // value = "0x7B"
value = GetString(n, "#", 2) //value ="0b01111011"
value = GetString(n, ",", 16, 3) // value ="7B"
value = GetString(n, ",", 2, 2) / value = "0b1111011"
* Separator is effective to array input only.
? byte[] n={12, 34, 56}
value = GetString(n, "-") Il value = "12-34-56"
value = GetString(n, Ctrl("\r\n"), 10)// value = "12\uU0DOA34\uODOA56"
value = GetString(n, newline, 16) // value = "0x0C\uODOAOx22\uOD0AOX38"
value = GetString(n, NewLine, 2) // value =
"0b00001100\u0DOAOb00100010\u0DOAOH00111000"
value = GetString(n, "-", 16, 3) Il value = "C-22-38"
value = GetString(n, "-", 2, 2) // value = "0b1100-0b100010-0b111000"
* \UODOA is Newline control character, not string value.
? string[] n = {"123.45", "345.67", "-12""3.48", "-45A6.79"}
value = GetString(n, "-") Il value = "123.45-345.67-"-12""3.48"-"-45A6.79""
value = GetString(n, "-", 1) Il value = ""123.45"-"345.67"-"-12""3.48"-"-45A6.79""
value = GetString(n, "-", 2) Il value = "123.45-345.67--12"3.48--45A6.79"
I/l Troubled for identifying the separation symbols and the negative signs.
Syntax 7
string GetString(
?,
string,
string,
int,
int
)
Parameters
? The input data. Data type can be int, float, double, bool, string or array.
string The index of the output string for array input. (Only effective to ? as array type

data)
* Support numeric format strings
string Separator for output string (Only effective to array input)
int The output string’s notation is decimal, hexadecimal or binary (Can be only
applied to hexadecimal or binary number)
10 decimal, such as 123
16 hexadecimal, such as 0x7B

Omron TM Collaborative Robot: TMScript Language Manual (1664) 111

e

int

Return
string
empty string.

Syntax 8

2 binary, such as 0b01111011
String’s notation

123 decimal

Ox7F hexadecimal

Ob101 binary

When the input value is a string array, the output string value is in standard

string format or not.

0 or 10 Automatic detection. If the values in the string come with double
quotations or separation symbols, it converse to standard string format.

1 Mandatory conversion to standard string format

Other No conversion

The output string format

When the output is in decimal

0 Never use scientific notation

1 Use scientific notation when needed.

When the output is in hexadecimal or binary

0 Fill up digits. Add prefix Ox or Ob, e.g. 0OxOC or 0b00001100
1 Fill up digits. No prefix Ox or Ob, e.g. 0C or 00001100

2 Don’t fill up digits. Add prefix Ox or Ob, e.g. 0xC or 0b1100
3 Don’t fill up digits. No prefix Ox or Ob, e.g. C or 1100

Converse the value to the string to return. If unable to converse, it returns an

If the type is array, elements in the array will be conversed to strings with
prefixes of the element index value format string separated by separation
symbols to return.

There will be no braces.

string GetString(

?,
string,
string,
int

)

Note

Similar to Syntax7 with filling up digits and adding prefix.
GetString(?, str, str, 16) => GetString(?, str, str, 16, 0)

Syntax 9

string GetString(

I)

string,
string

)
Note

Similar to Syntax7 with decimal output, with filling up digits and adding prefix.
GetString(?, str, str) => GetString(?, str, str, 10, 0)

? byten=123
value = GetString(n) Il value = "123"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 112

e,

value = GetString(n, "[0]=", ";", 10) // value = "123"
value = GetString(n, "[0]=", "-", 16) // value = "0x7B"
value = GetString(n, "[0]=", "#", 2) // value ="0b01111011"
* Index and sepapator are only effective to array input.
? byte[] n={12, 34, 56}
value = GetString(n, "[0]=", "-") /l value = "[0]=12-[1]=34-[2]=56"
value = GetString(n, "[0]=", Ctrl("\\n"), 10) // value = "[0]=12\uODOA[1]=34\uUODOA[2]=56"
value = GetString(n, "[0]=", newline, 16)// value = "[0]=0x0C\uODOA[1]=0x22\uOD0OA[2]=0x38"
value = GetString(n, "[0]=", "-", 16, 3) // value = "[0]=C-[1]=22-[2]=38"
value = GetString(n, "[0]=", "-", 2, 2) /l value = "[0]=0b1100-[1]=0b100010-[2]=0b111000"
* "[0]=" Support numeric format strings
* \UODOA is Newline control character, not string value.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 113

e

4.36 GetToken()

Retrieve a substring from input string, or the sub-array from the input byte[] array

Syntax 1

string GetToken(
string,
string,
string,
int,
int

)

Parameters

string Input string
string Prefix. The leading element of the substring
string Suffix. The trailing element of the substring

int The number of the matched substtring to retrieve
>=1 Retrieve the n" matched substring
-1 Retrieve the last matched substring
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix.
(default)
1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 1%t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 15t matched in the start of the input string, and remove the prefix and the suffix.
Return

string String formed by part of the input string
If the prefix and suffix are empty strings, returns the input string
If the number of the matched substrings <=0 or larger than the number of the
total matched substrings, returns empty string
If the remove option is 2 or 3, the first match retrieved must be at the start of the
input string; otherwise, it returns an empty string.

Syntax 2

string GetToken(
string,
string,
string,
int

)

Note
Similar to Syntax1 with reserving prefix and suffix.
GetToken(str,str,str,1) => GetToken(str,str,str,1,0)

Syntax 3
string GetToken(
string,
string,
string

)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 114

e

Note
Similar to Syntax1 with returning the first occurrence, and reserving prefix and suffix.
GetToken(str,str,str) => GetToken(str,str,str,1,0)
string n = "$abcd$1234$ABCDS$"
value = GetToken(n, "™, ", 0)
value = GetToken(n, "$", "$")
value = GetToken(n, "$", "
value = GetToken(n,
value = GetToken(n,
value = GetToken(n,
value = GetToken(n,

/I value = "$abcd$1234$ABCD$"
Il value = "$abcd$"

$",0) /value=""

$". 1) //value = "$abcd$"
" "$" 2) //value = "$ABCDS$"
" g 3) I value =

$

$

$",

" "$", -1, 1) // value = "ABCD"
1, 1) 1/ value = "abcd"
".2,1) /lvalue ="ABCD"

1) Il value = "$abcd"

value = GetToken(n,

(
(n,"$
(n,"$
(n,"$
(n,"$
(n,"$
value = GetToken(n, "$", "
value = GetToken(n, "$
(n,"$
(n,"$
(n,"$
(n, "$",
(
(
(

value = GetToken(n, "$", "", 2) /I value = "$1234"
value = GetToken(n, "$", ", 3) /I value = "$ABCD"
value = GetToken(n, "$", "", 4) Il value = "$"
value = GetToken(n, ™ $" 1) /l value = "$"

value = GetToken(n, "™, "$", 2)
value = GetToken(n, ", "$", 3) /l value = "1234$"
value = GetToken(n, "™, "$", 4) /l value = "ABCD$"
string n = "$abcd$1234$ABCDS$" + Ctrl("\r\n") + "56\r\n78%"
value = GetToken(n, "$", Ctrl("\\n"), 1) // value = "$abcd$1234$ABCDS\UODOA"
value = GetToken(n, "$", newline, 2) /l value ="
value = GetToken(n, "$", NewLine, 1, 1)// value = "abcd1234ABCDS$"
/I Remove prefix and suffix
value = GetToken(n, Ctrl("\r\n"), "$", 1) // value = "\UODOA56\\n78$"

/I value = "abcd$"

value = GetToken(n, newline, "$", 2)
value = GetToken(n, NewLine, "$", 1, 1)// value = "56\\n78"
* \UODOA is Newline control character, not string value.

string n = "#abcd$1234#ABCD$5678#"

value = GetToken(n, "™, ", 0) Il value = "#abcd$1234#ABCD$5678#"
value = GetToken(n, "$", "$") // value = "$1234#ABCDS$"
value = GetToken(n, "$", "$",0) //value =""

value = GetToken(n, "$", "$", 1) // value = "$1234#ABCD$
value = GetToken(n, "$", "$",2) //value =""

value = GetToken(n, "$", "$",3) //value=""

value = GetToken(n, "$", "$", -1, 0) // value = "$1234#ABCDS$"
value = GetToken(n, "$", "$", -1, 1) // value = "1234#ABCD"
value = GetToken(n, "$", "$", 1, 1) // value = "1234#ABCD"
value = GetToken(n, "$", "$", 2, 1) //value =""

value = GetToken(n, "$", ", 1) I value = "$1234#ABCD"
value = GetToken(n, "$", ", 2) / value = "$5678#"

value = GetToken(n, "$", ", 3) /l value ="

value = GetToken(n, "$", ", 4) Il value ="

value = GetToken(n, ", "$", 1) / value = "#abcd$"

value = GetToken(n, ", "$", 2) /l value = "1234#ABCD$"
value = GetToken(n, ", "$", 3) Il value ="

value = GetToken(n, ", "$", 4) Il value ="

/l value ="

Omron TM Collaborative Robot: TMScript Language Manual (1664)

115

e

value = GetToken(n, "$", "$", 1, 2) //value =""
/I The string matched $ not in the start of the input string.
value = GetToken(n, "$", "$", -1, 2) // value ="
/I The string matched $ not in the start of the input string.
value = GetToken(n, "#", ", 1, 3) //value = "abcd$1234"
value = GetToken(n, "#", "™, 1, 2) // value = "#abcd$1234"
value = GetToken(n, "#", ", 2, 2) //value = "#ABCD$5678"
value = GetToken(n, "#", ", 3,2) //value ="#"
value = GetToken(n, "#","", 4, 2) //value=""
value = GetToken(n, "#", "™, -1, 2) //value ="#"
value = GetToken(n, "#","", -1, 3) //value =""
value = GetToken(n, "#", "$", 1, 2) // value = "#abcd$"
value = GetToken(n, "#", "$", 1, 3) // value = "abcd"

Syntax 4

string GetToken(
string,
bytef],
byte[],
int,
int

)

Parameters

string Input string
byte[] Prefix. The leading element of the substring, byte[] type
byte[] Suffix. The trailing element of the substring, byte[] type

int The number of the matched substtring to retrieve
>=1 Retrieve the n" matched substring
-1 Retrieve the last matched substring
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix.
(default)
1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 1%t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 15t matched in the start of the input string, and remove the prefix and the suffix.
Return

string String formed by part of the input string
If the prefix and suffix are empty strings, returns the input string
If the number of the matched substrings <=0 or larger than the number of the
totol matached substrings, returns empty string
If the remove option is 2 or 3, the first match retrieved must be at the start of the
input string; otherwise, it returns an empty string.

Syntax 5
string GetToken(
string,
bytef],
byte[],
int

)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 116

e

Note
Similar to Syntax4 with reserving prefix and suffix
GetToken(str,byte[],byte[],1) => GetToken(str,byte[],byte[],1,0)

Syntax 6
string GetToken(
string,
bytef],
byte[]
)
Note

Similar to Syntax 4 with the first occurrence and reserving prefix and suffix

GetToken(str,byte[],byte[]) => GetToken(str,byte[],byte[],1,0)
string n = "$abcd$1234$ABCDS$"

byte[] bb0 = {}, bb1 ={0x24} //0x24is $

value = GetToken(n, bb0, bb0, 0) // value = "$abcd$1234$ABCDS$"
value = GetToken(n, bb1, bb1)// value = "$abcd$"
value = GetToken(n, bb1, bb1, 0) // value ="
value = GetToken(n, bb1, bb1, 1) // value = "$abcd$"
value = GetToken(n, bb1, bb1, 2) //value = "$ABCD$"
value = GetToken(n, bb1, bb1, 3) //value ="
value = GetToken(n, bb1, bb1, 1, 1) // value = "abcd"
value = GetToken(n, bb1, bb1, 2, 1) // value = "ABCD"
value = GetToken(n, bb1, bb0, 1) // value = "$abcd"
value = GetToken(n, bb1, bb0, 2) // value = "$1234"
value = GetToken(n, bb1, bb0, 3) // value = "$ABCD"
value = GetToken(n, bb1, bb0, 4) //value ="$"
value = GetToken(n, bb0, bb1, 1) //value ="$"
value = GetToken(n, bb0, bb1, 2) // value = "abcd$"
value = GetToken(n, bb0, bb1, 3) // value = "1234$"
value = GetToken(n, bb0, bb1, 4) //value = "ABCD$"

string n = "$abcd$1234$ABCDS$" + Ctrl("\r\n") + "56\r\n78%"

byte[] bb0 = {0x0D,0x0A}, bb1 = {0x24} // 0x24is $ /1 0x0OD,0x0A is \uODOA
value = GetToken(n, bb1, bb0, 1) // value = "$abcd$1234$ABCD$\UODOA"

value = GetToken(n, bb1, bb0, 2) // value ="

value = GetToken(n, bb1, bb0, 1, 1) /I value = "abcd1234ABCD$"

/I Removing the prefix and the suffix
value = GetToken(n, bb0, bb1, 1) //value = "\UODOA56\r\n78$"
value = GetToken(n, bb0, bb1, 2) //value ="
value = GetToken(n, bb0, bb1, 1, 1) /l value = "56\\n78"

* \UODOA is the Newline control character, not the string content.

Syntax 7
byte[] GetToken(
byte[],
string,
string,
int,
int

Omron TM Collaborative Robot: TMScript Language Manual (1664)

117

e

)
Parameters
byte[] The input byte[]
string Prefix. The leading element of the output byte[], byte[] type
string Suffix. The trailing element of the output byte[], byte[] type
int The number of the matched substring to retrieve
>=1 Retrieve the n'" matched substring
-1 Retrieve the last matched substring
int Remove options
0 The 1%t matched not in the start of the input string, and not remove the prefix and the suffix.
(default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 15t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.
Return
byte[] The byte[] formed from part of the input byte][]
If the prefix and suffix are empty, returns the input array
If the number of the matched substrings <=0 or larger than the number of the
total matched substrings, returns empty array
If the remove option is 2 or 3, the first match retrieved must be at the start of the
input string; otherwise, it returns an empty string.
Syntax 8
byte[] GetToken(
bytef],
string,
string,
int
)
Note
Similar to Syntax7 with reserving prefix and suffix
GetToken(byte[],str,str,1) => GetToken(byte][],str,str,1,0)
Syntax 9
byte[] GetToken(
byte[],
string,
string
)
Note

Similar to Syntax7 with returning the first occurrence, and reserving prefix and suffix.
GetToken(byte[],str,str) => GetToken(byte[],str,str,1,0)

string s ="$abcd$1234$ABCD$"

byte[] n = GetBytes(s)

value = GetToken(n, "™, "", 0)
/I value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}
value = GetToken(n, "$", "$") I/ value = {0x24,0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, "$", "$", 0) /l value = {}
value = GetToken(n, "$", "$", 1) //value = {0x24,0x61,0x62,0x63,0x64,0x24}
value = GetToken(n, "$", "$", 2) //value = {0x24,0x41,0x42,0x43,0x44,0x24}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 118

e

value = GetToken(n, "$", "$", 1, 1) //value = {0x61,0x62,0x63,0x64}
value = GetToken(n, "$", "$", 2, 1) // value = {0x41,0x42,0x43,0x44}

value = GetToken(n, "$", ", 1) / value = {0x24,0x61,0x62,0x63,0x64}
value = GetToken(n, "$", ", 2) / value = {0x24,0x31,0x32,0x33,0x34}
value = GetToken(n, "$", ", 3) I value = {0x24,0x41,0x42,0x43,0x44}
value = GetToken(n, "$", ", 4) / value = {0x24}

value = GetToken(n, ", "$", 1) / value = {Ox24}

value = GetToken(n, ", "$", 2) / value = {0x61,0x62,0x63,0x64,0x24}
value = GetToken(n, ", "$", 3) / value = {0x31,0x32,0x33,0x34,0x24}
value = GetToken(n, ", "$", 4) /l value = {Ox41,0x42,0x43,0x44,0x24}

string s ="$abcd$1234$ABCD$" + Ctrl("\r\n") + "56\r\n78%"
byte[] n = GetBytes(s)
value = GetToken(n, "$", Ctrl("\r\n"), 1)
/I value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24,0x0D,0x0A}
value = GetToken(n, "$", Ctri("\r\n"), 1, 1)
/I value = {0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}
/I Removing prefix and suffix
value = GetToken(n, Ctrl("\r\n"), "$", 1)
[l value = {0x0D,0x0A,0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38,0x24}
value = GetToken(n, Ctrl("\r\n"), "$", 1, 1)
Il value = {0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38}

Syntax 10

byte[] GetToken(
byte[],
byte[],
byte[],
int,
int

)

Parameters

byte[] The input byte[] array
byte[] Prefix. The leading element of the output byte[]
byte[] Suffix. The trailing element of the output byte][]

int The number of the matched substring to retrieve

>=1 Retrieve the n" matched substring

-1 Retrieve the last matched substring
int Remove options

0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.

2 The 18t matched in the start of the input string, and not remove the prefix and the suffix.

3 The 15t matched in the start of the input string, and remove the prefix and the suffix.
Return

byte[] The byte[] formed from part of the input byte[]
If the prefix and suffix are empty, returns the input array
If the number of the matched substrings <=0 or larger than the number of total
matched substrings, returns empty array
If the remove option is 2 or 3, the first match retrieved must be at the start of the
input string; otherwise, it returns an empty string.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 119

e

Syntax 11

byte[] GetToken(
byte(],
bytef],
bytef],
int

)

Note
Similar to Syntax10 with reserving the prefix and suffix
GetToken(byte[],byte[],byte[],1) => GetToken(byte[],byte[],byte[],1,0)

Syntax 12
byte[] GetToken(
byte[],
byte[],
byte[]
)
Note
Similar to Syntax10 with returning the first occurrence, and reserving prefix and suffix.
GetToken(byte[],byte[],byte[]) => GetToken(byte[],byte[],byte[],1,0)
string s ="$abcd$1234$ABCDS$"
byte[] n = GetBytes(s)
byte[] bb0 = {}, bb1 = {0x24} /o0x24is$
value = GetToken(n, bb0, bb0, 0)
/I value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}
value = GetToken(n, bb1, bb1)// value = {0x24,0x61,0x62,0x63,0x64,0x24}
value = GetToken(n, bb1, bb1, 0) //value=¢
value = GetToken(n, bb1, bb1, 1) // value = {0x24,0x61,0x62,0x63,0x64,0x24}
value = GetToken(n, bb1, bb1, 2) // value = {0x24,0x41,0x42,0x43,0x44,0x24}
value = GetToken(n, bb1, bb1, 1, 1)/ value = {0x61,0x62,0x63,0x64}
value = GetToken(n, bb1, bb1, 2, 1)/ value = {0x41,0x42,0x43,0x44}
value = GetToken(n, bb1, bb0, 1) // value = {0x24,0x61,0x62,0x63,0x64}
value = GetToken(n, bb1, bb0, 2) // value = {0x24,0x31,0x32,0x33,0x34}
value = GetToken(n, bb1, bb0, 3) // value = {0x24,0x41,0x42,0x43,0x44}
value = GetToken(n, bb0, bb1, 1) // value = {0x24}
value = GetToken(n, bb0, bb1, 2) // value = {0x61,0x62,0x63,0x64,0x24}
value = GetToken(n, bb0, bb1, 3) 7/ value = {0x31,0x32,0x33,0x34,0x24}
string s ="$abcd$1234$ABCDS$" + Ctrl("\r\n") + "56\r\n78%"
byte[] n = GetBytes(s)
byte[] bb0 = {O0x0D,0x0A}, bb1 = {0x24}
value = GetToken(n, bb1, bb0, 1)
/I value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24,0x0D,0x0A}
value = GetToken(n, bb1, bb0, 1, 1)
/I value = {Ox61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}
/I Remove prefix and suffix
value = GetToken(n, bb0, bb1, 1)
/I value = {0x0D,0x0A,0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38,0x24}
value = GetToken(n, bb0, bb1, 1, 1)
[l value = {0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 120

Omron TM Collaborative Robot: TMScript Language Manual (1664) 121

e,

4.37 GetAllTokens()
Retrieve all the substrings from input string, which meets the given condition

Syntax 1

string[] GetAllTokens(
string,
string,
string,
int

)

Parameters
string Input string
string Prefix. The leading element of the substring
string Suffix. The trailing element of the substring

int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix.
(default)
1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 1%t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 15t matched in the start of the input string, and remove the prefix and the suffix.
Return
string(] String array formed from retrieving all the substrings from input string

If the prefix and suffix are empty, returns the input array
If the remove option is 2 or 3, the first match retrieved must be at the start
of the input string; otherwise, it returns an empty string.

Syntax 2

string[] GetAllTokens(
string,
string,
string

)

Note
Similar to Syntax1 with reserving prefix and suffix
GetAllTokens(str,str,str) => GetAllTokens(str,str,str,0)
string n = "$abcd$1234$ABCDS$"

value = GetAllTokens(n, ", ") Il value = {"$abcd$1234$ABCDS$"}

value = GetAllTokens(n, "$" "$") / value = {"$abcd$", "$SABCD$"}

value = GetAllTokens(n, "$", "$", 1)/ value = {"abcd", "ABCD"}

value = GetAllTokens(n, "$", ™) Il value = {"$abcd", "$1234", "$ABCD", "$"}
value = GetAllTokens(n, ", "$", 1) Il value = {"", "abcd", "1234", "ABCD"}

string n = "#abcd$1234#ABCD$567 8#"
value = GetAllTokens(n, "™, ", 0) // value = {"#abcd$1234#ABCD$5678#"}
value = GetAllTokens(n, "$", ", 0) // value = {"$1234#ABCD","$5678#"}
value = GetAllTokens(n, $ ", 1) Il value = {"1234#ABCD","5678#"}
value = GetAllTokens(n, "$", "™, 2) // value = {}

$

/I $is not in the start of the input string. Returns an empty array.
", ", 3) /lvalue = {}

value = GetAllTokens(n,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 122

e

/I'$ is not in the start of the input string. Returns an empty array.
value = GetAllTokens(n, "$", "$", 0)// value = {"$1234#ABCD$"}
value = GetAllTokens(n, "$", "$", 1)/ value = {"1234#ABCD"}
value = GetAllTokens(n, "$", "$", 2)// value = {}
$

/I'$ is not in the start of the input string. Returns an empty array.
" "$", 3)/ value = {}

/I'$ is not in the start of the input string. Returns an empty array.
"#", "™, 0) //value = {"#abcd$1234", "#ABCD$5678", "#"}

value = GetAllTokens(n,

value = GetAllTokens
value = GetAllTokens
value = GetAllTokens
value = GetAllTokens
value = GetAllTokens
value = GetAllTokens
value = GetAllTokens
value = GetAllTokens(n, "#", "$", 3)// value = {"abcd", "ABCD"}

(

(

(

(

(

(n, "#", "$", 1)/ value = {"abcd", "ABCD"}

(

(:
value = GetAllTokens(n, "™, "$", 0) // value = {"#abcd$", "1234#ABCDS$"}

(

(

(

(

(

(

(

n,
n,
n,
n,
n, "#", "$", 0)/ value = {"#abcd$", "#ABCD$"}
n,
n, "#", "$", 2)// value = {"#abcd$", "#ABCD$"}
n,

value = GetAllTokens(n, "™, "$", 1) // value = {"#abcd", "1234#ABCD"}

value = GetAllTokens(n, "™, "$", 2) // value = {"#abcd$", "1234#ABCD$"}

value = GetAllTokens(n, ", "$", 3) // value = {"#abcd", "1234#ABCD"}

value = GetAllTokens(n, ", "#", Q) // value = {"#", "abcd$1234#", "ABCD$5678#"}
value = GetAllTokens(n, ", "#", 1) // value = {"", "abcd$1234", "ABCD$5678"}
value = GetAllTokens(n, ", "#", 2) // value = {"#", "abcd$1234#", "ABCD$5678#"}
value = GetAllTokens(n, ", "#", 3) // value = {"", "abcd$1234", "ABCD$5678"}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 123

e

4.38 GetNow()

Get the current system time

Syntax 1
string GetNow(
string

)

Parameters

string The date and time format strings defining the text representation of a date and
time value. The definition of each specifier is listed below. The strings not
included will remains the same.

d

dd
ddd
dddd

RN

<33 IT
%Z 3 I

MMMM
s

Ss

t

tt

y
yy

yyyy
/

Return

The day of the month, from 1 through 31.

The day of the month, from 01 through 31.

The abbreviated name of the day of the week.

The full name of the day of the week.

The tenths of a second in a date and time value.

The hundredths of a second in a date and time value.
The milliseconds in a date and time value.

The ten thousandths of a second in a date and time value.

The hour, using a 12-hour clock from 1 to 12.
The hour, using a 12-hour clock from 01 to 12.
The hour, using a 24-hour clock from 0 to 23.
The hour, using a 24-hour clock from 00 to 23.
The minute, from 0 through 59.
The minute, from 00 through 59.
The month, from 1 through 12.
The month, from 01 through 12.

The abbreviated name of the month.
The full name of the month.
The second, from 0 through 59.
The second, from 00 through 59.
The first character of the AM/PM designator.
The AM/PM designator.
The year, from 0 to 99.
The year, from 00 to 99.
The year as a four-digit number.
The date separator.

string Current date and time. If there is errors in format setting, the default format will
be applied as MM/dd/yyyy HH:mm:ss.

Note

value = GetNow("MM/dd/yyyy HH:mm:ss") Il value = 08/15/2017 13:40:30
value = GetNow("yyyy/MM/dd HH:mm:ss.ffff") // value = 2017/08/15 13:40:30.1337
value = GetNow("yyyy-MM-dd hh:mm:ss tt") // value = 2017-08-15 01:40:30 PM

Syntax 2
string GetNow(

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (1664) 124

e

void No format defined. Default format "MM/dd/yyyy HH:mm:ss" will be applied
Return

string Current date and time.
Note

value = GetNow() Il value = 08/15/2017 13:40:30

Omron TM Collaborative Robot: TMScript Language Manual (1664) 125

e,

4.39 GetNowStamp()

Get the total run time or difference in total run time

Syntax 1
int GetNowStamp(
)
Parameters
void No parameter
Return
int The total run time of the current project in ms. The upper limit is 2147483647
ms
<0 Over flow, invalid total run time
Note
value = GetNowStamp() Il value = 2147483647
... others ...
value = GetNowStamp() Il value =-1 /I Over flow

Syntax 2
double GetNowStamp(
bool
)
Parameters
boolUse double format to record project’s total run time or not?
true Use double type, the upper limit is 9223372036854775807 ms
false Use int32 type, the upper limit is 2147483647 ms

Return
double The total run time of the current project
<0 Over flow. Invalid total run time.
Note
value = GetNowStamp(false) Il value = 2147483647
... others ...
value = GetNowStamp(false) Il value =-1 /I Over flow
value = GetNowStamp(true) Il value = 3147483647
Syntax 3
int GetNowStamp(
int
)
Parameters
int Previous recorded run time in ms
Return
int The difference between the current run time and the input run time in ms.
Run time difference = current run time — input run time
<0 Invalid run time difference, caused by input run time larger than current
run time, or over flow.
Note
value = GetNowStamp() Il value = 2147483546

... others ... (After 100ms)
diff = GetNowStamp(value) // diff = 100

Omron TM Collaborative Robot: TMScript Language Manual (1664) 126

e

... others ... (After 200ms)

diff = GetNowStamp(value) // diff =-1 Il Value is over 2147483647
Syntax 4
double GetNowStamp(
double
)
Parameters
double Previous recorded run time in ms
Return
double The difference between the current run time and the input run time in ms.
Run time difference = current run time — input run time
<0 Invalid run time difference, caused by input run time larger than current
run time, or over flow.
Note
value = GetNowStamp() Il value = 2147483546
... others ... (After 100ms)
diff = GetNowStamp(value) // diff = 100
... others ... (After 200ms)
diff = GetNowStamp(value) // diff = 200
Syntax 5
bool GetNowStamp(
int,
int
)
Parameters
int Previous recorded run time in ms
int The expected run time difference
Return
bool The time difference between current run time and input run time is larger than
the expected run time difference or not.
true (Current run time — input run time) >= expected run time
Or Time difference smaller than zero or over flow
false (Current run time — input run time) < expected run time
Note
value = GetNowStamp() Il value = 41730494
... others ... (After 60ms)
flag = GetNowStamp(value, 100) // diff = 60 Il flag = false
... others ... (After 60ms)
flag = GetNowStamp(value, 100) // diff =120 // flag = true
Syntax 6
bool GetNowStamp(
double,
double
)
Parameters

double Previous recorded run time in ms
double The expected run time difference

Omron TM Collaborative Robot: TMScript Language Manual (1664) 127

e

Return
bool The time difference between current run time and input run time is larger than
the expected run time difference or not.
true (Current run time — input run time) >= expected run time
Or Time difference smaller than zero or over flow
false (Current run time — input run time) < expected run time
Note
value = GetNowStamp() Il value = 41730494

... others ... (After 60ms)
flag = GetNowStamp(value, 100) // diff = 60 Il flag = false
... others ... (After 60ms)
flag = GetNowStamp(value, 100) // diff = 120 Il flag = true

Omron TM Collaborative Robot: TMScript Language Manual (1664) 128

e

4.40 GetVarValue()

Retrieve the value of the variable value. Users can use the string to combine the variable names,
and then retrieve the combined value of the variables.

Syntax 1

? GetVarValue(

string
)
Parameters

string The name of the variable
Return

? Return the value of the variable. The return type goes by the definition of the
variable.

Return an error if the variable is not existed.

Note

string var_s1 = "Hello World"

string var_h =" var_s1"

string var_t =" var_s"

string var_re = var_t Il var_re =" var_s"

var_re =var_t+"1" /[var_re ="var_s"+"1"="var_s1"

var_re = GetVarValue("var_h") // var_re =" var_s1"

var_re = GetVarValue(var_h) /I var_re = "Hello World" // var_h =" var_s1"

/I Retrieve the value of var_sl
var_re = GetVarValue(var_t +"1") //var_re = "Hello World" //var_b +"1" =" var_s1"
/I Retrieve the value of var_s1
var_re = GetVarValue(var_t) Il Error [/l var_t="var_s"
/IRetrieve the value of var_s, but the variable is not existed.

string s

int[] var_array0 = {10, 11, 12, 13, 14}

int[] var_array1 = {20, 21, 22, 23, 24}

for (inti=0;i<2;i++)

{

int[] v = GetVarValue("var_array" + i)

for (intj=0;j<Length(v);j++)s +=v[j]+", "

s += newline

}

Display(s) /110, 11,12, 13, 14, \uODOA20, 21, 22, 23, 24, \uODOA
*\uODOA is a written line break, not a string value.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 129

e

4.41

SetVarValue()

For variable value settings, users can use a string to combine the variable names to set the
variable value of the combined variable names.

Syntax 1
bool SetVarValue (
string,
?
)
Parameters
string The name of the variable
? The variable value
Return

bool The variable setting value. Return True if successful; False if unsuccessful.
Returns an error if the variable does not exist or cannot convert
legitimately.

Note

string var_s1 = "Hello World"
SetVarValue("var_s1", "Hi World") // var_s1 = "Hi World"

int var_k =100
SetVarValue("var_k", 200) Il var_k = 200
SetVarValue("var_k", 2.3) Il var_k =2 /I Since 2.3 converting to the int type

SetVarValue("var_k", "2.3") /I var_ k=2 /I Since "2.3" converting to the int type

SetVarValue("var_k", true) I Error
SetVarValue("var_k", "XYZ") I/ Error

int[] var_array0 = {10, 11, 12, 13, 14}
int[] var_array1 = {20, 21, 22, 23, 24}
for (inti=0;i<2;i++)

int[] v = GetVarValue("var_array" + i) /I Retrieve var_array0 or var_arrayl
for (intj = 0; j < Length(v) ; j++)

v[j] += 100 /I +100 for each element in int[] v
SetVarValue("var_array" + i, v) /I Set the value of int[] v to var_arrayO or var_array1.
Y
Display(var_array0) //{110,111,112,113,114}
Display(var_array1) /1 {120,121,122,123,124}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 130

e

4.42 Length()

Acquire the number of byte of input data, length of string or length of array (number of elements

in array)
Syntax 1
int Length(
?
)
Parameters
? The input data. The available data types are integer, floating-point, boolean, string, or
array.
Return
int Length of data
For input as integer, floating-point number, and boolean, returns the number of
byte.
For input as string, returns the length of string.
For input as array, returns the number of element in array
Note

? byte n=100
value = Length(n) Il value = 1
value = Length(100) //value =1
? intn =400
value = Length(n) Il value = 4
value = Length(400) // value =4
? floatn=1.234
value = Length(n) Il value = 4
value = Length(1.234) Il value = 4
? doublen=1.234
value = Length(n) Il value = 8
value = Length(1.234) Il value = 4
/I float // Numbers would be stored as the smaller data type first.
? booln=true
value = Length(n) Il value = 1
value = Length(false) // value = 1
? stringn="A"BC"
value = Length(n) Il value = 4
/I The string is A"BC. Two double quotation marks represent " in string
value = Length("") Il value = 0
value = Length("123")// value = 3
value = Length(empty) //value=0
? byte[] n ={100, 200, 30}

value = Length(n) Il value = 3
? int[n={}

value = Length(n) Il value = 0

n = {400, 500, 600}

value = Length(n) Il value = 3
? float]] n ={1.234}

value = Length(n) Il value = 1

? double[] n ={1.234, 200, -100, +300}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 131

e,

value = Length(n) Il value = 4

? bool[] n = {true, false, true, true, true, true, false}
value = Length(n) Il value = 7

? string[] n = {"A"BC", "123", "456", "ABC"}
value = Length(n) Il value = 4

Omron TM Collaborative Robot: TMScript Language Manual (1664) 132

e

4.43 Ctrl()

Change the integer or string to control characters

Syntax 1
string Ctrl(
int
)
Parameters
int The input integer, which follows the Big Endian format. 4 characters could be
transformed at most. 0x00 will not be transformed.
Return
string The string formed by input integer (contains the control character)
Note
b = 0OxODOA
value = Ctrl(b) /I value = \r\n

(
value = Ctrl(OxODOA) Il value =\r\n
value = Ctrl(OxODO00AQ9) // value =\r\n\t // 0x00 will not be transformed
value = Ctrl(0xOD300A09) // value = \rO\n\t // 0x30 is transformed to 0
value = Ctrl(0x00) /l value ="
/I empty string does not equal to NULL. For NULL, the code is Ctrl("\0")

Syntax 2
string Ctrl(
string
)
Parameters
string Input string. The following rules will be applied. For string not on the list, it will
remain the same.

\O 0x00 null

\a 0x07 bell

\b 0x08 backspace

\t 0x09 horizontal tab
\r 0x0D carriage return
\v 0x0B vertical tab

\f 0x0C form feed

\n 0x0A line feed

Return
string The string formed by input integer (contains the control character)

Note
b ="\r\n"
value = Ctrl(b) /I value = \r\n

(
value = Ctrl("\r\n") I/ value =\r\n

value = Ctrl("\r\n\t") // value = \r\n\t

value = Ctrl("\rO\n\t")// value = \rO\n\t

value = Ctrl("\0") /l value =\0 /I NULL

Syntax 3
string Ctrl(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 133

e

byte[]
)
Parameters
byte[] The input byte array, the transfer will start from index [0] to the end of the array.
(0x00 will be transferred also)
Return
string The string formed by input integer (contains the control character)
Note
byte[] bb1 = {OxFF,0x55,0x31,0x32,0x33,0x00,0x35,0x36,0x0D,0x0A}
value = Ctrl(bb1) Il value = U123 56\r\n

byte[] bb2 = {}
value = Ctrl(bb2) /l value ="

Omron TM Collaborative Robot: TMScript Language Manual (1664) 134

e

4.44 XORS()

Utilize XOR 8 bits algorithm to compute the checksum

Syntax 1
byte XOR8(
byte[],
int,
int
)
Parameters
byte[] The input byte array
int The starting index
0..(array size-1) Valid
<0 Invalid. Returns the initial value 0
>=array size Invalid. Returns the initial value 0
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array
If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return
byte Checksum.
Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}
value = XOR8(bb1,0,Length(bb1)) // value = 0x6F

value = XOR8(bb1,0,-1) Il value = OX6F
value = XOR8(bb1,1,-1) Il value = OX7F
value = XOR8(bb1,-1,-1) Il value = 0
Syntax 2
byte XOR8(
bytef],
int
)
Note
Similar to Syntax1 with computing to the last element of the array
XORS8(byte[], int) => XORB8(byte[], int, Length(byte[]))
Syntax 3
byte XOR8(
byte[]
)
Note

Similar to Syntax1 with computing all the elements of the array
XOR8(byte[]) => XORS8(byte[], 0, Length(byte[]))

byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}
value = XOR8(bb1,0,Length(bb1)) Il value = OX6F
value = XOR8(bb1,0) Il value = OX6F

Omron TM Collaborative Robot: TMScript Language Manual (1664) 135

e,

value = XOR8(bb1) Il value = OX6F
bb1 = Byte_Concat(bb1, XOR(bb1)) //bbl ={0x10, 0x20, 0x50, OxFO, OxFF, OxFF, OXFF,
Ox6F}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 136

e

4.45 SUMS()

Utilize SUM 8 bits algorithm to compute the checksum

Syntax 1
byte SUMS(
byte[],
int,
int
)
Parameters
byte[] The input byte array
int The starting index
0..array size-1 Valid
<0 Invalid. Returns the initial value 0
>=array size Invalid. Returns the initial value 0
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array

If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return
byte Checksum.
Note
byte[] bb1 = {0x10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}
value = SUM8(bb1,0,Length(bb1)) // value = 0x6D

value = SUM8(bb1,0,-1) Il value = 0x6D
value = SUM8(bb1,1,-1) Il value = 0X5D
value = SUM8(bb1,-1,-1) Il value = 0
Syntax 2
byte SUMS8(
bytef],
int
)
Note
Similar to Syntax1 with computing to the last element of the array
SUMBS8(byte[], int) => SUMS8(byte[], int, Length(byte[]))
Syntax 3
byte SUM8(
bytef]
)
Note

Similar to Syntax1 with computing all the elements of the array

SUMB8(byte[]) => SUMS8(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}

value = SUM8(bb1,0,Length(bb1)) Il value = 0x6D

value = SUM8(bb1,0) /I value = 0x6D

value = SUM8(bb1) Il value = 0x6D

bb1 = Byte_Concat(bb1, SUM8(bb1)) // bb1l ={0x10, 0x20, 0x50, 0xFO, OxFF, OxFF, OXFF,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 137

0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 138

e

4.46 SUM16()

Utilize SUM 16 bits algorithm to compute the checksum

Syntax 1
byte[] SUM16(
byte[],
int,
int
)
Parameters
byte[] The input byte array
int The starting index
0..array size-1 Valid
<0 Invalid. Returns the initial value 0
>=array size Invalid. Returns the initial value 0
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array
If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return

byte[] Checksum. The length is 16bits 2 bytes (The Checksum follows Big Endian)
Note

byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}

value = SUM16(bb1,0,Length(bb1)) // value = {0x04, 0x6D}

value = SUM16(bb1,0,-1) Il value = {0x04, 0x6D}

value = SUM16(bb1,1,-1) Il value = {0x04, 0x5D}

value = SUM16(bb1,-1,-1) Il value = {0x00, 0x00}

Syntax 2

byte[] SUM16(
byte(],
int

)

Note
Similar to Syntax1 with computing to the last element of the array
SUM16(byte[], int) => SUM16(byte[], int, Length(byte[]))

Syntax 3

byte[] SUM16(
byte(]

)

Note
Similar to Syntax1 with computing all the elements of the array
SUM16(byte[]) => SUM16(byte[], 0, Length(byte[]))
byte[] bb1 = {0x10, 0x20, 0x50, OxFO, OxFF, OxFF, OxFF}
value = SUM16(bb1,0,Length(bb1)) // value = {0x04, 0x6D}
value = SUM16(bb1,0) Il value = {0x04, 0x6D}
value = SUM16(bb1) I/ value = {0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 139

e,

bb1 = Byte_Concat(bb1, SUM16(bb1)) // bbl = {0x10, 0x20, 0x50, OxFO, OxFF, OxFF, OxFF,
0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 140

e

4.47 SUM32()

Utilize SUM 32 bits algorithm to compute the checksum

Syntax 1
byte[] SUM32(
byte[],
int,
int
)
Parameters
byte[] The input byte array
int The starting index
0..array size-1 Valid
<0 Invalid. Returns the initial value 0
>=array size Invalid. Returns the initial value 0
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array
If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return
byte[] Checksum. The length is 32bits 4 bytes (The Checksum follows Big Endian)
Note

byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}

value = SUM32(bb1,0,Length(bb1)) // value = {0x00, 0x00, 0x04, 0x6D}
value = SUM32(bb1,0,-1) Il value = {0x00, 0x00, 0x04, 0x6D}
value = SUM32(bb1,1,-1) /l value = {0x00, 0x00, 0x04, 0x5D}
value = SUM32(bb1,-1,-1) Il value = {0x00, 0x00, 0x00, 0x00}

Syntax 2

byte[] SUM32(
byte(],
int

)

Note
Similar to Syntax1 with computing to the last element of the array
SUMB32(byte[], int) => SUMS32(byte[], int, Length(byte[]))

Syntax 3

byte[] SUM32(
byte(]

)

Note
Similar to Syntax1 with computing all the elements of the array
SUMB32(byte[]) => SUM32(byte[], 0, Length(byte[]))
byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}
value = SUM32(bb1,0,Length(bb1)) // value = {0x00, 0x00, 0x04, 0x6D}
value = SUM32(bb1,0) Il value = {0x00, 0x00, 0x04, 0x6D}
value = SUM32(bb1) Il value = {0x00, 0x00, 0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 141

e,

bb1 = Byte_Concat(bb1, SUM32(bb1)) / bb1 = {0x10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF, 0x00, 0x00,
0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 142

e

4.48 CRC16()

Utilize CRC 16 bits algorithm to compute the checksum

Syntax 1
byte[] CRC16(
int,
bytef],
int,
int
)
Parameters
int CRC16 algorithm
0 CRC16 // initial value 0x0000 // Polynomial 0XA001
1 CRC16 (Modbus) / initial value OXFFFF// Polynomial 0xA001
2 CRC16 (Sick) // initial value 0x0000 // Polynomial 0x8005
3 CRC16-CCITT (Ox1DOF) // initial value 0x1DOF// Polynomial 0x1021
4 CRC16-CCITT (OXxFFFF) // initial value OxFFFF// Polynomial 0x1021
5 CRC16-CCITT (XModem) // initial value 0x0000 // Polynomial 0x1021
6 CRC16-CCITT (Kermit) //initial value 0x0000 // Polynomial 0x8408
7 CRC16 Schunk Gripper //initial value OxFFFF// Polynomial 0x1021
byte[] The input byte array
int The starting index
0..array size-1 Valid
<0 Invalid. Returns the initial value
>=array size Invalid. Returns the initial value
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array
If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return
byte[] Checksum. The length is 16bits 2 bytes (The checksum follows Big Endian)
Note
byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}
value = CRC16(0, bb1,0,Length(bb1)) Il value = {0x2D, 0xD4}
value = CRC16(0, bb1,0,-1) /l value = {0x2D, 0xD4}
value = CRC16(0, bb1,1,-1) Il value = {OXEC, 0xC5}
value = CRC16(0, bb1,-1,-1) I/ value = {0x00, 0x00}
value = CRC16(3, bb1,0,Length(bb1)) Il value = {0x42, 0x12}
value = CRC16(4, bb1,0,Length(bb1)) Il value = {OXAB, OXAE}
Syntax 2
byte[] CRC16(
int,
byte[],
int
)
Note

Similar to Syntax1 with computing to the last element of the array

Omron TM Collaborative Robot: TMScript Language Manual (1664)

143

e

CRC16(int, byte[], int) => CRC16(int, byte[], int, Length(byte[]))

Syntax 3

byte[] CRC16(
int,
byte(]

)

Note
Similar to Syntax1 with computing all the elements of the array
CRC16(int, byte[]) => CRC16(int, byte[], 0, Length(byte[]))
byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}

value = CRC16(0, bb1,0,Length(bb1)) Il value = {0x2D, 0xD4}
value = CRC16(0, bb1,0) // value = {0x2D, 0xD4}
value = CRC16(0, bb1) Il value = {0x2D, 0xD4}
bb1 = Byte_Concat(bb1, CRC16(0, bb1)) //bbl ={0x10, 0x20, 0x50, 0xF0, OxFF, OxFF, OxFF,
0x2D, 0xD4}
Syntax 4

byte[] CRC16(
byte[],
int,
int

)

Note
Similar to Syntax1 with CRC16 algorithm as 0 CRC16
CRC16(byte[], int, int) => CRC16(0, byte[], int, int)

Syntax 5

byte[] CRC16(
byte[],
int

)

Note

Similar to Syntax1 with CRC16 algorithm as 0 CRC16 and computing to the last element

of the array
CRC16(byte[], int) => CRC16(0, byte[], int, Length(byte[]))

Syntax 6

byte[] CRC16(
bytef]

)

Note
Similar to Syntax1 with CRC16 algorithm as 0 CRC16 and computing all the elements of
the array
CRC16(byte[]) => CRC16(0, byte[], 0, Length(byte[]))

Omron TM Collaborative Robot: TMScript Language Manual (1664) 144

e

4.49 CRC32()

Utilize CRC 32 bits algorithm to compute the checksum

Syntax 1
byte[] CRC32(
byte[],
int,
int
)
Parameters
byte[] The input byte array
int The starting index
0..array size-1 Valid
<0 Invalid. Returns the initial value 0
>=array size Invalid. Returns the initial value 0
int The number of elements to be computed.
If the number of elements <0, the calculation ends at the last element of the
array
If the sum of starting index and number of element exceeds the array size, the
calculation ends at the last element of the array.
Return
byte[] Checksum. The checksum length is 32bits 4 bytes (The checksum follows Big
Endian)
Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xFO, OXFF, OxFF, OXFF}

value = CRC32(bb1,0,Length(bb1)) // value = {0x43, 0xD5, 0xB9, OxF8}
value = CRC32(bb1,0,-1) Il value = {0x43, 0xD5, 0xB9, OxF8}
value = CRC32(bb1,1,-1) /l value = {0x08, OxA5, 0x5B, OXEB}
value = CRC32(bb1,-1,-1) I/ value = {0x00, 0x00, 0x00, 0x00}
Syntax 2
byte[] CRC32(
bytef],
int
)
Note
Similar to Syntax1 with computing to the last element of the array
CRC32(byte[], int) => CRC32(byte[], int, Length(byte[]))
Syntax 3
byte[] CRC32(
byte(]
)
Note

Similar to Syntax1 with computing all the elements of the array
CRC32(byte[]) => CRC32(byte][], 0, Length(byte[]))

byte[] bb1 = {Ox10, 0x20, 0x50, 0xFO, OxFF, OxFF, OxFF}

value = CRC32(bb1,0,Length(bb1)) Il value = {0x43, 0xD5, 0xB9, OxF8}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 145

e,

value = CRC32(bb1,0) Il value = {0x43, 0xD5, 0xB9, OxF8}
value = CRC32(bb1) Il value = {0x43, 0xD5, 0xB9, OxF8}
bb1 = Byte_Concat(bb1, CRC32(bb1))

/1 bb1 = {0x10, 0x20, 0x50, OxFO, OXFF, OXFF, OxFF, 0x43, 0xD5, 0xB9, OxF8}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 146

e

450 ListenPacket()

Pack the string contents as the compatible protocol for the Listen Node (External Script Control

Mode)
Syntax 1
string ListenPacket(
string,
string
)
Parameters
string User defined Header. For empty string, Default string "TMSCT" will be applied
string The data section in Listen Node communication format
Return
string Packed data (Including header, data length and check sum)
Note
string var_data1 = "1, var_i++"
string var_data2 = "Hello World"
value = ListenPacket("TMSCT", var_data1) // $TMSCT,9,1,var_i++,*06\r\n
value = ListenPacket("", var_data2) /I $TMSCT,11,Hello World,*51\r\n
I/l Error for TMSCT
value = ListenPacket("", "2,Techman Robot") // $TMSCT,15,2, Techman Robot,*57\r\n
value = ListenPacket("TMSTA", var_data2) Il $TMSTA,11,Hello World,*53\r\n
[/l Error for TMSTA
value = ListenPacket("TMSTA", "00") Il $TMSTA,2,00,*41\r\n
Syntax 2
string ListenPacket(
string
)
Parameters
string The data section in Listen Node communication format (With TMSCT header)
Return
string Packed data (Including header, data length and check sum)
Note
string var_data1 = "1,var_counter++" /I ScriptlD, ScriptLanguage
value = ListenPacket(var_data1) /I $TMSCT, 15,1, var_counter++,*26\r\n

Omron TM Collaborative Robot: TMScript Language Manual (1664) 147

e

451 ListenSend()

Send TMSTA, the communication protocol of Listen node, to the client devices connected to
the Listen Server currently.

Syntax1
int ListenSend(
string,
int,
?
)
Parameters
string Target IP filtering such as 127.0.0.1 meaning to send to all client devices
connecting from 127.0.0.1.
int TMSTA SubCmd numbering for sending self-defined data message only 90 .. 99
? The value to send. Available types: byte, int, float, double, bool, and string.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.

Return
int Return the result
0 sent successfully
-1 error. Listen Server is not starting.
-2 error. SubCmd must be between 90 and 99.
Syntax2
int ListenSend(
int,
?
)
Parameters
int TMSTA SubCmd numbering for sending self-defined data message only 90 .. 99
? The value to send. Available types: byte, int, float, double, bool, and string.

Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.

Return
int Return the result
0 sent successfully
-1 error. Listen Server is not starting.
-2 error. SubCmd must be between 90 and 99.
Note

No target IP filtering will result in sending data messages to all connected client devices.

Note
string ip = "127.0.0.1"

byte b = 100
value = ListenSend(ip, 10, b)

/I send 0x64 to ipfilter "127.0.0.1" /I value = -2 /I SubCmd must be between 90 and 99.
value = ListenSend(ip, 90, b)

/I send 0x64 to ipfilter "127.0.0.1" /I value = -1 /I Supposedly Listen Server is not starting.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 148

e

value = ListenSend(ip, 90, b)
/I send 0x64 to ipfilter "127.0.0.1" /[value =0 Il sent successfully
II'1IP filtering 127.0.0.1 and send to the devices connected to Listen Server via the IP.
Il $TMSTA,4,90,d,*06 /I The value of 100 is conversed to Ox64.
value = ListenSend(ip, 90, 123456)
/I send 0x40 OxE2 0x01 0x00 to ipfilter "127.0.0.1"
I $TMSTA,7,90,@€ ,*C2
/I The value of 123456 is conversed to 0x40 OXE2 0x01 0x00 (int, Little Endian)
value = ListenSend(90, "123.456")
I/l send 0x31 0x32 0x33 0x2E 0x34 0x35 0x36
/I No target IP filtering will result in sending data messages to all connected client devices.
/l $TMSTA,10,90,123.456,*7E
/I The value of "123.456" is conversed to 0x31 0x32 0x33 Ox2E 0x34 0x35 0x36 (string, UTF8).
byte[] bb = {100, 200}
value = ListenSend(90, bb)
/I send 0x64 0xC8
/l STMSTA,5,90,d€,*CF // The value of {100, 200} is conversed to 0x64 0xC8
string[] ss = {"T", "M", ":ZAB#2 A"}
value = ListenSend(90, ss)
/I send 0x54 0x4D OxE9 0x81 0x94 OXE6 0x98 Ox8E OXE6 0xA9 Ox9F OXES 0x99 0xA8 OxE4 OxBA
OxBA
Il $STMSTA, 20,90, TM3ZRR# 2R A *Al

Omron TM Collaborative Robot: TMScript Language Manual (1664) 149

e

4.52 VarSync()

Send the Variable object to TMmanager (Robot Management System)
* When performing this function, the flow will not go on until the object is sent out successfully
or the maximum retry times is reached.

Syntax 1
int VarSync(
int,
int,
?
)
Parameters
int The maximum times to retry
<=0 Keep retrying as error occurred.
int The time duration between two retries (millisecond)
<0 Invalid time duration. The default value, 1000ms, will be applied
? The string or string array. The name of variables to be sent.
Multiple items can be listed. If there are indefinite variables, they will be not be
sent; other definite variables will be sent.
* The item is the name of the variable, not what the variable equals such that i
goes with "i".
* If the variable is listed, the value of the variable will be used to send the
matched object.
Return
int Sending times
>0 Send success. The return value returns the sending times
0 Send failed
-1 TM Manager function is not enabled
-9 Invalid Parameters
Note

string var_s = "ABC"

string var_s1 =" var_s"

string[] var_ss = {"ABC", " var_s", " var_s1"}

value = VarSync(1, 1000, " var_s") // Send var_s variable object

value = VarSync(2, 2000, var_s) // Send ABC variable object (Because the value of var_s is
"ABC")

value = VarSync(3, 2000, var_ss) // Send ABC, var_s, var_s1 variable object (From the value of
Ss string array)

value = VarSync(3, 2000, " var_ss") /I Send var_ss variable object

value = VarSync(4, 2000, " var_ss", " var_s1", "ABC")// Send var_ss, var_s1, ABC variable

object

Syntax 2
int VarSync(
int,
?
)
Note
Same as Syntax 1 with the time between two retries defaults to 1000 ms.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 150

e

VarSync(int, ?) => VarSync(int, 1000, ?)

Syntax 3

int VarSync(
?

)

Note
Same as Syntax 1 with the time between two retries defaults to 1000 ms without limit of
times to retry
VarSync(?) => VarSync(0, 1000, ?)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 151

e

5. General Functions (Script)
5.1 Exit()

Stop the project running.

Syntax 1
void Exit(
bool,
int
)
Parameter
bool Whether to wait for the end of the motion command to stop the project
true Wait (default)
false No wait
int Ending code
>0 Execute the closestop funciton.
== Evaluate if the project errs. (default)
<0 Execute the errorstop funciton.
Return
void No return
Syntax 2
void Exit(
bool
)
Parameter
bool Whether to wait for the end of the motion command to stop the project
true Wait (default)
false No wait
Note

Same as syntax 1. It defaults 0 to the ending code.

Syntax 3
void Exit(
)
Parameter
void No input

Note
Same as syntax 1. It defaults true to whether to wait for the end of the motion command
to stop the project and 0 to the ending code.

Syntax 4
void Exit(
int

)

Parameter
int Ending code.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 152

>0 Execute the closestop funciton.
== Same as syntax 1. Evaluates if the project errs.
<0 Execute the errorstop funciton.

Note

Same as syntax 1. It defaults true to whether to wait for the end of the motion command
to stop the project.

Exit()

/I Wait for the end of the motion command, stop the project running, and assess if errors occurred.

/I Run the closestop function next when there is no error.

/I Run the errorstop function next when there is an error.

Exit(false) // wait not for the end of the motion command not, stop the project running shortly, and
assess if errors occurred.

Exit(false, 1) // wait not for the end of the motion command not, stop the project running shortly, and run
the closestop function.

Exit(1) // wait for the end of the motion command, stop the project running, and run the closestop function.

Exit(0) // wait for the end of the motion command, stop the project running, and assess if errors occurred.

Exit(-1) // Wait for the end of the motion command, stop the project running, and run the errorstop function.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 153

e

5.2 Pause()

Pause the project and the motion of the robot other than non-paused threads and external
script processes. Use Resume() or press the Play button on the robot stick to resume.

Syntax 1
bool Pause(
)
Parameter
void No parameter
Return
bool True Command accepted ; False Command rejected
Note
Pause()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 154

e,

5.3 Resume()
Resume the project and the motion of the robot.

Syntax 1
bool Resume(
)
Parameter
void No parameter
Return
bool True Command accepted ; False Command rejected
Note
Resume()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 155

e

5.4 WaitFor()

The loop wait condition stands or time out on waiting.

Syntax 1
bool WaitFor(
bool,
int
)
Parameter
bool The loop wait condition. It can be true/false or a statement returns the bool value.
int wait time (millisecond)
<0 wait indefinitely
>=0 time to wait
Return
boolReturn True for the loop wait condition stands and False for time out on waiting.
Note
inti=0

bool flag = WaitFor(i++ > 100, 1000)
/I The loop executes i++ and judges whether it is larger than 100. It exits the loop at once if the condition
satisfies (flag = true) or it is timeout after 1000ms (flag = false).

Syntax 2
bool WaitFor(
int
)
Parameter
int wait time (millisecond)
<0 invalid
>=0 time to wait
Return
boolReturn True for the wait time stands and False for not. (Interrupted by the project
stop)
Note
WaitFor(100) /I Timeout after 100ms of waiting.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 156

e

5.5 Sleep()

Stop the thread in the time specified. Same as WaitFor(int).

Syntax 1
bool Sleep(
int
)
Parameter
int wait time (millisecond)
<0 invalid
>=0 time to wait
Return
boolReturn True for the wait time stands and False for not. (Interrupted by the project
stop)
Note
Sleep(100) /I Timeout after 100ms of waiting.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 157

e

5.6 Display()

Display contents on the TMflow dashboard.

Syntax 1
bool Display(
string,
string,
string,
string
)
Parameter
string Headline text color
"Red" Set headline background color to red.
"Green" Set headline background color to green.
"Blue" Set headline background color to blue.
"Yellow" Set headline background color to yellow.
"Black" Set headline background color to black.
"White" Set headline background color to white.
"Gray" Set headline background color.to gray.
string Headline background color
"Red" Set headline text color to red.
"Green" Set headline text color to green.
"Blue" Set headline text color to blue.
"Yellow" Set headline text color to yellow.
"Black" Set headline text color to black.
"White" Set headline text color to white.
"Gray" Set headline text color to gray.

string Headline text
string Text
Return
boolReturn True for set successfully and False for unsuccessfully.
Note
Display("Yellow", "Green", "Gripper Initial Finish", "Force = 30N") // Output the headline of
Gripper Initial Finish with the text of Force = 30N to the TMflow dashboard and set headline text color to
yellow and headline background color to green.
Syntax 2
bool Display(
string,
string
)
Parameter
string Headline text
string Text
Note
Same as Syntax 1. It sets headline text color to black and headline background color to
white by default.

Syntax 3
bool Display(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 158

e

string
)
Parameter

string Text
Note

Same as Syntax 1. It sets headline text color to black and headline background color to
white by default. The headline text is an empty string.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 159

e

6. Math Functions
6.1 abs()

Return the absolute value of the designate number

Syntax 1
int abs(
int
)
Parameter
int Input number in integer
Return
int Return the absolute value of the input number in integer
Note
inti=10
value = abs(i) /110
i=-10
value = abs(i) /110

Syntax 2
float abs(
float
)
Parameter
floatInput number in float
Return
floatReturn the absolute value of the input number in float
Note
float f=10.1
value = abs(f) /101
f=-10.1
value = abs(f) /101

Syntax 3
double abs(
double
)
Parameter
double Input number in double
Return
double Return the absolute value of the input number in double
Note
double d =10.8
value = abs(d) /108
d=-10.8
value = abs(d) //10.8

Omron TM Collaborative Robot: TMScript Language Manual (1664) 160

e

6.2 pow()
Return the power of the designate base and exponent

Syntax 1
int pow(
int,
double
)
Parameter
int Input base in integer
double Exponent
Return
int Return the power in integer

Syntax 2

float pow(
float,
double

)

Parameter
floatInput base in float
double Exponent

Return
floatReturn the power in float

Syntax 3

double pow(
double,
double

)

Parameter
double Input base in double
double Exponent

Return
double Return the power in double
Note
? intb=100
value = pow(b, 2) /1 10000
value = pow(b, -2) /0 /1 0.0001, but int type
value = pow(b, 0.1) /1 /1 1.5848932, but int type
value = pow(b, 2.1) /15848 // 15848.932, but int type
value = pow(b, -2.1) /0 /1 6.309574E-05, but int type
? floatb =-100
value = pow(b, 2) /1 10000
value = pow(b, -2) //0.0001
value = pow(b, 0.2) // Error // NaN
value = pow(b, 2.2) // Error // NaN
value = pow(b, -2.2) // Error // NaN

Omron TM Collaborative Robot: TMScript Language Manual (1664) 161

e

? double b =100
value = pow(b, 2) /1 10000
value = pow(b, -2) //0.0001
value = pow(b, 0.31) //4.168694
value = pow(b, 2.31) //41686.938
value = pow(b, -2.31) // 2.3988328E-05

Omron TM Collaborative Robot: TMScript Language Manual (1664) 162

e

6.3 sqrt()

Return the square root of the designate number

Syntax 1
float sqrt(
float
)
Parameter
floatInput number in float
Return
floatReturn the square root in float

Syntax 2
double sqrt(
double
)
Parameter
double Input number in double
Return
double Return the square root in double
Note
value = sqrt(100) /1 10
value = sqrt(100.1234) //10.006168
value = sqrt(0.1234) 11 0.35128337
value = sqrt(-100) Il Error // NaN
value = sqrt(-100.1234) // Error // NaN
value = sqrt(-0.1234) Il Error // NaN

Omron TM Collaborative Robot: TMScript Language Manual (1664) 163

e

6.4 ceil()

Return a number rounded upward to its nearest integer.

Syntax 1
float ceil(
float
)
Parameter
floatinput number in float
Return
floatReturn a number in float rounded upward to its nearest integer

Syntax 2
double ceil(
double
)
Parameter
double input number in double
Return
double Return a number in double rounded upward to its nearest integer
Note
value = ceil(100) /1 100
value = ceil(100.1234) /1101
value = ceil(0.1234) N1
value = ceil(-100) //-100

value = ceil(-100.1234) //-100
value = ceil(-0.1234) 110

Omron TM Collaborative Robot: TMScript Language Manual (1664) 164

e

6.5 floor()

Return a number rounded downward to its nearest integer.

Syntax 1
float floor(
float
)
Parameter
floatinput number in float
Return
floatReturn a number in float rounded downward to its nearest integer

Syntax 2

double floor(
double

)

Parameter
double input number in double

Return
double Return a number in double rounded downward to its nearest integer

Note
value = floor
value = floor

100) /1 100
100.1234) /100

(

(
value = floor(0.1234) 110
value = floor(-100) /I -100
value = floor(-100.1234) //-101
value = floor(-0.1234) -1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 165

e,

6.6 round()

Return a number rounded to its nearest integer.

Syntax 1
float round(
float,
int
)
Parameter
floatinput number in float
int digits after the returned decimal point (0 by default meaning the number is
rounded to integer)
0..15 valid values
<0 value invalid, will use 0 by default
>15 value invalid, will use 0 by default
Return

floatReturn a number in float rounded to its nearest integer.

Syntax 2
float round(
float
)
Note

Same as syntax 1. Obtain 0 digit after the decimal point by default.
round(float) => round(float, 0)

Syntax 3
double round(
double,
int
)
Parameter
double input number in double
int digits after the returned decimal point (0 by default meaning the number is
rounded to integer)
0..15 valid values
<0 value invalid, will use 0 by default
>15 value invalid, will use 0 by default
Return

double Return a number in double rounded to its nearest integer.

Syntax 4
double round(
double

)
Note

Same as syntax 3. Obtain 0 digit after the decimal point by default.
round(double) => round(double, 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 166

e

value = round(100) /1100
value = round(100.456) /1 100
value = round(0.567) N1
value = round(-100) /I -100
value = round(-100.456) //-100
value = round(-0.567) -1

value = round(100.345, 1) //100.3
value = round(100.345, 2) /1 100.35
value = round(-100.345, 1) //-100.3
value = round(-100.345, 2) /1 -100.35
value = round(-100.345, 16) //-100

Omron TM Collaborative Robot: TMScript Language Manual (1664) 167

e

6.7 random()

Return a random number in float between 0 and 1 or in integer between the lower bound and
the upper bound.

Syntax 1

float random(

)

Parameter
void No parameter

Return
floatReturn a random number in float between 0 and 1.

Note
value = random() 11 0.9473762
value = randomy(() 11 0.7764986
value = random() /1 0.9911129

Syntax 2
int random(
int
)
Parameter
int The upper bound of the random number
Return
int Return a random number in integer between 0 and the upper bound
Note
value = random(10) '8
value = random(10) N1
value = random(10) II'5
value = random(-10) /10 /I The value of the upper bound must be larger than 0.
Syntax 3
int random(
int,
int
)
Parameter
int The lower bound of the random number
int The upper bound of the random number must be larger than the lower bound, or
it will return the value of the lower bound in integer.
Return
int Return a random number in integer between the lower bound and the upper bound.
Note

value = random(5, 10) '8

value = random(5, 10) '8

value = random(5, 10) 16

value = random(5, -1)//5 // The upper bound is smaller than the lower bound. Returned the value of
the lower bound in integer.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 168

e

6.8 sum()

Retu

Syntax 1

rn the sum of the given numbers or the array of numbers.

int sum(
7

)

Parameter (variable parameter amount)
? input value, can be in the type of byte, int, byte[], or int][]

calculate the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return

int Return the sum, in the integer type, of the given numbers.

Syntax 2
double sum(

)

?

Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]
calculate the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return
double Return the sum, in the double type, of the given numbers.
Note
int sum1 =sum(1,2,3,4,5) 1115
int sum2 = sum(1,2,3,4,{5,6,7,8}) /1 36
int sum3 = sum(1,2,3,4,{5,6,7,8},1.2) 1137 // due to putting the int type
double sum4 = sum(1,2,3,4,{5,6,7,8},1.2) /137.2
double sum5 = sum(1,2,3,4,{5,6,7,8},9.2) Il 45.2

double sum6 = sum(1,2,3,4,{5,6,7,8},9.2,sum5,{1.2,3.4}) //95

Omron TM Collaborative Robot: TMScript Language Manual (1664) 169

e

6.9 average()

Return the average of the given numbers or the array of numbers.

Syntax 1
double average(
?,
)
Parameter (variable parameter amount)
? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or
doublel]
calculate the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.
Return
double Return the average, in the double type, of the given numbers.
Note
double avg1 = average(1,2,3,4,5) /13
double avg2 = average(1,2,3,4,{5,6,7,8},9.2) 11 5.02222222222222

double avg3 = average(1,2,3,4,sum({5,6,7,8}),9.2) // 7.53333333333333
double avg4 = average(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 4.52727272727273

Omron TM Collaborative Robot: TMScript Language Manual (1664) 170

e

6.10 stdevp()

2
Return the standard deviation o = JZ (X— ZN—X) /N based on the entire population of the
given numbers or the array of numbers.

Syntax 1
double stdevp(
?,
)
Parameter (variable parameter amount)
? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or
double[]
calculate the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.
Return
double Return the standard deviation, in the double type, of the given numbers.
Note
double stdp1 = stdevp(1,2,3,4,5) /1 1.4142135623731

double stdp2 = stdevp(1,2,3,4,{5,6,7,8},9.2) /1 2.61694384000276
double stdp3 = stdevp(1,2,3,4,sum({5,6,7,8}),9.2) //8.66153694341958
double stdp4 = stdevp(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 2.63165724111457

Omron TM Collaborative Robot: TMScript Language Manual (1664) 171

e

6.11 stdevs()

2
Return the standard deviation s = JZ (X— EN—X) /(N — 1) based on a sample of the given
numbers or the array of numbers.

Syntax 1
double stdevs(
?,
)
Parameter (variable parameter amount)
? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or
double[]
calculate the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.
Return
double Return the standard deviation, in the double type, of the given numbers.
Note
double stds1 = stdevs(1,2,3,4,5) // 1.58113883008419
double stds2 = stdevs(1,2,3,4,{5,6,7,8},9.2) /1 2.77568810287547
double stds3 = stdevs(1,2,3,4,sum({5,6,7,8}),9.2) //9.4882383331505
double stds4 = stdevs(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 2.76010539983201

Omron TM Collaborative Robot: TMScript Language Manual (1664) 172

e

6.12 min()

Return the minimum of the given numbers or the array of numbers.

Syntax 1
int min(
?,
)
Parameter (variable parameter amount)

? input value, can be in the type of byte, int, byte[], or int][]
compare the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return
int Return the minimum, in the integer type, of the given numbers.
Syntax 2
double min(
?,
)
Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]
compare the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return

double Return the minimum, in the double type, of the given numbers.
Note

int min1 = min(1,2,3) 11

int min2 = min(1,2,3,{-4,-5.3,6.2},1.2) Il-5 // due to putting the int type

double min3 = min(1,2,3,{-4,-5.3,6.2},1.2) /5.3
double min4 = min(1,2,3,{-0.2,-0.1,0.1},9.2) /0.2

Omron TM Collaborative Robot: TMScript Language Manual (1664) 173

e

6.13 max()

Return the maximum of the given numbers or the array of numbers.

Syntax 1
int max(
?,
)
Parameter (variable parameter amount)

? input value, can be in the type of byte, int, byte[], or int][]
compare the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return
int Return the maximum, in the integer type, of the given numbers.
Syntax 2
double max(
?,
)
Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]
compare the value of each parameter or each element in the array. It returns
an error and stops if it comes with a non-numeric type.

Return
double Return the maximum, in the double type, of the given numbers.
Note

int max1 = max(1,2,3) /13

int max2 = max(1,2,3,{-4,-5.3,6.2},1.2) 6 /I due to putting the int type

double max3 = max(1,2,3,{-4,-5.3,6.2},1.2) 116.2

double max4 = max(1,2,3,{-0.2,-0.1,0.1},9.2) /9.2

Omron TM Collaborative Robot: TMScript Language Manual (1664) 174

e,

6.14 d2r()

Convert the value of degree to radian

Syntax 1
float d2r(
float
)
Parameter
floatInput the value of degree in float
Return
floatReturn the value of radian in float

Syntax 2
double d2r(
double
)
Parameter
double Input the value of degree in double
Return
double Return the value of radian in double
Note
value = d2r(1) /1 0.017453292

Omron TM Collaborative Robot: TMScript Language Manual (1664) 175

e

6.15 r2d()

Convert the value of degree to radian to degree

Syntax 1
float r2d(
float
)
Parameter
floatInput the value of radian in float
Return
floatReturn the value of degree in float

Syntax 2
double r2d(
double
)
Parameter
double Input the value of radian in double
Return
double Return the value of degree in double
Note
value = r2d(1) /1 57.29578

Omron TM Collaborative Robot: TMScript Language Manual (1664) 176

e

6.16 sin()
Return the sine of the input value of degree

Syntax 1
float sin(
float
)
Parameter
floatInput the value of degree in float
Return
floatReturn the sine of the input value of degree in float

Syntax 2
double sin(
double
)
Parameter
double Input the value of degree in double
Return
double Return the sine of the input value of degree in double
Note
value = sin(0) 110
value = sin(15) /1 0.25881904
value = sin(30) 110.5
value = sin(60) /1 0.8660254
value = sin(90) N1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 177

e

6.17 cos()

Return the cosine of the input value of degree

Syntax 1
float cos(
float

)

Parameter

floatInput the value of degree in float

Return

floatReturn the cosine of the input value of degree in float

Syntax 2
double cos(
double
)

Parameter

double Input the value of degree in double

Return

double Return the cosine of the input value of degree in double

Note
value = cos(0)
value = cos(15)
value = cos(30)
value = cos(45)
value = cos(60)

11

/1 0.9659258
/1 0.8660254
//0.70710677
110.5

Omron TM Collaborative Robot: TMScript Language Manual (1664)

178

e

6.18 tan()
Return the tangent of the input value of degree

Syntax 1
float tan(
float
)
Parameter
floatInput the value of degree in float
Return
floatReturn the tangent of the input value of degree in float

Syntax 2
double tan(
double
)
Parameter
double Input the value of degree in double
Return
double Return the tangent of the input value of degree in double
Note
value = tan(0) 110
value = tan(15) 11 0.2679492
value = tan(30) /1 0.57735026
value = tan(45) N1
value = tan(60) /1 1.7320508

Omron TM Collaborative Robot: TMScript Language Manual (1664) 179

e

6.19 asin()
Return the arcsine of the input value in degree

Syntax 1
float asin(
float
)
Parameter
floatInput the sine value in float between -1 and 1
Return
floatReturn the arcsine of the input value of degree in float

Syntax 2
double asin(
double
)
Parameter
double Input the sine value in double between -1 and 1
Return
double Return the arcsine of the input value of degree in double
Note
value = asin(0) 110
value = asin(0.258819) //14.999998
value = asin(0.5) 1130
value = asin(0.8660254) // 60
value = asin(1) 1190
value = asin(sin(15)) 1115
value = asin(sin(60)) /1 60

Omron TM Collaborative Robot: TMScript Language Manual (1664) 180

e

6.20 acos()

Return the arccosine of the input value in degree

Syntax 1
float acos(
float
)
Parameter
floatInput the cosine value in float between -1 and 1
Return
floatReturn the degree value in float

Syntax 2

double acos(
double

)

Parameter
double Input the cosine value in double between -1 and 1

Return
double Return the degree value in double

Note
value = acos(1) 110
value = ac0s(0.9659258) // 15.000003
value = ac0s(0.8660254) // 30.000002
value = acos(0.7071068) // 44.999996
value = acos(0.5) 11 60

value = acos(cos(15)) /1 15.000003
value = acos(cos(30)) /1 30.000002
value = acos(cos(45)) Il 45

value = acos(cos((double)15)) // 14.999999999999996
value = acos(cos((double)30)) // 29.999999999999993

Omron TM Collaborative Robot: TMScript Language Manual (1664) 181

e

6.21 atan()

Return the arctangent of the input value in degree

Syntax 1
float atan(
float
)
Parameter
floatInput the arctangent value in float
Return
floatReturn the degree value in float

Syntax 2
double atan(
double
)
Parameter
double Input the arctangent value in double
Return
double Return the degree value in double
Note
value = atan(0) 110
value = atan(0.2679492) // 15
value = atan(0.5773503) // 30.000002
value = atan(1) Il 45
value = atan(1.732051) //60.000004

value = atan(tan(30)) 11 30
value = atan(tan(60)) /1 60

Omron TM Collaborative Robot: TMScript Language Manual (1664) 182

e

6.22 atan2()
Return the arctangent of the quotient of it arguments

Syntax 1

float atan2(
float,
float

)

Parameter
floatInput a number in float representing the Y coordinate
floatInput a number in float representing the X coordinate

Return
floatReturn the degree value in float

Syntax 2

double atan2(
double,
double

)

Parameter
double Input a number in double representing the Y coordinate
double Input a number in double representing the X coordinate

Return
double Return the degree value in double
Note
value = atan2(2, 1) /1 63.434948
value = atan2(1, 1) Il 45
value = atan2(-1, -1) Il -135
value = atan2(4, -3) /1 126.869896

Omron TM Collaborative Robot: TMScript Language Manual (1664) 183

e

6.23 log()
Return the natural logarithm of the input value

Syntax 1
float log(
float,
double
)
Parameter
floatInput value in float
double The base of the logarithm
Return
floatReturn the logarithm of the input value and the base in float

Syntax 2

double log(
double,
double

)

Parameter
double Input value in double
double The base of the logarithm

Return
double Return the logarithm of the input value and the base in double
Note
value =10g(16, 2) 14
value =10g(16, 8) /1 1.3333334
value =1og(16, 10) //1.20412
value =1o0g(16,16) /1
Syntax 3
float log(
float
)
Parameter
floatInput value in float
Return

floatReturn the natural logarithm of the input value and the base e in float

Syntax 4
double log(
double
)
Parameter
double Input value in double
Return
double Return the natural logarithm of the input value and the base e in double
Note
value = log(16, 2) 14

Omron TM Collaborative Robot: TMScript Language Manual (1664) 184

e

value = log(16) 11 2.7725887
value =10g(2) 11 0.6931472
value = log(16)/log(2) // 2.7725887/0.6931472 = 3.9999998557305

Omron TM Collaborative Robot: TMScript Language Manual (1664) 185

e

6.24 log10()
Return the logarithm of the input value with the base 10

Syntax 1
float 1og10(
float
)
Parameter
floatInput value in float
Return
floatReturn the logarithm of the input value with the base 10 in float

Syntax 2
double log10(
double
)
Parameter
double Input value in double
Return
double Return the logarithm of the input value with the base 10 in double

Note
value =10g(16, 10) //1.20412
value =10g10(16) 111.20412
value =10g(500, 10) //2.69897
value =10g10(500) //2.69897

Omron TM Collaborative Robot: TMScript Language Manual (1664) 186

e

6.25 norm2()

Return the second norm of a specified vector.

Syntax 1
float norm2(
float(]
)
Parameter
float(] A vector whose second norm (or called Euclidean norm, vector magnitude)
is to be found.
Return
float the second norm (or called Euclidean norm, vector magnitude) of a
specified vector
Note

i=N
Il = > w2
i=1

float[] vector1 = {3,4}
float[] vector2 = {3,4,5}
float[] vector3 = {3,4,5,6,8}

value = norm2(vector1) 15
value = norm2(vector2) /1 7.071068
value = norm2(vector3) 11 12.247449

Omron TM Collaborative Robot: TMScript Language Manual (1664) 187

e

6.26 dist()

Return the distance between the two coordinates.

Syntax 1
float dist(
float([],
float(]
)
Parameter
float[] The first coordinate {X1iinmy Yignm) Zigmm)y RXie) RYiey RZie}
float[] The second coordinate {X2gnm) Y2gnm) Z20nm) RXz¢) RYzey RZyc}
Return
float The distance between the two coordinates
Note
float[] ¢1 = {100,200,100,30,50,20}
float[] c2 = {100,100,100,50,50,10}
value = dist(c1, c2) /1 100

Omron TM Collaborative Robot: TMScript Language Manual (1664) 188

e

6.27 trans()

Return the displacement and rotation angle from one specified point to another point.

Syntax 1
float[] trans(
float([],
float(],
bool
)
Parameter
float[] First Point {Xl(mm) Yl(mm) Zl(mm) RX1(°) RY1(°) RZl(")}
float[] Second Point{Xz(mm) Yzonm) Zzgmm) RXoe) RYoey RZy)}
bool The reference coordinate
false Refer to the robot’s base(default)
true Refer to the first point
Return
float[] The displacement and rotation angle from first point to second point
{Xtrans Ytrans Ztrans RXtrans RYtrans RZtrans}
Return an empty array if unable to calculate.
Syntax 2
float[] trans(
float([],
float[]
)
Note

Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.

Original Transformation Matrix = [lg [1’

cos(RZy,) cos(RY,) —sin(RZ,)cos(RX,) + cos(RZ,)sin(RY,)sin(RX,) sin(RZ,)sin(RX,) + cos(RZ,)sin(RY,)cos(RXy,)
R, = | sin(RZ,)cos(RY,) cos(RZ,)cos(RX,) + sin(RZ,)sin(RY,)sin(RX,) —cos(RZ,)sin(RX,) + sin(RZ,)sin(RY,)cos(RXy,)
—sin(RY,) cos(RYy)sin(RX,) cos(RYy)cos(RX,)

Py
1
Second Point = [IE)Z

First Point = [}f)l
P,
1

If reference coordinate is false (reference coordinate is Robot Base)
Pirans = P, — Py .
Rirans = Ry * Ry

If reference coordinate is true (reference coordinate is First Point)
Pirans = Rl_ll* (P, — Py)
Rirans = R1 "~ * Ry

float[] var_P1 = {100, -200, 300, 10, 20, 60}

float[] var_P2 = {-400, 200, 50, -20, 30, -45}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 189

e

float[] var_trans_RB = trans(var_P1, var_P2)
/1 {-500,400,-250,-24.615868,-15.565178,-88.6 13686}
float[] var_trans_i = trans(var_P1, var_P2, true)
/1 {176.10095,588.32776,-308.80237,3.7459252,23.13792,-92.46916}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 190

e

6.28 inversetrans()

Return the displacement and rotation angle {x, y, z, rx, ry, rz} opposite to the input displacement
and rotation angle {x, y, z, rx, ry, rz}.

Syntax 1
float[] inversetrans(
float(],
bool
)
Parameter
float(] The input displacement and rotation angle {X, Y, Z, RX, RY, RZ,}
bool The reference coordinate
false Refer to the robot’s base(default)
true Refer to the input displacement and the rotation angle
Return
float(] The displacement and rotation angle

{Xinv Yinv Zinv RXinv RYinv RZinv}
opposite to the input displacement and rotation angle
Xo Y, Z, RX, RY, RZ}
Return an empty array if unable to calculate.
Syntax 2
float[] inversetrans(
float[]
)
Note
Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.
R P]

Original Transformation Matrix = 0 1

cos(RZ,) cos(RY,) —sin(RZ,)cos(RX,) + cos(RZ,)sin(RY,)sin(RX,) sin(RZ,)sin(RX,) + cos(RZ,)sin(RY,)cos(RXy,)
R, = | sin(RZ,)cos(RY,) cos(RZ,)cos(RX,) + sin(RZ,)sin(RY,)sin(RX,) —cos(RZ,)sin(RX,) + sin(RZ,)sin(RY,)cos(RX,)
—sin(RY,) cos(RY,)sin(RX,) cos(RYy)cos(RX,)

. . R; P;
Initial Point ="t !
itial Point 0 1]

If reference coordinate is false (reference coordinate is Robot Base)
Py = _Pi1
Riny = R;

If reference coordinate is true (reference coordinate is the input {x, y, z, rx, ry, rz}, which is
equivalent to inverse of Transformation Matrix)

Py = Ri_1 *(—F)

Riny = Ri_l

float[] var_P1 = {100, -200, 300, 10, 20, 60}
float[] var_inv_RB = inversetrans(var_P1)
/1 {-100,200,-300,12.483133,-18.590115,-60.283367}
float[] var_inv_i = inversetrans(var_P1, true)
/1 {218.38095,142.13216,-268.52972,12.483133,-18.590115,-60.283367}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 191

e

6.29 applytrans()

Return the terminal point computed by applied the displacement and rotation angle to the
specified point.

Syntax 1
float[] applytrans(
float([],
float[],
bool
)
Parameter
float(] Initial point {X; Y; Z; RX; RY; RZ}
float(] the displacement and rotation angle {X, Y, Z, RX, RY, RZ,}
bool The reference coordinate
false Refer to the robot’s base(default)
true Refer to the initial point
Return
float(] the terminal point {X; Y: Z; RX; RY; RZ:} computed by applied the
displacement and rotation angle to the initial point
Return an empty array if unable to calculate.
Syntax 2
float[] applytrans(
float[],
float(]
)
Note

Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.

Original Transformation Matrix = [lg [1’

lcos(RZn) cos(RY,) —sin(RZ,)cos(RX,) + cos(RZ,)sin(RY,)sin(RX,) sin(RZ,)sin(RX,) + cos(RZ,)sin(RY,)cos(RX,)

R, = | sin(RZ,)cos(RY,) cos(RZ,)cos(RX,) + sin(RZ,)sin(RY,)sin(RX,) —cos(RZ,)sin(RX,) + sin(RZ,)sin(RY,)cos(RXy,)

—sin(RY,) cos(RYy)sin(RX,) cos(RYy)cos(RX,)
. .. _[R; P
Initial Point = 0 1]

If reference coordinate is false (reference coordinate is Robot Base)
Py = P; + Prrans
R¢ = Rirans * R;

If reference coordinate is true (reference coordinate is Initial point)
Py = Py + R; * Pyrans
Ry = R; * Rirans

float[] var_P1 = {100, -200, 300, 10, 20, 60}
float[] var_P2 = {-400, 200, 50, -20, 30, -45}

float[] var_trans_RB = trans(var_P1, var_P2)

/1 {-500,400,-250,-24.615868,-15.565178,-88.6 13686}
float[] var_trans_i = trans(var_P1, var_P2, true)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 192

e

/1 {176.10095,588.32776,-308.80237,3.7459252,23.13792,-92.46916}

float[] var_apply_RB = applytrans(var_P1, var_trans_RB)
/1 {-400,200,50,-20,30,-44.999996}

float[] var_apply_i = applytrans(var_P1, var_trans_i, true)
/1 {-400,200,50.000015,-20,30,-45}

float[] var_inv_RB = inversetrans(var_P1)
/1 {-100,200,-300,12.483133,-18.590115,-60.283367}
float[] var_inv_i = inversetrans(var_P1, true)
/1 {218.38095,142.13216,-268.52972,12.483133,-18.590115,-60.283367}

float[] var_apply_1 = applytrans(var_P1, var_inv_RB)
11{0,0,0,-4.8045007E-07,1.4295254E-07,4.8365365E-07}

float[] var_apply_2 = applytrans(var_P1, var_inv_i, true)
/1 {-3.845248E-06,6.1641267E-06,1.4917891E-06,-1.8922562E-07,-2.1415798E-07,6.352311E-07}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 193

e

6.30 interpoint()

Return the interpolate point between two points according to the specified points and ratio

Syntax 1
float[] interpoint(
float([],
float([],
float
)
Parameter
float[] First Point {Xl(mm) Yl(mm) Zl(mm) RX1(°) RY1(°) RZl(")}
float[] Second Point {Xo(mm) Yzmum) Zzmm) RXpe) RYzey RZye}
float Ratio
Return
float(] the linear interpolate point {X; Y; Z; RX; RY; RZ;} between initial point
and endpoint according to the ratio.
Return an empty array if unable to calculate.
Note

X, Y, Z RX, RY, RZ)
=({X, Y, Z, RX, RY, RZ,}—{X, Y, Z, RX, RY, RZ))x Ratio
+{X Y. Z, RX, RY, RZ}

float[] var_P1 = {-388.3831,-199.8061,367.0702,177.4319,1.717448,-46.02005}
float[] var_P2 = {-436.9584,115.7343,371.4378,179.4419,-42.86601,-96.91867}
float[] interp = interpoint(var_P1, var_P2, 0.5)

/1 {-412.67075,-42.035904,369.254,172.91898,-20.690556,-69.33843}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 194

e,

6.31 changeref()

Return the new coordinate value described with the new base converted from the original
coordinate value through the base conversion. In the process of the conversion, the physical
position of the original point in the world of the coordinates will remain the same, the change
takes effects on its descriptions of the reference coordinates and the corresponding
coordinate values.

Syntax 1
float[] changeref(
float([],
float([],
float(]
)
Parameter
float(] The coordinate value of the original point {X, Y, Z, RX, RY, RZ,},
float(] The original reference base {Xoa Yoa Zoa RXoa RYoa RZyu}a
float(] The new reference base {X,, Y, Z, RX, RY, RZ,};
Return
float(] The coordinate value of the new point
{an an an Ran Ran Ran}B
Return an empty array if unable to calculate.
Note
The coordinate value of the original point /. The coordinate value of the new point
X,Y,Z,RX,RY,RZ}, \ N {X, Y, Z, RX, RY, RZ},
/7 \)
N\

(B)

The robot coordinate

(A)

The original reference coordinate

X

P1={-431.927, -140.6103, 368.7306, -179. 288, -0.6893783, -105.8449}

RobotBase = {0, 0, 0, 0, O, 0}

base1 ={-431.93, -140.61, 368.73, -57.70, -44.98, 33.62}

float[] fO = changeref(Point["P1"].Value, Base["RobotBase"].Value, Base["base1"].Value)
// f0 = {0.0020519744,1.9731047E-05,-0.0022721738,113.94231,14.9346,-123.19886}

/I Convert the value of "P1" in the base "RobotBase" to the value of a point in the base "basel"

Syntax 2
float[] changeref(
float([],
float[]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 195

e,

)
Parameter

float(] The coordinate value of the original point {X, Y, Z, RX, RY, RZ,},4

float(] The original reference base {X,qa You Zoa RXoa RYoa RZya}y
Return

float(] The coordinate value of the new point

{an Yor Znr RXnr RV Ran}R
Return an empty array if unable to calculate.

Note

The usage is the same as Syntax1’s except assuming the robot base
{0 0 0 0 0 0}z asthe default new reference base.

The coordinate value of the original point /. The coordinate value of the new point
XYZRXRY,RZY, 0N Q KVZRKRYRZ,
/7
\ 7
\
\
\ N
Y
(A) (B)
The original reference coordinate The robot coordinate
X
X

base1 ={-431.93, -140.61, 368.73, -57.70, -44.98, 33.62}

f0 = {0.002052, 0.000020, -0.002272, 113.9423, 14.9346, -123.1989}
float[] f1 = changeref(fO, Base["base1"].Value)

/1 f1 = {-431.927,-140.6103,368.7306,-179.288,-0.6893424,-105.84492}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 196

e

6.32 points2coord()

Based on the input points, calculate the coordinate plane of the input points and return the
values of the plane parameters converted by the three points on the plane.

Syntax 1

float[] points2coord(
float(],
float(],
float(]

)

Parameters
float(] The origin coordinates in the coordinate plane

X1@mm) Yomm) Z1omm) RX1¢9) RYa¢) RZ3 ()
float[] Any point on the X axis in the plane X;mm) Ya2(nm) Z2(mm) RX2¢) RY2(e) RZ (o)
float[] Any point on the +X and +Y in the plane
X3(mm) Y3(mm) Z3(mm) RX3(0) RY3(0) RZ3(0)
* The input points above are required to be described in the same base.
Return
float[] The value of the plane parameter formed by the three points on the plane

 Xpomm) Yoanm) Zpamm) RXpe) RYpe) RZpco)
that coincided with the origin of the plane

X 1(mm) Yl(mm) Z 1(mm)
and calculated with the corners of

Xz(mm) Yz(mm) Zz(mm) RXz(o) RYZ(O) RZZ(O)
and

X3(mm) Yamm) Z3(mm) RX3() RY3(e) RZ3(v)
Note

1% paimt
0.0.0 of the
base surface
2™ paint

Ay paint locatédon 37 paint)
¥ axig of the bage sutface Aniy paint located on
tha base surface

Supposed there are three points: P1, P2, and P3

Point["P1"].Value = {389.9641,-4.797323,416.2175,177.3384,0.9190881,91.07789}
Point["P2"].Value = {365.0222,137.3036,423.2249,177.4598,0.9549707,112.4033}
Point["P3"].Value = {546.7307,94.02614,385.1812,176.3468,0.5975906,95.82078}

Base["points2coord_b1"].Value = points2coord(Point["P1"].Value, Point["P2"].Value,
Point["P3"].Value)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 197

e

/1{389.9641,-4.797323,416.2175,-168.6551,-2.780696,99.9553}
Point["P4"].Value = {0,0,0,0,0,0}
ChangeBase("points2coord_b1")
PTP("CPP",Point["P4"].Value,10,200,0,false)

Syntax 2
float[] points2coord(
float, float, float,
float, float, float,
float, float, float

)
Parameter
float, float, float The origin coordinates in the coordinate plane to calculate
X 1(mm) Yl(mm) Z 1(mm)
float, float, float The coordinates of any point on the X axis in the coordinate
plane to calculate X;mm) Y2imm) Z2(mm)
float, float, float The coordinates of any point in the coordinate plane to calculate
X 3(mm) Y3(mm) Z 3(mm)
* The input points above are required to be described in the same base.
Return
float(] Definition parameters of the coordinate plane to calculate.
Xpmm) Ypamm) Zpmm) RXp) RYp() RZp()
Note

Z axis

15t Base
0,0,0 of the Base surface

(x,y,2)
> Y axis

x,y,2)

3" Base

Any point located on the
(x,y,2) base surface

2™ Base
Any point located on X

Base["points2coord 2"].Value = points2coord(260,0,360,260,100,360,100,0,360)
/1 {260,0,360,0,0,90}

Point["P1"].Value = {0,0,0,180,0,0}

ChangeBase("points2coord_2")

PTP("CPP",Point["P1"].Value,10,200,0,false)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 198

e

6.33 intercoord()

Convert two input planes into a new plane.

Syntax 1

float[] intercoord(
float(],
float[]

)

Parameters
float[] The first input plane X;mm) Yigmm) Z1imm) RX1) RY1(e) RZ1 ()
float[] The second input plane X,¢umy Yaimm) Z2¢nm) RX2) RY2¢) RZ5 (%
* The input points above are required to be described in the same base.

Return
float[] The new plane converted by the two input planes.

X3emm) Yaemm) Z3(mm) RX3(e) RY3(e) RZ3(o)
Note

X3 = (%, +x)/2

y3=(y1+y2)/2

23 = (21 + 2,)/2

3= (2 —x,Y2—y1.22— 1)

J3 = k1Xi3

k3 = i3x]3 (x1,¥1,21)

& Y
J1 (x3,¥3,23)
kl 4\ A
L3
J3 ~ (x2,¥2,23)

k3 N
@ L2

J2

ka

Supposed there are vision landmark jobs: vb_1 and vb_2
vb_1 outputs Base["vision_vb_1"].Value = {-69.73,380.02,141.79,-176.11,1.13,-121.27}
vb_2 outputs Base["vision_vb_2"].Value = {58.81,613.03,140.7,171.62,-0.89,0.8}

Base["'mix_base"].Value = intercoord(Base|["vision_vb_1"].Value,

Base["vision_vb_2"].Value)
/1 {-5.460001,496.52502,141.245,176.06546,0.23468152,61.116673}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 199

e

6.34 coorshift()

Calculate a new coordinate by adding a shift value to the original coordinate, where the shift
depends on the position and direction of the original coordinate.

Syntax 1

float[] coordshift(
float[],
float(]
)
Parameters
float[] base value Xmm) Yanm) Zmm) RX () RY() RZ)
float[] shift value Xmm) Yanm) Zmm) RX) RY() RZ()
Return
float[] the new coordinate value calculated by the given position and direction of
the coordinate and the shift value. Xnm) Yonm) Zanm) RX() RY() RZ (v

Note

)

1 Shift Base
Current Base

Base["base1"].Value = {200,100,300,0,15,0}
Base["base2"].Value = {0,0,0,0,0,-90}
float[] var_shift = {10,50,0,0,0,0}

Base["base2"].Value = coordshift(Base["base2"].Value, var_shift)
11{50, -10, 0, 0, 0, -90}

float[] var_baseNew = coordshift(Base["'base1"].Value, Base["'base2"].Value)
/1 {248.2963, 90, 287.05905, -15, 0, -90}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 200

e

7. File Functions
® The file functions are capable of operations related to file reading, writing, or inquiry.

® File path
1. Local path. Available in the directories named TextFiles, XmiFiles, and TMcraft only.
FileName.txt The directory default to .\TextFiles

(File path the same as .\TextFiles\FileName.txt)
\TextFiles\FileName.txt The file is in the local directory named TextFiles.
AXmlFiles\FileName.xml The file is in the local directory named XmilFiles.

A\XmlFiles\folder\file The subdirector is in the local directory named XmlFiles.
.\folder Unavailable.
ATextFiles\..\..\folder Unavailable.
Void for absolute paths.
C:\file1 Void.
D:\folder\file2 Void.

\TextFiles\FileName.txt Void.
2. External device path. Available to USB drives or SSD labelled TMROBOT.
\USB\TMROBOT The root directory of the external USB drive.
3. Remote path. Available with the Network service in TMflow.
\\127.0.0.1\shared SMB / CIFS
ftp://127.0.0.1 FTP
The path is not case sensitive. For example, the paths below all point to the same file.
\TextFiles\FileName.txt
Aextfiles\fileName.txt
A\Textfiles\Filename. TXT
® The path is available for pointing to subdirectories such as:
subfolderi\file
A\TextFiles\subfolderl\subfolder2\file
AXmlFiles\subfolder\file
\USB\TMROBOT\subfolder\file
\\127.0.0.1\shared\subfolder\file
® The maximum file size is limited to 10MB (10485760 Bytes).
® The type of the array to read or write depends on the definition of the array.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 201

e

7.1 File_ReadBytes()
Read the file content and return in the type of byte([].

Syntax 1
byte[] File_ReadBytes(
string
)
Parameter
string File path
Return
byte[] Return the file content in the type of byte[].
Note

.\TextFiles\SampleFilel. txt
1] 1Hello World!
2 1lHello TM Robot!

byte[] var_bb1 = File_ReadBytes("sampleFile1.txt")

/1 {0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64,0x21,0x0D,0x0A,
0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x54,0x4D,0x20,0x52,0x6F,0x62,0x6F,0x74,0x21}

byte[] var_bb2 = File_ReadBytes(".\TextFiles\SampleFile1.txt")

/1 {0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64,0x21,0x0D,0x0A,
0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x54,0x4D,0x20,0x52,0x6F,0x62,0x6F,0x74,0x21}

byte[] var_bb3 = File_ReadBytes("C:\SampleFile1.txt") // Error. Void for absolute paths.

byte[] var_bb4 = File_ReadBytes(".\SampleFile1.txt")

/I Error. The file is in the local directory named TextFiles or XmlFiles.

byte[] var_bb5 = File_ReadBytes("SampleFileXX.txt")// Error. The file does not exist.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 202

e

7.2 File_ReadText()
Read the file content and return in the type of string.

Syntax 1
string File_ReadText(
string
)
Parameter
string File path
Return
string Return the file content in the type of string.
Note

.\TextFiles\SampleFilel. txt
1] 1Hello World!
2 1lHello TM Robot!

string var_s1 = File_ReadText("sampleFile1.txt")

// "1Hello World\uODOA1Hello TM Robot!"

string var_s2 = File_ReadText(".\TextFiles\SampleFile1.txt")
// "1Hello World\uODOA1Hello TM Robot!"

* \UODOA denotes a new line character but not a string value.

string var_s3 = File_ReadText("C:\SampleFile1.txt")

Il Error. Void for absolute paths.

string var_s4 = File_ReadText(".\SampleFile1.txt")

/I Error. The file is in the local directory named TextFiles or XmlFiles.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 203

e

7.3 File_ReadLines()

Read the file content and return in the type of string separated by new line characters .

Syntax 1
string[] File_ReadLines(
string
)
Parameter
string File path
Return
string[] Return the file content in the type of string separated by new line characters.

Syntax 2
string[] File_ReadLines(
string,
int,
int
)
Parameter
string File path
int The number of the line to start to read
int The amount of the lines to read
Return

string[] Return the file content in the type of string separated by new line characters.
If the number of the line to start to read <= 0, it returns an empty array.
If the number of the line to start to read > the total number of lines, it
returns an empty array.
If the amount of the lines to read <= 0 , it returns from the first line to the
last line.
If the amount of the lines to read > the total number of lines , it returns from
the first line to star to read to the last line.
Syntax 3
string[] File_ReadLines(
string,
int
)
Note
Same as Syntax 2 with the parameter of amount of the lines to read defaults to 0 and
returns to the last line. File_ReadLines(string,int,int) => File_ReadLines(string,int,0)

Note

.\TextFiles\SampleFile2. txt
1] 2Hello World!

2| 2Hello TM Robot!

3 2Hi TM Robot!

string[] var_ss = {""}
var_ss = File_ReadLines("SampleFile2.txt") /1 {"2Hello World!", "2Hello TM Robot!", "2Hi TM

Omron TM Collaborative Robot: TMScript Language Manual (1664) 204

e

Robot!"}
var_ss = File_ReadLines("SampleFile2.txt", 1, 2)// {"2Hello World!", "2Hello TM Robot!"}
var_ss = File_ReadLines("SampleFile2.txt", 2, 2)// {"2Hello TM Robot!", "2Hi TM Robot!"}
var_ss = File_ReadLines("SampleFile2.txt", 3, 2)// {"2Hi TM Robot!"} // Tops the total number of
lines. Returns to the last line.

var_ss = File_ReadLines("SampleFile2.txt", 0) {3 Il empty array
var_ss = File_ReadLines("SampleFile2.txt", 4) Iy Il empty array
int var_len = Length(var_ss) 110

var_ss = File_ReadLines("SampleFile2.txt", 3, 0) /I {"2Hi TM Robot!"} // Returns from line
3 to the last line.

.\TextFiles\SampleFile3. txt
1]

var_ss = File_ReadLines("SampleFile3.txt") // {"}// var_ss[0] ="
var_len = Length(var_ss) N1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 205

e

7.4 File_NextLine()

Record the last read file path, and continue to read the next line of the file content or open the

file to read.
Syntax1
string File_NextLine(
string
)
Parameter
string File path
Return
string If the same as the last read file path, it returns the next line of the file
content.
If different from the last read file path, it opens the file and returns the first
line of the file content. If read the end of the file, it returns an empty string.
Syntax 2
string File_NextLine(
string,
bool
)
Parameter
string File path
bool Whether open the file to read or not
false Try the file path. Continue to read the next line if the same. Open
the file to read if different.
true Open the file and read the first line.
Return
string Whether open the file to read or not false
If the same as the last read file path, it returns the next line of the file
content.
If different from the last read file path, it opens the file and returns the
first line of the file content.
Whether open the file to read or not true
It opens the file and returns the first line of the file content.
If read the end of the file, it returns an empty string.
Syntax 3
string File_NextLine(
)
Parameter
void No parameter
Return
string Return the next line of the file content in the last record to read or returns an
empty string if not read.
Note
.\TextFiles\SampleFile4. txt .\TextFiles\SampleFile5. txt
1] 4Hello World! 1] S5Hello World!
2| 2| 5Hello TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (1664) 206

e

3| 4Hello TM Robot! 3| 5Hi TM Robot!
stringvar_ s =""
var_s = File_NextLine() " /I Not open the file to read.
var_s = File_NextLine("SampleFile4.txt") //"4Hello World!"
var_s = File_NextLine("SampleFile4.txt") /™ /I Continue to read the next line.

var_s = File_NextLine("SampleFile5.txt") // "5Hello World!"

/I Different file path. Open the file to read.
var_s = File_NextLine("SampleFile4.txt") //"4Hello World!"

/I Different file path. Open the file to read.

var_s = File_NextLine("SampleFile4.txt") /™ /I Continue to read the next line

var_s = File_NextLine("SampleFile4.txt") //"4Hello TM Robot!"

var_s = File_NextLine("SampleFile4.txt") /™ /I Continue to read the next line (to the
EOF)

var_s = File_NextLine("SampleFile4.txt", true) // "4Hello World!"

/I Open the file to read the first line.
var_s = File_NextLine("SampleFile4.txt", true) // "4Hello World!"

/I Open the file to read the first line.
var_s = File_NextLine("SampleFile4.txt", false) /™

/I Continue to read the next line
var_s = File_NextLine() Il "4Hello TM Robot!"

* To determine a blank line or the end of the file, use syntax 4 with the size of string]].
* Or, use File_NextEOF() to determine the end of the file.

Syntax 4
string[] File_NextLine(
string,
int
)
Parameter
string File path
int Parameters to read
0 Try the file path. Continue to read the next line if the same. Open the
file to read if different.
1 Open the file and read the first line.
2 Open the file without reading. Returns a empty array.
Return

string[] Return strings in the next line of the file content in an array.
If the array size is 1, it denotes read the strings in the next line.
If the array size is 0, it denotes read the end of the file already.

Syntax 5
string[] File_NextLine(
int
)
Parameter
int Parameters to read

0 Try the file path. Continue to read the next line if the same. Open the
file to read if different.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 207

1 Open the file and read the first line.
2 Open the file without reading. Returns a empty array.

Return
string([] Return strings in the next line of the file content in an array in the last
record to read or an empty string array if not read.
If the array size is 1, it denotes read the strings in the next line.
If the array size is 0, it denotes read the end of the file already.
Note

.\TextFiles\SampleFile4. txt
1] 4Hello World!

2|

3 4Hello TM Robot!

string[] var_ss = {""}
var_ss = File_NextLine(0)

var_ss = File_NextLine("SampleFile4.txt",
var_ss = File_NextLine("SampleFile4.txt",
var_ss = File_NextLine("SampleFile5.txt",

var_ss = File_NextLine("SampleFile4.txt",

var_ss = File_NextLine("SampleFile4.txt",

int var_len = Length(var_ss)

var_ss = File_NextLine("SampleFile4.txt",
var_ss = File_NextLine("SampleFile4.txt",

var_len = Length(var_ss)

var_ss = File_NextLine("SampleFile4.txt",

.\TextFiles\SampleFile5. txt
1| 5SHello World!

2| S5Hello TM Robot!

3 5Hi TM Robot!

114{} /I Not open the file to read.

0)// {"4Hello World!"}
0)// {""}// Continue to read the next line.
0)// {"5Hello World!"}

/I Different file path. Open the file to read.
0)// {"4Hello World!"}

/I Different file path. Open the file to read.
0)// {"} /I Continue to read the next line.

11

0)// {"4Hello TM Robot!"}
0)/1 ¢

/I Continue to read the next line (to the EOF)

110
1)1/ {"4Hello World!"}
/IOpen the file and read the first line.

var_ss= File_NextLine("SampleFile4.txt", 2) // {}

var_len = Length(var_ss)

var_ss = File_NextLine("SampleFile4.txt")

var_ss = File_NextLine(0)

var_ss = File_NextLine(0)
var_ss = File_NextLine(0)

//Open the file without reading.

/10
/I {"4Hello World!"}

/I Continue to read the next line.
1m{"}

/I Continue to read the next line.
/[{"4Hello TM Robot!"}

I

Omron TM Collaborative Robot: TMScript Language Manual (1664)

208

e

7.5 File_NextEOF()

Try the last read file path for reading to the end of the file already.

Syntax 1
bool File_NextEOF(
)
Parameter
void No parameter but needs to use with File_NextLine()
Return
bool Return true if not read.
false Not read to the end of the file.
true Not open the file or read to the end of the file.
Note

.\TextFiles\SampleFile4. txt
1] 4Hello World!

2

3] 4Hello TM Robot!

bool var_eof = File_NextEOF() Il true /I Not open the file to read.
string var_ s =""

var_s = File_NextLine("SampleFile4.txt") //"4Hello World!"

var_eof = File_NextEOF() I/ false

var_s = File_NextLine("SampleFile4.txt") /™

var_eof = File_NextEOF() I/ false

var_s = File_NextLine("SampleFile4.txt") // 4Hello TM Robot!"

var_eof = File_NextEOF() Il true

var_s = File_NextLine("SampleFile4.txt") /™

File_NextLine("SampleFile4.ixt", 2) /I Open the file without reading.
var_eof = File_NextEOF() I/ false

Omron TM Collaborative Robot: TMScript Language Manual (1664) 209

e

7.6 File_WriteBytes()
Put the data content into an array in byte and write to a file.

Syntax 1
bool File_WriteBytes(

string,

?,

int,

int,

int
)
Parameter

string File path

? Values to write. Eligible for integers, floating-point numbers, Booleans,
strings, or arrays.

Values will be converted with Little Endian, and strings will be converted

with UTFS8.
int Overwrite the file or append to the file.
0 Over the file. If not existed, create a new file.
1 Append to the file. If not existed, create a new file.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
bool true Write successfully.
false Write unsuccessfully.
Syntax 2
bool File_WriteBytes(
string,
?,
int,
int
)
Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.
File_WriteBytes(string,?,int,int) => File_WriteBytes(string,?,int,int,0)
Syntax 3
bool File_WriteBytes(

string,
?1
int

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 210

e

up to the data ends.
File_WriteBytes(string,?,int) => File_WriteBytes(string,?,int,0,0)
Syntax 4
bool File_WriteBytes(

string,
?

)
Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 overwriting
the file up to the data ends.
File_WriteBytes(string,?) => File_WriteBytes(string,?,0,0,0)

byte[] var_bb1 = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}

byte[] var_bb2 = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}

byte[] var_bb3 = {}

bool flag = false

var_flag = File_WriteBytes("writebytes.txt", var_bb1) // Overwrite var_bb1 to the file
writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF
00000000 00 01 02 03 04 05 06 07 08

var_flag = File_WriteBytes("writebytes.txt", var_bb2) // Overwrite var_bb2 to the file

writebytes. txt
Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0C 0D OE OF
00000000 30 31 32 33 34 35 36 37 38

var_flag = File_WriteBytes("writebytes.txt", var_bb3) // Overwrite var_bb3 to the file

writebytes. txt
Offset(h) 00 01 02 03 04 05 06 07 08 09 0OA OB OC 0D OE OF
00000000

File_WriteBytes("writebytes.txt", var_bb1, 1)// Append var_bb1 to the file

writebytes. txt
Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 00 01 02 03 04 05 06 07 08

File_WriteBytes("writebytes.txt", var_bb2, 1)// Append var_bb2 to the file

writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A OB OC 0D OE OF
00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36
00000010 37 38

File_WriteBytes("writebytes.txt", var_bb1, 1, 3)
/I Append var_bb1 to the file starting from index 3 to the end.

writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36
00000010 37 38 03 04 05 06 07 08

File_WriteBytes("writebytes.txt", var_bb2, 1, 3, 2)
/I Append var_bb2 to the file starting from index 3 for the length of 2

writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A OB OC OD OE OF
00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36
00000010 37 38 03 04 05 06 07 08 33 34

File_WriteBytes("writebytes.txt", var_bb1, 1, -1)
/I -1 illegitimate value // Append var_bb1 to the file starting from index 0 to the end.

writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A OB OC 0D OE OF
00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36
00000010 37 38 03 04 05 06 07 08 33 34 00 01 02 03 04 05
00000020 06 07 08

Omron TM Collaborative Robot: TMScript Language Manual (1664) 211

e

File_WriteBytes("writebytes.txt", var_bb2, 1, 0, 100)

/I Append var_bb2 to the file starting from index O for the length of 100 or to the end.

writebytes. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0OA OB OC 0D OE
00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35
00000010 37 38 03 04 05 06 07 08 33 34 00 01 02 03 04
00000020 06 07 08 30 31 32 33 34 35 36 37 38

? byte var_nl1 =100 /I Convert the value with Little Endian.
File_WriteBytes("writebytes2.txt", var_n1, 1)

writebytes2.txt
Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE

0F
36
05

0F

? bytefpmar_p2 = {100, 200} // Convert every value in the array with Little Endian one after another.

File_WriteBytes("writebytes2.txt", var_n2, 1)

. writebytes2.txt
? intsvar M3 510000 03 04 05 06 07 08 09 0a 0B 0C 0D OE

File "WriteBytes(twritebytes2.txt", var_n3, 1)
writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE
00000000 64 64 C8 10 27 00 00

? int[] var_n4 = {10000, 20000, 80000}
File_WriteBytes("writebytes2.txt", var_n4, 1)

writebytes2.txt

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00
00000010 38 01 00

? floatvar_n5=1.234
File_WriteBytes("writebytes2.txt", var_ n5, 1)

writebytes2.txt

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00
00000010 38 01 00 B6 F3 9D 3F

? float[] var_n6 = {1.23, 4.56, -7.89}
File_WriteBytes("writebytes2.txt", var_n6, 1)

writebytes2.txt

Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00
00000010 38 01 00 B6 F3 9D 3F A4 70 9D 3F 85 EB 91 40
00000020 7A FC CO

? double var_n7 =-1.2345
File_WriteBytes("writebytes3.txt", var_n7, 1)

writebytes3.txt
Offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 8D 97 6E 12 83 CO F3 BF

? double[] var_n8 ={1.23, -7.89}
File_WriteBytes("writebytes3.txt", var_n8, 1)

writebytes3. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 8D 97 6E 12 83 CO F3 BF AE 47 E1 7A 14 AE F3
00000010 8F C2 F5 28 5C 8F 1F CO

? bool var_n9 = true /I Convert true to 1 and false to 0.

File_WriteBytes("writebytes3.txt", var_n9, 1)

writebytes3. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB 0OC 0D OE
00000000 8D 97 6E 12 83 CO F3 BF AE 47 E1 7A 14 AE F3
00000010 8F C2 F5 28 5C 8F 1F CO 01

? bool[] var_n10 = {true, false, true, false, false, true, true}
File_WriteBytes("writebytes3.txt", var_n10, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

oF

0F

0F
80

0F
80

0F
80
El

0F

OF
3F

0F
3F

212

e

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE
00000000 8D 97 6E 12 83 CO F3 BF AE 47 E1 7A 14 AE F3

00000010 8F C2 F5 28 5C 8F 1F CO 01 01 00 O1L

00

00

01

? string var_n11 = "ABCDEFG" // Convert the string into UTF8.

File_WriteBytes("writebytes3.txt", var_n11, 1)

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0OA OB
00000000 8D 97 6E 12 83 CO F3 BF AE 47 E1 7A
00000010 8F C2 F5 28 5C 8F 1F CO 01 01 00 01
00000020 41 42 43 44 45 46 47

? string[] var_n12 = {"ABC", "DEF", "iZfAt%zs A" }
File_WriteBytes("writebytes3.txt", var_n12, 1)

writebytes3. txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A OB
00000000 8D 97 6E 12 83 CO F3 BF AE 47 E1 7A
00000010 8F C2 F5 28 5C 8F 1F CO 01 01 00 01
00000020 41 42 43 44 45 46 47 41 42 43 44 45
00000030 E6 98 8E E6 A9 9F E5 99 A8 E4 BA BA

Omron TM Collaborative Robot: TMScript Language Manual (1664)

0c
14
00

0c
14
00
46

0D
AE
00

0D
AE
00
E9

OE
F3
01

OE
F3
01
81

0F
3F
01

0F
3F
01

0F
3F
01
94

213

e

7.7 File_WriteText()

Put the data content in a string and write to a file.

Syntax 1
bool File_WriteText(
string,
?,
int,
int,
int
)
Parameter
string File path
? Values to write. Eligible for integers, floating-point numbers, Booleans,
strings, or arrays.
int Overwrite the file or append to the file.
0 Over the file. If not existed, create a new file.
1 Append to the file. If not existed, create a new file.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length -1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
bool true Write successfully.
false Write unsuccessfully.
Syntax 2
bool File_WriteText(
string,
?,
int,
int
)
Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.
File_WriteText(string,?,int,int) => File_WriteText(string,?,int,int,0)
Syntax 3
bool File_WriteText(
string,
?,
int
)
Note
Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing
up to the data ends.
File_WriteText(string,?,int) => File_WriteText(string,?,int,0,0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 214

e

Syntax 4
File_WriteText(string,?) => File_WriteText(string,?,0,0,0)
string var_s1 ="Hi TM Robot"
string var_s2 = "ZHA#z3 A"
bool var_flag = false
var_flag = File_WriteText("writetext.txt", var_s1) // Overwrite "Hi TM Robot" to the file

writetext. txt
1] Hi TM Robot

var_flag = File_WriteText("writetext.txt", var_s2) // Overwrite ";ZEF#%28 A" to the file

writetext. txt
1] EpEs
var_flag = File_WriteText("writetext.txt", var_s1, 1) // Append "Hi TM Robot" to the file

writetext. txt
1] #PHEA Hi TM Robot

var_flag = File_WriteText("writetext.txt", var_s2, 1, 2, 3)

/I Append 3 characters from the starting indext to the file
writetext. txt
1] ZFPHEAL HI TM Robot #HE 4
? bytevar_nl=100 /I Use decimal for values to convert to strings
File_WriteText("writetext2.txt", var_n1, 1)

writetext2. txt
1] 100

? int[]] var_n4 = {10000, 20000, 80000} // Use the "{, ,}" format for arrays
File_WriteText("writetext2.txt", var_n4, 1)

writetext2. txt
1] 100{10000,20000,80000}

/I For other formats, use GetString() to convert to a stitng and write the string
? floatvar_n5=1.234
File_WriteText("writetext2.txt", var_n5, 1)

writetext2. txt
1| 100{10000,20000,80000}1.234

? double[] var_n8 ={1.23, -7.89}
File_WriteText("writetext2.txt", var_n8, 1)

writetext2. txt
1] 100{10000,20000,80000}1.234{1.23,-7.89}

? bool var_n9 = true
File_WriteText("writetext2.txt", var_n9, 1)

writetext2. txt
1| 100{10000,20000,80000}1.234{1.23,-7.89}true

? string var_n11 = "ABCDEFG"
File_WriteText("writetext2.txt", var_n11, 1)

writetext2. txt
1| 100{10000,20000,80000}1.234{1.23,-7.89}trueABCDEFG

? string[] var_n12 = {"ABC", "DEF", "iZB#z3 A" }
File_WriteText("writetext2.txt", var_n12, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 215

e,

writetext2. txt
1| 100{10000,20000,80000}1.234{1.23,-7.89}trueABCDEFG{ABC,DEF, E % £ }

Omron TM Collaborative Robot: TMScript Language Manual (1664) 216

e,

7.8 File_WriteLine()

Put the data content in a string with newline characters (OxOD 0x0A) in the end and write to a

file.
Syntax 1
bool File_WriteLine(
string,
?,
int,
int,
int
)
Parameter
string File path
? Values to write. Eligible for integers, floating-point numbers, Booleans,
strings, or arrays.
int Overwrite the file or append to the file.
0 Over the file. If not existed, create a new file.
1 Append to the file. If not existed, create a new file.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length -1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= |ength lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
bool true Write successfully.
false Write unsuccessfully.
Syntax 2
bool File_WriteLine(
string,
?,
int,
int
)
Note
Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.
File_WriteLine(string,?,int,int) => File_WriteLine(string,?,int,int,0)
Syntax 3
bool File_WriteLine(
string,
?,
int
)
Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing
up to the data ends.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 217

e

File_WriteLine(string,?,int) => File_WriteLine(string,?,int,0,0)
Syntax 4

bool File_WriteLine(
string,
?

)

Note
Same as Syntax 1. Set the starting index and the length of the value to write to 0 overwriting
the file up to the data ends.
File_WriteLine(string,?) => File_WriteLine(string,?,0,0,0)

string var_s1 ="Hi TM Robot"

string var_s2 = "ZHA#z3 A"

bool var_flag = false

var_flag = File_WriteLine("writeline.txt", var_s2)
/I Overwrite "3ZHA#%2E A\UODOA" to the file

writeline. txt
1] EPHEA
2]

var_flag = File_WriteLine("writeline.txt", var_s1)
/I Overwrite "Hi TM Robot\uODOA" to the file

writeline. txt

1] Hi TM Robot
2]

var_flag = File_WriteLine("writeline.txt", var_s2, 1)
Il Append "ZRA1#% 28 A\UODOA" to the file

writeline. txt

1| Hi TM Robot

2] EPEEA

3]
var_flag = File_WriteLine("writeline.txt", var_s1, 1, 3)
/I Append "TM Robot\uODOA" from the starting index 3 to the end to the file.

writeline. txt

1| Hi TM Robot

2] EPBEEA

3 TM Robot

4|

? byte[] var_n2 = {100, 200} /I The array uses the format {, ,}.
File_WriteLine("writeline2.txt", var_n2, 1)

writeline2. txt
1] {100,200}

2|
/I For other formats, use GetString() to convert to string and write.
? intvar_n3 = 10000 /I Convert the value in decimal to a string.

File_WriteLine("writeline2.txt", var_n3, 1)

writeline2. txt
1] {100,200}
2| 10000
31
? float[] var_n6 = {1.23, 4.56, -7.89}
File_WriteLine("writeline2.txt", var_n6, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 218

e

writeline2. txt

1]
2|
3
4]

{100,200}
10000
{1.23,4.56,-7.89}

? bool var_n9 = true
File_WriteLine("writeline2.txt", var_n9, 1)

writeline2. txt

1]
2|
3]
4|
5

{100,200}

10000
{1.23,4.56,-7.89}
true

? string var_n11 = "ABCDEFG"
File_WriteLine("writeline2.txt", var_n11, 1)

writeline2. txt

1]
2]
3]
4
5
6l

{100,200}

10000
{1.23,4.56,-7.89}
true

ABCDEFG

? string[] var_n12 = {"ABC", "DEF", "ZB#z2 A" }
File_WriteLine("writeline2.txt", var_n12, 1)

writeline2. txt

1]
2]
3]
4]
5
6l
71

{100,200}

10000
{1.23,4.56,-7.89}
true

ABCDEFG
{ABC,DEF, P 5 E 4 }

Omron TM Collaborative Robot: TMScript Language Manual (1664)

219

e,

7.9 File_WriteLines()

Put the data content in a string array with newline characters (0xOD 0x0A) in the end and write

to a file.
Syntax 1
bool File_WriteLines(
string,
?,
int,
int,
int
)
Parameter
string File path
? Values to write. Eligible for integers, floating-point numbers, Booleans,
strings, or arrays.
int Overwrite the file or append to the file.
0 Over the file. If not existed, create a new file.
1 Append to the file. If not existed, create a new file.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= |ength lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
bool true Write successfully.
false Write unsuccessfully.
Syntax 2
bool File_WriteLines(
string,
?,
int,
int
)
Note
Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.
File_WriteLines(string,?,int,int) => File_WriteLines(string,?,int,int,0)
Syntax 3
bool File_WriteLines(
string,
?,
int
)
Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 220

e

up to the data ends.
File_WriteLines(string,?,int) => File_WriteLines(string,?,int,0,0)
Syntax 4
bool File_WriteLines(
string,
?
)
Note
Same as Syntax 1. Set the starting index and the length of the value to write to O overwriting
the file up to the data ends.
File_WriteLines(string,?) => File_WriteLines(string,?,0,0,0)

* File_WriteText() : convert the data values to write to a string without adding newline
characters in the end of the string.
File_WriteLine(): convert the data values to write to a string with adding newline
characters in the end of the string.
File_WriteLines(): convert the data values to write to a string array with adding newline
characters in the end of each element of the array.

string var_ss1 = {"Hi TM Robot", ":ZAB#25 A"}
bool var_flag = false
var_flag = File_WriteLines("writelines.txt", var_ss1) /I Overwrite ss1 to the file
writelines. txt
1| Hi TM Robot
2] EPBEA
3]
var_flag = File_WriteLines("writelines.txt", var_ss1, 1, 1)
/I Append ssl from the starting index 1 to the end to the file.
writelines. txt
1| Hi TM Robot
21 EPHEL
3] Hi TM Robot
4|
? byte[] var_n2 = {100, 200}
File_WriteLines("writelines2.txt", var_n2, 1)

writelines2. txt

1] 100
21 200
31

? intvar_n3 = 10000
File_WriteLines("writelines2.txt", var_n3, 1)

writelines2. txt

11 100
21 200
31 10000

4]

? float[] var_n6 = {1.23, 4.56, -7.89}
File_WriteLines("writelines2.txt", var_n6, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 221

e

writelines2. txt

1]
2|
3
4]
S
6
Tl

? string var_n11 = "ABCDEFG"
File_WriteLines("writelines2.txt", var_n11, 1)

100
200
10000
1.23
4.56
-7.89

writelines2. txt

1]
2|
3]
4|
5
6l
71
8|

? string[] var_n12 = {"ABC", "DEF", "}ZB#z2 A" }
File_WriteLines("writelines2.txt", var_n12, 1)

100

200
10000
1.23
4.56
-7.89
ABCDEFG

writelines2. txt

1]
2]
3]
4
5
6l
71
8|
91
10
11|

Omron TM Collaborative Robot: TMScript Language Manual (1664)

100

200
10000
1.23
4.56
-7.89
ABCDEFG
ABC

DEF
P E

222

e,

7.10 File_Exists()

Check the file path for availability.

Syntax 1
bool File_Exists(
string
)
Parameter
string File path
Return
bool true File path available
false File path unavailable
*Return false file path unavailable for Voided file path without errors.
Note
bool var_exists = false
var_exists = File_Exists("sampleFile1.txt") Il true
var_exists = File_Exists("sampleFileX.txt") /l false I/ File path unavailable

var_exists = File_Exists("C:\SampleFile1.txt") //false // Void for absolute paths.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 223

e

7.11 File_Length()

Check the file size.

Syntax 1
int File_Length(
string
)
Parameter
string File path
Return
int In int32 data type. The maximum file size is limited to 2147483647 bytes.
-1 File path unavailable.
-2 Exceeded the maximum file size limit.
* Return -1 file path unavailable for void file path without errors.
Note
Intvar_len=0
var_len = File_Length("sampleFile1.txt") /131
var_len = File_Length("sampleFileX.txt") II-1 1l File path unavailable

var_len = File_Length("C:\SampleFile1.txt") //-1 // Void for absolute paths.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 224

e

7.12 File_Delete()

Delete the file.

Syntax 1
bool File_Delete(
string
)
Parameter
string File path
Available for multiple strings.
Return
bool true Delete successfully. (Included unavailable or void file paths)
false Delete unsuccessfully. (Unable to delete the file for occupied)
Syntax 2
bool File_Delete(
string(]
)
Parameter
string[] File path
Return
bool true Delete successfully. (Included unavailable or void file paths)
false Delete unsuccessfully. (Unable to delete the file for occupied)
Note
bool var_flag = false
var_flag = File_Delete("sampleFile1.txt") Il true
var_flag = File_Delete("sampleFileX.txt") Il true I File path unavailable
var_flag = File_Delete("C:\SampleFile1.txt") // true /I Void for absolute paths.

var_flag = File_Delete("sampleFile1.txt", "sampleFileX.txt")

/I Available for multiple file paths.

var_flag = File_Delete("sampleFile1.txt", "sampleFileX.txt", "C:\SampleFile1.txt")
/I Available for multiple file paths.

string[] var_ss = {"sampleFile1.txt", "sampleFileX.txt", "C:\SampleFile1.txt""}

var_flag = File_Delete(var_ss)

var_flag = File_Delete(var_ss, "sampleFile2.txt") // Error. Void for syntax.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 225

e,

7.13 File_Copy()
Copy the file.

Syntax 1
bool File_Copy(
string,
string,
string
)
Parameter
string Source file path
string Target directory path
string Target file name. Use the source file path equivalent for naming as the
default if empty.
Return
bool true Copy successfully.
false Copy unsuccessfully.
* Overwrite the target file if existed in the target path.
Syntax 2
bool File_Copy(
string,
string
)
Note
Same as Syntax 1. Set the target file name with an empty string and use the source file
path equivalent for naming.
File_Copy(string,string) => File_Copy(string,string,")

File_Copy("sampleFile1.txt", ".\TextFiles", "s1.txt")

/I copy \TextFiles\sampleFilel.txt to \TextFiles\s1.txt
File_Copy("sampleFile1.txt", ".\XmlFiles", ")

/I copy \TextFiles\sampleFilel.txt to \XmlFiles\sampleFilel.txt
File_Copy("sampleFile1.txt", "USB\TMROBOT", "s1.txt")
/I copy \TextFiles\sampleFilel.txt to USB\s1.txt
File_Copy("sampleFile1.txt", \"USB\TMROBOT")

/I copy \TextFiles\sampleFilel.txt to USB\sampleFilel.txt

bool var_flag = false

var_flag = File_Copy("sampleFile1.txt", "C:\folder") // Error. Void for absolute paths.
var_flag = File_Copy("sampleFile1.txt", ".")

/I Error. Neither TextFiles nor XmlFiles is in the file path.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 226

e

7.14 File_Copylmage()

Copy the saved vision file.

Syntax 1

bool File_Copylmage(
string,
string,
string,
int

)

Parameters
string Source saved vision file path
string Target directory path

Granted to copy and save images to external paths such as external device
path directories or remote path directories
Not granted to copy and save the image to the local path such as
"\TextFiles" or ".\XmlIFiles", and an error will be reported.
string Target file name.
If the name is an empty string, the default files name is the same as the
one in the source file path.
int Copy options
0 No error returned when failed to copy. No relative directory of the
sourced image reserved. (default)
1 No error returned when failed to copy. The relative directory of the
sourced image reserved.
2 An error returned when failed to copy. No relative directory of the
sourced image reserved.
3 An error returned when failed to copy. The relative directory of the
sourced image reserved.

Return
bool true Copy successfully.
false Copy unsuccessfully.
* If the file exists in the destination path, the destination file will be
overwritten.
Syntax 2
bool File_Copylmage(
string,
string,
string
)
Note

Same as syntax 1. Set the copy option to 0. No error returned when failed to copy. No
relative directory of the sourced image reserved.
File_Copylmage(string,string,string) => File_Copylmage(string,string,string,0)

Syntax 3
bool File_Copylmage(
string,
string

Omron TM Collaborative Robot: TMScript Language Manual (1664) 227

e

)

Note
Same as syntax 1. Set the target file name to an empty string and the same as the one in
the source file path. Set the copy option to 0. No error returned when failed to copy. No
relative directory of the sourced image reserved.
File_Copylmage(string,string) => File_Copylmage(string,string,"™,0)

Syntax 4

bool File_Copylmage(
string,
string,
int

)

Note

Same as syntax 1. Set the target file name to an empty string and the same as the one in
the source file path.
File_Copylmage(string,string,int) => File_Copylmage(string,string,"",int)

var_bool flag = false

var_flag = File_Copylmage(Job1_ImagePath_TM, "\TextFiles", "1.png")

/I false /I Copy to local directories not supported.

var_flag = File_Copylmage(Job1_ImagePath_TM, "\XmlFiles", "1.png")

/I false /I Copy to local directories not supported.

var_flag = File_Copylmage(Job1_ImagePath_TM, "\XmlFiles", "1.png", 2)

/I false /I Copy to local directories not supported.

var_flag = File_Copylmage(Job1_ImagePath_TM, "\USB\TMROBOT", "1.png")

/I true // Copy Jobl1_ImagePath_TM (the vision AOI-only variable) to USB\1.png

var_flag = File_Copylmage(Job1_ImagePath_TM, "\USB\TMROBOT", "1.png", 3)
/I true // Copy Jobl_ImagePath_TM (the vision AOI-only variable) to USB\ProjectName\Job1\Date\source\l.png
/I Reserve the directory of the image to save.

var_flag = File_Copylmage(Job1_ImagePath_TM, "USB\TMROBOT")

/I true // Copy Jobl1_ImagePath_TM (the vision AOI-only variable) to USB\15-16-12_423.png

/I Reserve the file name of the image to save.

var_flag = File_Copylmage(Job1_ImagePath_TM, "\USB\TMROBOT", 3)

/I true /I Copy Jobl_ImagePath_TM (the vision AOIl-only variable) to USB\ProjectName\Jobl\Date\source\15-16-
12_423.png

/I Reserve the directory and the file name of the image to save.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 228

e

7.15 File_Getlmage()

After executing a task job in TMvision, the system keeps the Source image storage path and
the Result image storage path in the image storage path buffer. Users can use this function to
retrieve the file path stored in the buffer and proceed to other operations such as copying it externally.
This function takes priority to the oldest image storage path to get images (FIFO) and removes the
path automatically later.

The maximum number of stored image paths in the buffer is 60. When a new image storage
path to add to the buffer, if the capacity is insufficient, the oldest image storage path will be
automatically removed from the butter, and the new image storage path will be automatically added
to the buffer.

Syntax 1
string[] File_Getimage(
int
)
Parameter
int Waiting time out to retrieve the image storage path
<0 Wait indefinitely until retrieved the image storage path. (default)
=0 Retrieve once.
>0 Time out after waiting for how much time (milliseconds)
Once using waiting, the process stays at this command until retrieved the image
storage path or waiting timeout and keeps on the following executions
Return

string[] If Sourcelmage and Resultimage are empty strings, it denotes it does not
retrieve any image storag path.

[0] Sourcelmage Path
[1] Resultimage Path
[2] ResultData Path
[1] JobName as the name of the vision job
Syntax 2
string[] File_Getlmage(
)
Note

Same as syntax 1. Set the waiting to retrieve timeout to -1 as indefinitely waiting until
retrieved the image storage path.
File_Getlimage() => File_Getlmage(-1)

string[] var_image = File_Getlmage() /I Wait until retrieved the image storage path.
bool var_flag1 = File_Copylmage(var_image[0], "USB\TMROBOT")
bool var_flag2 = File_Copylmage(var_image[1], "\USB\TMROBOT")

Syntax 3
string[] File_Getimage(
string,
int

)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (1664) 229

e

string
int

Return
string[]

Syntax 4

The name of the vision job. Retrieve the job name-matched image storage path
Waiting time out to retrieve the image storage path

<0 Wait indefinitely until retrieved the image storage path. (default)
=0 Retrieve once.
>0 Time out after waiting for how much time (milliseconds)

Once using waiting, the process stays at this command until retrieved the image
storage path or waiting timeout and keeps on the following executions

If Sourcelmage and Resultimage are empty strings, it denotes it does not
retrieve any image storag path.

[0] Sourcelmage Path

[1] Resultimage Path

[2] ResultData Path

[1] JobName as the name of the vision job

string[] File_Getimage(

string

)
Note

Same as syntax 3. Set the waiting to retrieve timeout to -1 as indefinitely waiting until
retrieved the image storage path.
File_Getimage("Jobl") => File_Getlmage("Jobl", -1)

string[] var_image = File_Getlmage("Job1") /] Wait until retrieved the image storage path.
bool var_flag1 = File_Copylmage(var_image[0], "\USB\TMROBOT")
bool var_flag2 = File_Copylmage(var_image[1], "\USB\TMROBOT")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 230

e

7.16 File_Replace()

Replace and overwrite the string in the file with a specified string.

Syntax 1
bool File_Replace(
string,
string,
string
)
Parameter
string File path
string The string to be replaced
string The string to replace
Return
bool true Success 1. The string to be replaced is empty.
2. The string to be replaced is absent.
3. The string to be replaced is found and overwritten in
the file.
false Failure
Note

.\TextFiles\SampleFile6. txt
1] oHello World!

2| oHello TM Robot!

3 6Hi TM Robot!

bool var_flag = false
var_flag = File_Replace("SampleFile6.txt", "Hello", "HI")

SampleFile6. txt
1| 6HI World!

2| 6HI TM Robot!
3 6Hi TM Robot!

var_flag = File_Replace("SampleFile6.txt", "TM", "Techman")

SampleFile6. txt

1] 6HI World!

2| 6HI Techman Robot!
3 6Hi1i Techman Robot!

var_flag = File_Replace("SampleFile6.txt", "6", ")

SampleFile6. txt

1| HI World!

2| HI Techman Robot!
3| Hi Techman Robot!

Omron TM Collaborative Robot: TMScript Language Manual (1664) 231

e,

7.17 File_GetToken()

Read the file by the string pattern and retrieve the substring in the string.

Syntax 1
string File_GetToken(
string,
string,
string,
int,
int
)
Parameter
string File path
string The prefix of the string to retrieve
string The suffix of the string to retrieve
int The number of the matched substring to retrieve
>=1 Retrieve the n" matched substring
-1 Retrieve the last matched substring
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 1t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.
Return
string Return the retrieved string.
Return the content of the string in the file if the prefix and the suffix are
empty.
Return an empty string if matching number <=0.
If the remove option is 2 or 3, the first match retrieved must be at the start
of the input string; otherwise, it returns an empty string.
Syntax 2
string File_GetToken(
string,
string,
string,
int
)
Note

Same as Syntax 1. Fill O for not removing the prefix and the suffix as the default.
File_GetToken(string,string,string,int) => File_GetToken(string,string,string,int,0)
Syntax 3
string File_GetToken(
string,
string,
string
)
Note
Same as Syntax 1. Fill 1 for the matching and O for not removing the prefix and the suffix

Omron TM Collaborative Robot: TMScript Language Manual (1664) 232

e

as the default.
File_GetToken(string,string,string) => File_GetToken(string,string,string,1,0)

.\TextFiles\SampleFile7. txt
1| $Hello World!

2] S$Hello TM Robot!

3] $Hi TM Robot!s$

string var_n = "SampleFile7.txt"

string var_ s =""
var_s = File_GetToken(var_n,

var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,

var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,

"om0) /1 "$Hello World!\uODOA$Hello TM Robot!\uODOAS$Hi TM
Robot!$"

"$", "$") /1 "$Hello World\uUODOAS"

"$", "$", 0))

"$", "$", 1) /1 "$Hello World\uODOAS"

"$", "$", 2) /1 "$Hi TM Robot!$"

"$", "$", 3) I

"$","$",1,1) /["Hello World\uODOA"

"$", "$", 2, 1) //"Hi T™M Robot!"

"$", " 1) /1 "$Hello World!\uODOA"

"$" ", 2) /I "$Hello TM Robot\UODOA"

"$", ", 3) /I "$Hi TM Robot!"

"$", " 4) s

"onet 1) s

"ongt, 2) /I "Hello World\uODOAS"

"o"$", 3) /I "Hello TM Robot\uODOAS"

"ongt, 4) /I "Hi TM Robot!$"

"$", Ctrl("\r\n"), 1) // "$Hello World\uODOA"
"$", newline, 2) /I "$Hello TM Robot!\uODOA"
"$", NewLine, 1, 1) // "Hello world!"

/I Remove the prefix and the suffix
Ctrl("\r\n"), "$", 1) // "\uoDOAS"
newline, "$", 2) /"uoDOAS$"
NewLine, "$", 1, 1) /™

* \UODOA denotes a new line character but not a string value.

.\TextFiles\SampleFile9. txt

1]
2|
3

#Hello World!
SHello TM Robot!
SHi TM Robot!s$

string var_n = "SampleFile9.txt"

string var_s =
var_s = File_GetToken(var_n,

var_s = File_GetToken(var_n,

var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,
var_s = File_GetToken(var_n,

Omron TM Collaborative Robot: TMScript Language Manual (1664)

"o /1 "#Hello World\uODOA$Hello TM Robot!\uODOAS$Hi TM
Robot!$"

"#', ") /1 "#Hello World\uODOA$Hello TM Robot\uODOA$HI TM
Robot!$"

"oEt) 1 "#Hello World'\uUODOAS"

"#", newline, 1, 0) /1 "#Hello World\uODOA"

"#", newline, 1, 1) / "Hello World!"

"#", newline, 1, 2) /1 "#Hello World\uODOA"

"#", newline, 1, 3) /I "Hello World!"

"$", newline, 1, 0) /1 "$Hello TM Robot!\uODOA"

"$" newline, 1, 2) /e

233

e

/1'$ not in the start of the file. Return an empty string.

var_s = File_GetToken(var_n, "$","™, 1, 2) "
/1'$ not in the start of the file. Return an empty string.
var_s = File_GetToken(var_n, "#","", 1, 2) // "#Hello World\uODOA$Hello TM Robot\uUODOASHi TM
Robot!$"
var_s = File_GetToken(var_n, ", "$", 1, 2) /1 "#Hello World!\uODOAS"
var_s = File_GetToken(var_n, ", "$", -1, 2) // "Hi TM Robot!$"
var_s = File_GetToken(var_n, ", "$", 100, 2) " Il Exceeded the matching number
var_s = File_GetToken(var_n, ", "#", 1, 2) I
Syntax 4
string File_GetToken(
string,
byte(],
byte(],
int,
int
)
Parameter
string File path
byte[] The prefix of the string to retrieve in the byte array
byte[] The suffix of the string to retrieve in the byte array
int The number of the matched substring to retrieve
>=1 Retrieve the n" matched substring
-1 Retrieve the last matched substring
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 15t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.
Return
string Return the retrieved string.
Return the content of the string in the file if the prefix and the suffix are
empty.
Return an empty string if matching number <=0.
If the remove option is 2 or 3, the first match retrieved must be at the start
of the input string; otherwise, it returns an empty string.
Syntax 5
string File_GetToken(
string,
byte[],
byte(],
int
)
Note

Same as Syntax 4. Fill O for not removing the prefix and the suffix as the default.
File_GetToken(string,byte[],byte[],int) => File_GetToken(string,byte[],byte(],int,0)
Syntax 6
string File_GetToken(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 234

e

string,
byte[],
byte([]
)
Note

Same as Syntax 4. Fill 1 for the matching and 0 for not removing the prefix and the suffix
as the default.
File_GetToken(string,byte[],byte[]) => File_GetToken(string,byte[],byte[],1,0)
.\TextFiles\SampleFile8. txt
1] SHello World!

2] Hello$ TM Robot!
3] Hi$ TM Robot!S$

string var_n = "SampleFile8.txt", var_s =
byte[] var_bb0 = {}, var_bb1 = {0x24}, var_bb2 = {Ox0D, Ox0A}
/1 0x24 is $ and OxOD OxOA is \uODOA

var_s = File_GetToken(var_n, bb0, bb0, 0)

/I "$Hello World\uODOAHello$ TM Robot\uODOAHi$ TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb1) /1 "$Hello World\uODOAHello$"
var_s = File_GetToken(var_n, bb1, bb1, 0) "

var_s = File_GetToken(var_n, bb1, bb1, 1) /1 "$Hello World\uODOAHello$"
var_s = File_GetToken(var_n, bb1, bb1, 2) /1'"$ TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb1, 3) "

var_s = File_GetToken(var_n, bb1, bb1, 1, 1) // "Hello world\uoDOAHello"
var_s = File_GetToken(var_n, bb1, bb1,2, 1) /" TV Robot!"

var_s = File_GetToken(var_n, bb1, bb0, 1) /1 "$Hello World\uODOAHello"
var_s = File_GetToken(var_n, bb1, bb0, 2) /1'"$ TM Robot!\uODOAH;"
var_s = File_GetToken(var_n, bb1, bb0, 3) /1'"$ TM Robot!"

var_s = File_GetToken(var_n, bb1, bb0, 4) s

var_s = File_GetToken(var_n, bb0, bb1, 1) ns"

var_s = File_GetToken(var_n, bb0, bb1, 2) /I "Hello World\uODOAHello$"
var_s = File_GetToken(var_n, bb0, bb1, 3) /I TM Robot!\uUODOAHi$"
var_s = File_GetToken(var_n, bb0, bb1, 4) /" TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb2, 1) /1 "$Hello World\uODOA"
var_s = File_GetToken(var_n, bb1, bb2, 2) /1'"$ TM Robot!\uODOA"
var_s = File_GetToken(var_n, bb1, bb2, 1, 1) //"Hello world"

/I Remove the prefix and the suffix
var_s = File_GetToken(var_n, bb2, bb1, 1) I/ "\uODOAHello$"
var_s = File_GetToken(var_n, bb2, bb1, 2) /] "\UODOAHi$"
var_s = File_GetToken(var_n, bb2, bb1, 1, 1) //"Hello"
* \UODOA denotes a new line character but not a string value.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 235

e

7.18 File_GetAllTokens()

Read the file by the string pattern and retrieve all eligible substrings.

Syntax 1
string[] File_GetAllTokens(
string,
string,
string,
int
)
Parameter
string File path
string The prefix of the string to retrieve
string The suffix of the string to retrieve
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 15t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.
Return

string[] Return the eligible string in an array.
Return the content of the string in the file as a string array if the prefix and
the suffix are empty.
If the remove option is 2 or 3, the first match retrieved must be at the start
of the input string; otherwise, it returns an empty string.

Syntax 2
string[] File_GetAllTokens(
string,
string,
string
)
Note
Same as Syntax 1. Fill O for not removing the prefix and the suffix as the default.
File_GetAllTokens(string,string,string) => File_GetAllTokens(string,string,string,0)
.\TextFiles\SampleFile7. txt
1| S$Hello World!
2| S$Hello TM Robot!
3] $Hi TM Robot!s
string var_n = "SampleFile7.txt"
string[] var_ss = {}
var_ss = File_GetAllTokens(var_n, "™, ™) //{'$Hello World\u0DOA$Hello TM Robot\uODOASHi TM
Robot!$"}
var_ss = File_GetAllTokens(var_n, "$", "$") // {"sHello World\uODOAS", "$Hi TM Robot!$"}
var_ss = File_GetAllTokens(var_n, "$", "$", 1) //{"Hello World\uODOA", "Hi TM Robot!"}
var_ss = File_GetAllTokens(var_n, "$", "™, 1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 236

e

.\TextFiles\SampleFile9. txt
1| #Hello World!
2] S$Hello TM Robot!
3] $Hi TM Robot!s$
string var_n = "SampleFile9.txt"
string[] var_ss = {}
var_ss = File_GetAllTokens(var_n, "™, "")
/I {"#Hello World\uODOA$Hello TM RobothuODOA$HiI TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "$", "$", 0) // {"sHello TM Robot\uODOAS"}

var_ss = File_GetAllTokens(var_n, "$", "$", 1)/ {"Hello TM Robot\uODOA"}

var_ss = File_GetAllTokens(var_n, "$", $' 2) g

var_ss = File_GetAllTokens(var_n, "$", "$",3) /g

var_ss = File_GetAllTokens(var_n, "$", ", 0) /1 {"$Hello TM Robot!\uODOA", "$Hi TM Robot!", "$"}
(

var_ss = File_GetAllTokens(var_n, "$", ™" 2) I
var_ss = File_GetAllTokens(var_n, "#", ", 0)

/I {"#Hello World\uODOA$Hello TM Robot\uODOA$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", ", 1)

I {"Hello World\uODOA$Hello TM Robot'\uODOA$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", ", 2)

/I {"#Hello World\uODOA$Hello TM Robot\uODOA$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", ", 3)

I {"Hello World\uODOA$Hello TM Robot'\uODOA$HiI TM Robot!$"}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 237

e

7.19 File_GetFiles()

Retrieve file names in the assigned directory.

Syntax 1
string[] File_GetFiles(
string,
string,
int
)
Parameter
string The assigned directory
string The string to be searched in the file name is case-insensitive. A search is
considered valid even if the string is empty.
int Retrieving options
0 Retrieve the file names in the specified directory only.
1 Retrieve the file names in the specified directory and all its
subdirectories.
Return
string[] Return the file name with the path associated with the assigned directory,such as
assigned .\TextFiles as the directory.
[0] "Text1.txt" Il " \TextFiles\Text1.txt"
[1] "Folder2\Text2.txt" // " \TextFiles\Folder2\Text2.txt"
Syntax 2
string[] File_GetFiles(
string,
string
)
Note

Same as Syntax 1, with 0 as the default retrieving option.

Syntax 3

string[] File_GetFiles(
string
)

Note

Same as Syntax 1, with 0 as the default retrieving option and an empty string set to search in the
filename.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 238

e

Note
Supposed that files in the directory \TextFiles are
Text1.txt
Folder2\Text2.txt

File_GetFiles("\TextFiles", "", 0) I {"Textl.txt"}
File_GetFiles("\TextFiles", "", 1) I {"Textl.txt", "Folder2\Text2.txt"}
File_GetFiles("\TextFiles", "Text1.txt", 1) // {'"Textl.txt"}
File_GetFiles("\TextFiles", "Text2.txt") // {}

File_GetFiles("\TextFiles", "Text2.txt", 1) // {"Folder2\Text2.txt"}
File_GetFiles(".\TextFiles") Il {"Textl.txt"}

Supposed that files in the directory \127.0.0.1\shared are

PN-2024-07-07.log
Image1.png
Text1.txt
Folder2\Image1.png
Folder2\Text2.txt

File_GetFiles("\127.0.0.1\shared", "™, 0) // {"PN-2024-07-07.log", "Imagel.png", "Textl.txt"}
File_GetFiles("\127.0.0.1\shared", ", 1)
/1 {"PN-2024-07-07.log", "Imagel.png", "Textl.txt", "Folder2\Imagel.png", "Folder2\Text2.txt"}

File_GetFiles("\127.0.0.1\shared", "image1.png", 0) //{"Imagel.png"} /I case-insensitive
File_GetFiles("\127.0.0.1\shared", "image1.png", 1) //{"Imagel.png", "Folder2\imagel.png"}

File_GetFiles("\127.0.0.1\shared", "*.txt", 1) I {'Textl.txt", "Folder2\Text2.txt"}
File_GetFiles("\127.0.0.1\shared", "*.txt") // {"Textl.txt"}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 239

file://///127.0.0.1/shared

e

7.20 File_LogWrite()

Write the log file that messages are available on the view page of the flowchart.

Syntax 1
bool File_LogWrite(
string,
string,
string,
string, ...
)
Parameter
string The device to write
string The directory to write
string Title
string Content
*Titles and content can be multiple.
Return
bool true Write successfully.
false Write unsuccessfully.
Syntax 2
bool File_LogWrite(
string,
string
)
Parameter
string Title
string Content

* The system will use the device and directory settings from the previous execution of Syntax 1.
No file writing if there is no previous execution of Syntax 1, but the information will still appear on
the view page of the flowchart.
Return
bool true Write successfully.
false Write unsuccessfully.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 240

e

Syntax 3
bool File_LogWrite(
string
)
Parameter
string Content

* The system will use the device and directory settings from the previous execution of Syntax 1.
No file writing if there is no previous execution of Syntax 1, but the information will still appear on
the view page of the flowchart.
Return
bool true Write successfully.
false Write unsuccessfully.

File_LogWrite("text0") // false. Write unsuccessfully for no previous execution of Syntax 1,

File_LogWrite("\USB\TMROBOT", "aaa", "title1", "text1")

/I 21 log #% & \USB\TMROBOT\aaa\ProjectName-yyyy-MM-dd.log

/I dd/MM/yyyy HH:mm:ss titlel=textl

File_LogWrite("\USB\TMROBOT", "aaa", "title2", "text2", "title3", "text3")
/I 21 log #% & \USB\TMROBOT\aaa\ProjectName-yyyy-MM-dd.log

/I dd/MM/yyyy HH:mm:ss title2=text2

/I dd/MM/yyyy HH:mm:ss title3=text3

File_LogWrite("\USB\TMROBOT", "aaa", "title4")

/I dd/MM/yyyy HH:mm:ss title4

File_LogWrite("\USB\TMROBOT", "aaa") /I Will execute by syntax 2.
/I dd/MM/yyyy HH:mm:ss \USB\TMROBOT=aaa

File_LogWrite("title5", "text5")

/I dd/MM/yyyy HH:mm:ss title5=text5

File_LogWrite("text6")

/I dd/MM/yyyy HH:mm:ss text6

Omron TM Collaborative Robot: TMScript Language Manual (1664) 241

e

8. Serial Port Functions
8.1 SerialPort Class

Use SerialPort class and declare variables to create a COM port device. The variable name
will be the device name.

Construct 1
SerialPort VariableName = string, int, string, int, float, int, bool, bool, bool
SerialPort VariableName = string, int, string, int, float, int
SerialPort VariableName = string, int, string, int, float
SerialPort VariableName = string, int

Parameter
string connection description
int bits per second, BaudRate
string parity check "none", "odd", "even", "mark", "space" ("none" by default)
int Data Bits 5, 6, 7, 8(8 by default)
float Stop Bits 1, 1.5, 2 (1 by default)
int read/write timeout in millisecond 0..10000 (10000 ms by default)
boolDTR/DSR true, false (false by default)
boolRTS/CTS true, false (false by default)
bool XON/XOFF true, false (false by default)
Note

SerialPort spd_c1 ="COM2",115200
/I construct a device, with Baudrate 115200
SerialPort spd _c2 ="COM2",115200,"none",8,1
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1
SerialPort spd_c3 = "COM2",115200,"none",8,1,10000
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

® |n a flow project, it will create a device from the serial port list and connect to it
actively.

® |n a script project, after creating a device by the syntax content, it will not connect to
the device. It takes the open device function to connect.

® \Whether using the device to read or write, it will ask for confirmation of connecting to
the device.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 242

e

8.2 com_open()

Open a Serial Port device.

Syntax 1
bool com_open(
string
)
Parameter
string Serial Port device name
Return

bool True Open successfully.
False Open unsuccessfully. (The project reports error.)
Note
SerialPort spd_dev = "COM2",115200
com_open("spd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 243

e

8.3 com_close()

Close a Serial Port device.

Syntax 1
bool com_close(
string
)
Parameter
string Serial Port device name
Return

bool True Close successfully.
False Close unsuccessfully.
Note
SerialPort spd_dev = "COM2",115200
com_open("spd_dev")
com_close("spd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (1664)

244

e

When the project starts running as going from the start node, it opens the serial port for
connections and receives the data from the serial port consistently. For data received in the
received buffer, users can use the function com_read to read data in the buffer.

Once opened the Serial Port, it receives data from it continuously and puts them in the
receiving buffer. Users can use the function com_read or associatd functions to get data from the
buffer. When the project stops running, it closes the opened Serial Port and clears the receiving
buffer.

The receiving buffer comes with a capacity limitation. If there is data coming to the buffer and
the buffer is out of space, it removes the earliest data automatically for the latest data coming into
the buffer.

8.4 com_read()
Read data in the Serial Port received buffer and return an array byte].

Syntax 1
byte[] com_read(
string
)
Parameters
string The name of the device on the Serial Port
Return
byte[] Return all the data content. If the content is empty, it returns byte[0].
Note
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] value = com_read("spd")
/I value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I ReceivedBuffer = {}

*This function reads all data in the received buffer and clears the received buffer.

Syntax 2
byte[] com_read(
string,
int,
int
)
Parameters
string The name of the device on the Serial Port
int The number of the elements to read (based on the length of byte[])
<=0 Read all elements
>0 Read a specified number of the elements (Data is available when the
specified number fulfills.)
int The length of time to read in millisecond
<=0 Read once only
>0 Read many times until there is data or the time is up.
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 245

e

byte[] Return the specified number of the elements with byte[]. If the elements is
insufficient, it returns byte[0].
Syntax 3
byte[] com_read(
string,
int
)
Note
The syntax is the same as syntax 2. The default length of time to read is 0.
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", 6)
/I value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}
/I ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", 100)
/I value byte[] = {}
I Insufficient elements for no more than 100 elements in the received buffer and return byte[0].
/I ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", 0)
/I value byte[] = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // Read all elements
/I ReceivedBuffer = {}
value = com_read("spd", 4, 100)
Il value byte[] = {}
/I Insufficient elements for no more than 4 elements in the received buffer and return byte[0].
// But the length of time to read is set to 100 ms, the process stays in the function until there is data or
the time is up and exits the function.
/I ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38}
/I Supposed it receives data after 50ms,
/I value byte[] = {Ox31,0x32,0x33,0x34} // it reads 4 element and exits the function.
/I ReceivedBuffer = {0x35,0x36,0x37,0x38}
Syntax 4
byte[] com_read(
string,
byte[] or string,
byte[] or string,

int,

int
)
Parameters

string The name of the device on the Serial Port

byte[] or string
Terms of the prefix to read. If the input is byte[0] or
no prefix terms.

byte[] or string
Terms of the suffix to read. If the input is byte[0] or
no suffix terms.

int Remove options

0 The 1%t matched not in the start of the input string, and not remove the prefix and the suffix. (default)

, an empty string, it means

, an empty string, it means

1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1%t matched in the start of the input string, and not remove the prefix and the suffix.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 246

e

3 The 15t matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond

<=0 Read once only

>0 Read many times until there is data or the time is up.
Return

byte[] Return with byte[] in the first matched terms of the prefix and the suffix.
It retrieves data with the content matches the first of all terms, and the rest will
be reserved and not retrieved.
If there is no match, it returns byte[0].

Syntax 5
byte[] com_read(
string,
byte[] or string,
byte[] or string,
int
)
Note
The syntax is the same as syntax 4. The default length of time to read is O.
Syntax 6
byte[] com_read(
string,
byte[] or string,
byte[] or string
)
Note
The syntax is the same as syntax 4. The default is not to remove the prefix and the suffix
from the read content and the length of time to read is 0.

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", "He", newline) // prefix "He", suffix \uODOA
Il value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\uODOA
/IvReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I retrieve the first match and reserve the rest

value = com_read("spd", "", newline, 1) // prefix ", suffix \uODOA. Remove both the prefix and the
suffix.
/I value byte[] = {0x57,0x6F,0x72,0x6C,0x64} /I World
/I ReceivedBuffer = {}
value = com_read("spd", ", newline, 1, 100)
I prefix ", suffix \uODOA. Remove both the prefix and the suffix. The length of time to read is 100ms.

/I value byte[] = {}

/l No matched terms to read. Read byte[0]. Wait for 100 ms.

/I ReceivedBuffer = {}

/I ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}
/I value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}

/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 247

e

value = com_read("spd", "lo", newline) // prefix "lo", suffix \uODOA
Il value byte[] = {0x6C,0x6F,0x2C,0x0D,0x0A} //'10,\uODOA
/I The data before the first matched term, {0x48,0x65,0x6C}, will be removed.
/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I retrieve the first match and reserve the rest
byte[] bb = {}
value = com_read("spd", bb, newline) I/ prefix byte[0], suffix \uODOA
/I value byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} /I World\uODOA
/I ReceivedBuffer = {}
value = com_read("spd", bb, newline, 0, 100) // prefix byte[0], suffix \uODOA, 100ms
/I value byte[] = {}
/I No matched terms to read. Read byte[0]. Wait for 100 ms.
/I ReceivedBuffer = {}
/I ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}
/I value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}
/I ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, Il #Hi
0x24,0x54,0x4D,0x0D,0x0A, 1 $T™M
0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot
value = com_read("spd", "#", newline, 2) 11 prefix "#" suffix \uUODOA
Il value byte[] = {} /I # not in the start. Return an empty array.

/I ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read("spd", "$", newline, 2) Il prefix "$" suffix \uODOA
Il value byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A}
/I'lt must be in the start to retrieve the first match.
/I ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read("spd", "#", newline, 2) I prefix "#" suffix \uODOA

/I value byte[] = {0x23,0x48,0x69,0x0D,0x0A} /I It must be in the start to retrieve the first match.

/I ReceivedBuffer = {Ox24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read("spd", "$", newline, 3) I/ prefix "$" suffix \uODOA

/I value byte[] = {0x54,0x4D}

/I ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read("spd", "#", newline, 3) I prefix "#" suffix \uODOA

/I value byte[] = {0x52,0x6F,0x62,0x6F,0x74}

/I ReceivedBuffer = {}

Syntax 7
byte[] com_read(

)

string,

byte[] or string,
int,

int

Parameters

string The name of the device on the Serial Port
byte[] or string

Omron TM Collaborative Robot: TMScript Language Manual (1664)

248

Terms of the suffix to read. If the input is byte[0] or ", an empty string, it means
no suffix terms.

int Remove options
0 The 1%t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 15t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 1%t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 15t matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond
<=0 Read once only
>0 Read many times until there is data or the time is up.
* No terms of the prefix to read.
Return

byte[] Return with byte[] in the first matched terms of the prefix and the suffix.
It retrieves data with the content matches the first of all terms, and the rest will
be reserved and not retrieved.
If there is no match, it returns byte[0].
Syntax 8
byte[] com_read(
string,
byte[] or string,
int
)
Note
The syntax is the same as syntax 7. The default length of time to read is 0.
Syntax 9
byte[] com_read(
string,
byte[] or string
)
Note

The syntax is the same as syntax 7. The default is not to remove the prefix and the suffix
from the read content and the length of time to read is 0.

Note
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", newline) // suffix \uODOA
[/l value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} /I Hello,\uODOA
/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I retrieve the first match and reserve the rest
value = com_read("spd", newline) // suffix \uODOA
/I value byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} /I World\uODOA
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read("spd", newline, 1) I/ suffix \uODOA
/I value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C} /I Hello,
Il ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I retrieve the first match and reserve the rest

Omron TM Collaborative Robot: TMScript Language Manual (1664) 249

e, }

value = com_read("spd", newline, 1) I/ suffix \uODOA
/I value byte[] = {Ox57,0x6F,0x72,0x6C,0x64} /' World
/I ReceivedBuffer = {}
value = com_read("spd", newline, 1, 100) // suffix \uODOA, 100ms
Il value byte[] = {}
/l No matched terms to read. Read byte[0]. Wait for 100 ms.

/I ReceivedBuffer = {}
/I ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x0D,0x0A}

/[value byte[] = {0x31,0x32,0x33,0x34,0x35,0x36}
/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 250

e

8.5 com_read_string()
Read the data in the Serial Port buffer, and convert the data to a UTF8 string.

Syntax 1
string com_read_string(
string
)
Parameters
string The name of the device on the Serial Port
Return
string Return all the data content. If the content is empty, it returns an empty string.

Syntax 2
string com_read_string(
string,
int,
int
)
Parameters
string The name of the device on the Serial Port
int The number of characters to read (based on the number of characters of the
string)
<=0 Read all characters
>0 Read a specified number of the characters (Data is available when the
specified number fulfills.)
int The length of time to read in millisecond
<=0 Read once only
>0 Read many times until there is data or the time is up.
Return

string Returns the specified number of characters as a string. If the characters are
insufficient, it returns an empty string.
Syntax 3
string com_read_string(
string,
int
)
Note
The syntax is the same as syntax 2. The default length of time to read is O.
Syntax 4
string com_read_string(
string,
byte[] or string,
byte[] or string,

int,

int
)
Parameters

string The name of the device on the Serial Port
byte[] or string

Omron TM Collaborative Robot: TMScript Language Manual (1664) 251

e

Terms of the prefix to read. If the input is byte[0] or "", an empty string, it means
no prefix terms.

byte[] or string
Terms of the suffix to read. If the input is byte[0] or ", an empty string, it means
no suffix terms.

int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 15t matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond
<=0 Read once only
>0 Read many times until there is data or the time is up.
Return

string It retrieves data with the content matches the first of all terms
It retrieves data with the content matches the first of all terms, and the rest will
be reserved and not retrieved.
If there is no match, it returns an empty string.

Syntax 5

string com_read_string(
string,
byte[] or string,
byte[] or string,
int

)

Note
The syntax is the same as syntax 4. The default length of time to read is 0.

Syntax 6

string com_read_string(
string,
byte[] or string,
byte[] or string

)

Note
The syntax is the same as syntax 4. The default is not to remove the prefix and the suffix
from the read content and the length of time to read is 0.

Syntax 7

string com_read_string(
string,
byte[] or string,
int,
int

)

Parameters
string The name of the device on the Serial Port
byte[] or string

Terms of the suffix to read. If the input is byte[0] or "™, an empty string, it means

Omron TM Collaborative Robot: TMScript Language Manual (1664) 252

no suffix terms.
int Remove options
0 The 15t matched not in the start of the input string, and not remove the prefix and the suffix. (default)
1 The 1%t matched not in the start of the input string, and remove the prefix and the suffix.
2 The 15t matched in the start of the input string, and not remove the prefix and the suffix.
3 The 1%t matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond
<=0 Read once only
>0 Read many times until there is data or the time is up.
* No terms of the prefix to read.
Return

string Returns as a string with the first matched terms of the prefix and the suffix.
Retrieves data in the content matches to the first of all terms, and the rest will
be reserved and not retrieved.
If there is no match, it returns an empty string.

Syntax 8

string com_read_string(
string,
byte[] or string,
int

)

Note
The syntax is the same as syntax 7. The default length of time to read is 0.

Syntax 9

string com_read_string(
string,
byte[] or string

)

Note
The syntax is the same as syntax 7. The default is not to remove the prefix and the suffix
from the read content and the length of time to read is 0.

Note
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
string value = com_read_string("spd")
Il value string = "Hello, World\uODOA"
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}
value = com_read_string("spd", 4)

/I value string = "TM ZHE" /1 {0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E}

/IRetrieve 4 characters based on the length of the string.

/I var _ReceivedBuffer = {OxE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}
value = com_read_string("spd", 5, 100)

[l value string ="

I Insufficient characters for no more than 5 characters in the received buffer based on the length of the

Omron TM Collaborative Robot: TMScript Language Manual (1664) 253

e

string. Wait for 100 ms.

/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xXE5,0x99,0xA8,0xE4,0xBA,0xBA}

/I ReceivedBuffer = {OXE6,0xA9,0x9F,0XE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0X0A}
/I value string = "#%28 A\uUODOA"

/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
value = com_read_string("spd", "He", newline) // prefix "He", suffix \uODOA
[/ value string = "Hello,\uODOA"
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // retrieve the first match and reserve the

rest
value = com_read_string("spd", ", newline, 1)
/I prefix ™, suffix \uODOA. Remove both the prefix and the suffix.

[l value string = "World"
/I ReceivedBuffer = {}
value = com_read_string("spd", ", newline, 1, 100)
/I value string =™ /I No matched terms to read. Read an empty string. Wait for 100 ms.
/I ReceivedBuffer = {}
/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0x0A}
Il value string = "##z3 A"

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read_string("spd", "lo", newline) // prefix "lo", suffix \uODOA

/I value string = "lo,\uODOA"

/I The data before the first matched term, "Hel", will be removed.

/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

/I retrieve the first match and reserve the rest
value = com_read_string("spd", newline, 1) // suffix \uODOA

[l value string = "World"

/I ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello
0x23,0x48,0x69,0x0D,0x0A, Il #Hi
0x24,0x54,0x4D,0x0D,0x0A, 11 $TM
0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

value = com_read_string("spd", "#", newline, 2) 11 prefix "#" suffix \uODOA
/I value string =™ I # not in the start. Return an empty array.
/I ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read_string("spd", "$", newline, 2) I prefix "$" suffix \uODOA
/I value string = "$Hello\uODOA" /I It must be in the start to retrieve the first match.
/I ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
value = com_read_string("spd", "#", newline, 2) 11 prefix "#" suffix \uODOA
/I value string = "#Hi\uUODOA" /I It must be in the start to retrieve the first match.
/I ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 254

e

value = com_read_string("spd", "$", newline, 3) Il prefix "$" suffix \uODOA
/I value string = "TM"
/I ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read_string("spd", "#", newline, 3) 11 prefix "#" suffix \uODOA
[l value string = "Robot"
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64}
value = com_read_string("spd", newline) 1/ suffix \uODOA

[/l value string = "Hello,\uODOA"
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64} // retrieve the first match and reserve the rest
value = com_read_string("spd", newline, 0) // suffix \uODOA
// value string = "" /I No matched terms to read. Read an empty string.
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}
value = com_read_string("spd", newline, 1, 100)// suffix \uODOA

/I value string =

/I No matched terms to read. Read an empty string. Wait for 100 ms.

/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x31,0x32,0x33,0x0D,0x0A}

/I value string = "World"

/I ReceivedBuffer = {0x31,0x32,0x33,0x0D,0x0A} // retrieve the first match and reserve the rest
value = com_read_string("spd", newline, 2) // suffix \uoD0A

/I value string = "123\uODOA"

/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 255

e

8.6 com_wrrite()

Write data to the Serial Port

Syntax 1
bool com_write(
string,
?,
int,
int
)
Parameters
string The name of the device on the Serial Port
? The value to write. Available types: int, float, , bool, string, and array.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
Booll True write successfully
False write unsuccessfully
1. The value to write is an empty string or an empty array.
2. Unable to send to the serial port correctly.
Syntax 2
bool com_write(
string,
?,
int,
int
)
Parameters
string The name of the device on the Serial Port
? The value to write. Available types: int, float, , bool, string, and array.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.
int The starting index of the data to write. (valid for strings or arrays)
0 The length of the string Legal value
-1
<0 lllegal value, and the starting index will be 0.
>= The length of the string Illegal value, and the starting index will be 0.
int The length of the data to write. (valid for strings or arrays)
<= From the start of the index to the end of the
0 data

Omron TM Collaborative Robot: TMScript Language Manual (1664) 256

>0 From the start of the index, write the specified
length of the data until the data ends.

Return
bool True write successfully
False write unsuccessfully
1. The value to write is an empty string or an empty array.
2. Unable to send to the serial port correctly.
Syntax 3
bool com_write(
string,
?
)
Note
The syntax is the same as syntax 2. The default length of data to write is O.

flag = com_write("spd", 100) Il write 0x64
flag = com_write("spd", 1000) I/ write OXE8 0x03 0x00 0x00 (int, Little Endian)
flag = com_write("spd", (float)1.234) // write 0xB6 0xF3 0x9D 0x3F (float, Little Endian)
flag = com_write("spd", (double)123.456)

/I write 0X77 OXBE 0x9F 0x1A O0x2F 0xDD Ox5E 0x40 (double, Little Endian)
flag = com_write("spd", "Hello, World"+newline)

Il write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 Ox6F 0x72 0x6C 0x64 0x0D Ox0A (string, UTF8)
flag = com_write("spd", 1000, 1, 2) //invalid in the value, the starting index, and the length

/I write OXE8 0x03 0x00 0x00 (int, Little Endian)

byte[] bb = {100, 200}
flag = com_write("spd", bb) Il write 0x64 0xC8
flag = com_write("spd", bb, 1, 1) // write 0xC8
/I Array. Retrieve 1 element from the index 1. [1]=200
flag = com_write("spd", bb, -1, 1) // write 0x64
/I Array. Retrieve 1 element from the index 0. [0]=100
flag = com_write("spd", "ZERBHEER A", 2)
/I String. Retrieve from the index 2 until the index ends. "#z3 A"
I/ write OXE6 0xXA9 0x9F OXE5 0x99 0xA8 OXE4 0xBA OxBA (string, UTF8)
string[] ss = {"TM", ", "iZAP#a3 A"}
flag = com_write("spd", ss)
/I write 0x54 0x4D OxE9 0x81 0x94 OxE6 0x98 OXx8E OXE6 0xA9 0x9F OXES5 0x99 0xA8 OxE4 OxBA OxBA
flag = com_write("spd", Byte_Concat(GetBytes(ss), GetBytes(newline)))
/I write 0x54 0x4D OxE9 0x81 0x94 OxE6 0x98 Ox8E OXE6 0xA9 0x9F OXES5 0x99 0xA8 OxE4 OxBA OxBA
0x0D O0x0A
flag = com_write("spd", ss, 2, 100)
/I Array. Retrieve 100 elements (to the end) from the index 2. [2]=ZBR#23 A
[/ write OXE9 0x81 0x94 OXE6 0x98 OX8E OXE6 OxA9 Ox9F OXE5 0x99 O0xA8 OxE4 OxBA 0xBA

Omron TM Collaborative Robot: TMScript Language Manual (1664) 257

e,

8.7 com_writeline()

Write data to the Serial Port and add line break symbols, 0xOD Ox0A, in the end of the data
automatically

Syntax 1
bool com_writeline(
string,
?,
int,
int
)
Parameters
string The name of the device on the Serial Port
? The value to write. Available types: int, float, , bool, string, and array.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to O.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return

bool True write successfully
False write unsuccessfully
1. The value to write is an empty string or an empty array.
2. Unable to send to the serial port correctly.

Syntax 2
bool com_writeline(

string,
?!
int,

)

Note

The syntax is the same as syntax 1. The default length of data to write is 0.

Syntax 3
bool com_writeline(

string,
2

)
Note

The syntax is the same as syntax 1. The default starting index of the data to write is O.
The default length of data to write is 0.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 258

e

flag = com_writeline("spd", 100) I/ write 0x64 0x0OD OX0A
flag = com_writeline("spd", 1000) Il write OXE8 0x03 0x00 0x00 0x0D OxOA (int, Little
Endian)

flag = com_writeline("spd", (float)1.234) Il write 0xB6 0xF3 0x9D 0x3F 0x0D OxO0A (float,
Little Endian)
flag = com_writeline("spd", (double)123.456)

[l write O0x77 OXBE 0x9F Ox1A 0x2F OxDD Ox5E 0x40 0x0OD 0xOA (double, Little Endian)
flag = com_write("spd", "Hello, World"+newline)

[/ write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 Ox6F 0x72 0x6C 0x64 0x0D Ox0A (string, UTF8)
flag = com_writeline("spd", "Hello, World")

I/ write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 Ox6F 0x72 0x6C 0x64 0xOD 0xO0A (string, UTF8)
flag = com_writeline("spd", 1000, 1, 2) // Invalid in the value, the starting index, and the length

[/ write OXE8 0x03 0x00 0x00 0x0D 0xO0A (int, Little Endian)

byte[] bb = {100, 200}
flag = com_writeline("spd", bb) Il write 0x64 0xC8 0x0D Ox0A
flag = com_writeline("spd", bb, 1, 1) // write 0xC8 0x0D 0x0A
/I Array. Retrieve 1 element from the index 1. [1]=200
flag = com_writeline("spd", bb, -1, 1) // write 0x64 0xOD 0x0A
/I Array. Retrieve 1 element from the index 0. [0]=100
flag = com_writeline("spd", "ZBE#22 A", 2)
/I String. Retrieve from the index 2 until the index ends. "##zs A"
I/ write OXE6 O0xXA9 0x9F OXE5 0x99 0xA8 O0XE4 0xBA OxBA 0xOD O0x0A (string, UTF8)
string[] ss = {"TM", ", "iZAB#2 A"}
flag = com_writeline("spd", ss)
I/ write 0x54 0x4D OXE9 0x81 0x94 0XE6 0x98 OX8E OXE6 0xA9 Ox9F OXE5 0x99 0xA8 OXE4 0xBA OxBA
0x0D Ox0A
flag = com_write("spd", Byte_Concat(GetBytes(ss), GetBytes(newline)))
/] write 0x54 0x4D OXE9 0x81 0x94 OXE6 0x98 Ox8E OXE6 0xA9 Ox9F OXE5 0x99 0xA8 OxE4 OxBA OxBA
0x0D Ox0A
flag = com_writeline("spd", ss)
I/ write 0x54 0x4D OXE9 0x81 0x94 0XE6 0x98 OX8E OXE6 0xA9 Ox9F OXE5 0x99 0xA8 OXE4 0xBA OxBA
0x0D Ox0A
flag = com_writeline("spd", ss, 2, 100)
/I Array. Retrieve 100 elements (to the end) from the index 2. [2]=2ZBF#23 A
I/ write OXE9Q 0x81 0x94 OXE6 0x98 Ox8E OXE6 0xA9 0x9F OXES5 0x99 0xA8 OxE4 OXBA OxBA 0x0D
Ox0A

Omron TM Collaborative Robot: TMScript Language Manual (1664) 259

e

9. Socket Functions
9.1 Socket Class

Use Socket class and declare variables to create a TCP/IP communication device. The
variable name will be the device name.

Construct
Socket VariableName = string, int, int
Socket VariableName = string, int

Parameter

string the IP address of the remote host

int the connection port of the remote host

int read/write timeout in millisecond 0..10000 (10000ms by default)
Note

Socket ntd_d1 ="192.168.1.10", 12345
/I construct a device, with IP 192.168.1.10, Port 12345, Timeout 10000ms

Socket ntd_d2 ="192.168.1.11", 9999, 8000
/I construct a device, with I[P 192.168.1.10, Port 9999, Timeout 8000ms

® In a flow project, it will create a device from the network device list and open it.

® |n a script project, after creating a device by the syntax content, it will not connect to
the device. It takes the open device function to connect.

® While reading or writing with the device, it confirms if it needs to connect to the

device.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 260

e

9.2 socket_open()
Open a TCP/IP device.

Syntax 1
bool socket_open(
string
)
Parameter
string TCP/IP device name
Return
bool True Open successfully.
False Open unsuccessfully.
Note
Socket ntd_dev ="192.168.1.10", 12345
socket_open("ntd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (1664)

261

e

9.3 socket_close()
Close a TCP/IP device.

Syntax 1
bool socket_close(
string
)
Parameter
string TCP/IP device name
Return
bool True Open successfully.
False Open unsuccessfully.
Note
Socket ntd_dev ="192.168.1.10", 12345
socket_open("ntd_dev")
socket_close("ntd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (1664)

262

e

When a flow project starts running as the Start node initiates, it launches the TCP/IP Socket
Client to connect to the specified IP and port. However, as to the script project, users have to use
the socket_open function to open and connect to the assigned device.

After connecting to the TCP/IP device, the system keeps receiving the data in the connection,
brings the received data to the Received Buffer, and uses respective functions such as
Socket_read to read the data. When the project stops running, the existing TCP/IP Socket
connection will be closed with the Received Buffer cleared.

The Received Buffer comes with a capacity limit. If the buffer capacity is insufficient when the
data comes in, it automatically deletes the oldest data and adds the latest.

9.4 socket_read()
Read data in the Received Buffer and return in a byte array.

Syntax 1
byte[] socket_read(
string
)
Parameters
string Network device name
Return
byte[] Return all data in the Received Buffer. Return byte[0] if buffer empty.
Note
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a")
I/ byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I ReceivedBuffer = {}

*This function reads all data in the Received Buffer and clear the buffer.

Syntax 2
byte[] socket_read(
string,
int,
int
)
Parameters
string Network device name
int Retrieve the fixed amount of byte (by the length of byte[])
<=0 Get all
>0 Get a specified amount (the specified amount required to get the data)
int Read time (millisecond)
<=0 Read once
>0 Read multiple times until there is data or the times fulfill.
Return

byte[] Return the specified amount of data in the Received Buffer with a byte array.
Return byte[0] if insufficient amount.

Syntax 3

Omron TM Collaborative Robot: TMScript Language Manual (1664) 263

e

byte[] socket_read(
string,
int
)
Note
Same as syntax 2. Fill 0 as the read time by default.

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", 6)
/I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}
/I ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
var_value = socket_read("ntd_a", 100)
/I byte[] = {} /I The number is insufficient for less than 100 bytes in the Received Buffer. Byte[0] will return.
/I ReceivedBuffer = {Ox20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
var_value = socket_read("ntd_a", 0)
I byte[] = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} /I Retrieve all data
/I ReceivedBuffer = {}
var_value = socket_read("ntd_a", 4, 100)

/I byte[] ={} // The number is insufficient for less than 4 bytes in the Received Buffer. Byte[0] will return.
//But the read time is set to 100 ms, it stays in the function still waiting for data or the read times
fulfilled before exiting.

/I ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38}

/ISupposed data received in 50 ms later

/I byte[] = {0x31,0x32,0x33,0x34} Il Retrieve 4 bytes and exit the function.

/I ReceivedBuffer = {0x35,0x36,0x37,0x38}

Syntax 4
byte[] socket_read(
string,
byte[] or string,
byte[] or string,

int,

int
)
Parameters

string Network device name

byte[] or string
The prefix condition to read. Input byte[0] or
prefix condition.

byte[] or string
The suffix condition to read. Input byte[0] or
suffix condition.

as the empty string to denote no

as the empty string to denote no

int Fetch option
0 The 15t match not required in the beginning and not removing the prefix
and the suffix (default)
1 The 15t match not required in the beginning and removing the prefix
and the suffix
2 The 15t match required in the beginning and removing the prefix and
the suffix

Omron TM Collaborative Robot: TMScript Language Manual (1664) 264

e

3 The 15t match required in the beginning and removing the prefix and
the suffix
int Read time (millisecond)
<=0 Read once
>0 Read multiple times until there is data or the times fulfill.
Return
byte[] Return the 1starray in byte that matches the prefix condition and the suffix
condition.
Fetch the first data that matches the conditions in the Received Buffer.only. The
following data remains in the Received Buffer.
If the prefix condition and the suffix condition are byte[0] or an empty string, it
fetches all data in the Received Buffer.
If unable to find the data matches the condition, it returns byte[0].
Syntax 5
byte[] socket_read(
string,

byte[] or string,
byte[] or string,
int
)
Note
Same as syntax 4. Fill O as the read time by default.

Syntax 6

byte[] socket_read(
string,
byte[] or string,
byte[] or string

)

Note
Same as syntax 4. Fill 0 as the fetch option and the read time by default.

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", "", ") /I No prefix. No suffix. Fetch all data.
I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", "He", newline) // prefix "He" Suffix \uUODOA
I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} /I Hello,\uODOA
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I Fetch the 15t match. Remain the following data.

var_value = socket_read("ntd_a", "", newline, 1) /I Prefix "™ Suffix \uODOA Remove the prefix
and the suffix.
/I byte[] = {0x57,0x6F,0x72,0x6C,0x64} /I World

/I ReceivedBuffer = {}
var_value = socket_read("ntd_a", "", newline, 1, 100)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 265

e

/I Prefix " Suffix \uODOA Remove the prefix and the suffix. 200ms

Il byte[] = {}

/I Read byte[0] for fetch option unfulfilled. Wait for 100ms.

/I ReceivedBuffer = {}

/I ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

/I Supposed data received in 50ms later

/I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C} /1 Hello,
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", "lo", newline)// Prefix "lo" Suffix \uODOA
I byte[] = {0x6C,0x6F,0x2C,0x0D,0x0A} //'10,\u0DOA
/I The data before the 15t match, {0x48,0x65,0x6C}, will be removed.
/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_bb = {}
var_value = socket_read("ntd_a", var_bb, newline) /1 Prefix byte[0] Suffix \uODOA
/1 byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} /I World\uODOA
/I ReceivedBuffer = {}
var_value = socket_read("ntd_a", var_bb, newline, 0, 100)
/I Prefix byte[0] Suffix \uODOA , 100ms
/I byte[] = {} //IRead byte[0] for fetch option unfulfilled. Wait for 100ms.
/I ReceivedBuffer = {}
/I ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}
/I Supposed data received in 50ms later
/I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}
/I ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, 11 #Hi
0x24,0x54,0x4D,0x0D,0x0A, I $TM
0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

byte[] var_value = socket_read("ntd_a", "#", newline, 2) /1 Prefix "#" Suffix \uODOA

I byte[] = {}
/IReturn an empty string for # not in the prefix.
/I ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", "$", newline, 2) /I Prefix "$" Suffix \uUODOA
I byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A} /I Fetch the 1%t match in the prefix required.
/I ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", "#", newline, 2) /1 Prefix "#" Suffix \uODOA
I byte[] = {0x23,0x48,0x69,0x0D,0x0A} /I Fetch the 1%t match in the prefix required.
/I ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", "$", newline, 3) /I Prefix "$" Suffix \UODOA
/I byte[] = {0x54,0x4D}
/I ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", "#", newline, 3) /1 Prefix "#" Suffix \uODOA
I byte[] = {0x52,0x6F,0x62,0x6F,0x74}
/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 266

e

Syntax 7

byte[] socket _read(

string,

byte[] or string,

int,
int
)
Parameters
string

Network device name

byte[] or string

int

int

Return
byte([]

Syntax 8

The suffix condition to read. Input byte[0] or " as the empty string to denote no
suffix condition.
Fetch option

0 The 15t match not required in the beginning and not removing the prefix
and the suffix (default)

1 The 15t match not required in the beginning and removing the prefix
and the suffix

2 The 15t match required in the beginning and removing the prefix and
the suffix

3 The 15t match required in the beginning and removing the prefix and
the suffix

Read time (millisecond)

<=0 Read once

>0 Read multiple times until there is data or the times fulfill.

Return the 1starray in byte that matches the suffix condition. (No prefix condition
restricted)

Fetch the first data that matches the condition in the Received Buffer.only. The
following data remains in the Received Buffer.

If the suffix condition is byte[0] or an empty string, it fetches all data in the
Received Buffer.

If unable to find the data matches the condition, it returns byte[0].

byte[] socket_read(

string,

byte[] or string,

int
)
Note

Same as syntax 7. Fill 0 as the read time by default.

Syntax 9

byte[] socket_read(

string,

byte[] or string

)

Note

Omron TM Collaborative Robot: TMScript Language Manual (1664) 267

e

Same as syntax 7. Fill O as the fetch option and the read time by default.

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", "") /I Empty Suffix. Fetch all data.
I byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
byte[] var_value = socket_read("ntd_a", newline)// suffix \uoDOA
I/ byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\uODOA
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // Fetch the 1t match. Remain the following

data.
var_value = socket_read("ntd_a", newline) /1 Suffix \uODOA
I byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} /I World\uODOA

/I ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, 11 #Hi
0x24,0x54,0x4D,0x0D,0x0A, I $TM
0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot
byte[] var_value = socket_read("ntd_a", newline, 0) /1 Suffix \uODOA
Il byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A} // $Hello\uODOA

/| ReceivedBuffer =
{0x23,0x48,0x69,0x0D,0x0A,0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", newline, 1) /1 Suffix \uODOA

/I byte[] = {0x23,0x48,0x69} I #Hi

/I ReceivedBuffer = {Ox24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", newline, 2) /1 Suffix \uODOA

I byte[] = {0x24,0x54,0x4D,0x0D,0x0A} // $STM\UODOA

/I ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read("ntd_a", newline, 3) /1 Suffix \uODOA

/I byte[] = {0x23,0x52,0x6F,0x62,0x6F,0x74} Il #Robot

/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 268

e

9.5 socket_read_string()
Read data in the Received Buffer and convert the byte array to string text in UTF8

Syntax 1
string socket_read_string(
string
)
Parameters
string Network device name
Return
string Return all data in the Received Buffer. Return an empty string if buffer empty.

Syntax 2
string socket_read_string(
string,
int,
int
)
Parameters
string Network device name
int Retrieve the fixed amount of string (by the length of string)
<=0 Get all
>0 Get a specified amount (the specified amount required to get the data)
int Read time (millisecond)
<=0 Read once
>0 Read multiple times until there is data or the times fulfill.
Return

string Return the specified amount of data in the Received Buffer with a string. Return
an empty string if insufficient amount.
Syntax 3

string socket_read_string(
string,
int

)

Note
Same as syntax 2. Fill 0 as the read time by default.

Syntax 4
string socket_read_string(
string,
byte[] or string,
byte[] or string,

int,

int
)
Parameters

string Network device name
byte[] or string
The prefix condition to read. Input byte[0] or ™" as the empty string to denote no

Omron TM Collaborative Robot: TMScript Language Manual (1664) 269

e

prefix condition.

byte[] or string
The suffix condition to read. Input byte[0] or " as the empty string to denote no
suffix condition.

int Retrieve the fixed amount of string (by the length of string)
<=0 Get all
>0 Get a specified amount (the specified amount required to get the data)
int Read time (millisecond)
<=0 Read once
>0 Read multiple times until there is data or the times fulfill.
Return
string Return the 15tstring that matches the prefix condition and the suffix condition.
Fetch the first data that matches the conditions in the Received Buffer.only. The
following data remains in the Received Buffer.
If the prefix condition and the suffix condition are byte[0] or an empty string, it
fetches all data in the Received Buffer.
If unable to find the data matches the condition, it returns an empty string.
Syntax 5
string socket_read_string(
string,
byte[] or string,
byte[] or string,
int
)
Note
Same as syntax 4. Fill O as the read time by default.
Syntax 6
string socket_read_string(
string,
byte[] or string,
byte[] or string
)
Note
Same as syntax 4. Fill 0 as the fetch option and the read time by default.
Syntax 7
string socket_read_string(
string,
byte[] or string,
int,
int
)
Parameters

string Network device name

byte[] or string
The suffix condition to read. Input byte[0] or "™ as the empty string to denote no
suffix condition.

int Retrieve the fixed amount of string (by the length of string)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 270

<=0 Get all
>0 Get a specified amount (the specified amount required to get the data)
int Read time (millisecond)
<=0 Read once
>0 Read multiple times until there is data or the times fulfill.
Return
string Return the 15tstring that matches the suffix condition. (No prefix condition
restricted)
Fetch the first data that matches the condition in the Received Buffer.only. The
following data remains in the Received Buffer.
If the suffix condition is byte[0] or an empty string, it fetches all data in the
Received Buffer.
If unable to find the data matches the condition, it returns an empty string.
Syntax 8
string socket_read_string(
string,
byte[] or string,
int
)
Note

Same as syntax 7. Fill 0 as the read time by default.

Syntax 9
string socket_read_string(
string,
byte[] or string
)
Note
Same as syntax 7. Fill 0 as the fetch option and the read time by default.

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
string var_value = socket_read_string("ntd_a")
/I string = "Hello, World\uODOA"
/I ReceivedBuffer = {}

ReceivedBuffer =
{0Ox54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}
string var_value = socket_read_string("ntd_a", 4)
/I string = "TM #Z0B" /1 {0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E}// Fetch 4 by the string length.
/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xXE5,0x99,0xA8,0xE4,0xBA,0xBA}
var_value = socket_read_string("ntd_a", 5, 100)
/] string =""
/I The amount to read data in the Received Buffer is less than 5. (by the string length). Wait for 100 ms.
/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xXE5,0x99,0xA8,0xE4,0xBA,0xBA}
/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0x0A}
/] string = "%z A\uODOA"
/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 271

e

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
string var_value = socket_read_string("ntd_a", ", ™)

/I string = "Hello,\uODOAWorld\uODOA"
/I ReceivedBuffer = {}
ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
string value = socket_read_string("ntd_a", "He", newline) // prefix "He" Suffix \uODOA
/I string = "Hello,\uODOA"
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
var_value = socket_read_string("ntd_a", ", newline, 1)
/I Prefix " Suffix \uODOA Remove the prefix and the suffix.
/I string = "World"
/I ReceivedBuffer = {}
var_value = socket_read_string("ntd_a", ", newline, 1, 100)
/] string =""
/I Read a empty string for the fetch option unfulfilled. Wait for 100 ms.
/I ReceivedBuffer = {}
/I ReceivedBuffer = {OXE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A}
I string = "H#%a3 A"

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
string var_value = socket_read_string("ntd_a", "lo", newline) // Prefix "lo" Suffix \uODOA
/I string = "lo,\uODOA"
/I The data before the 1t match, "Hel", will be removed.
/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}
var_value = socket_read_string("ntd_a", newline, 1) /1 Suffix \uODOA
/I string = "World"
/I ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello
0x23,0x48,0x69,0x0D,0x0A, /] #Hi
0x24,0x54,0x4D,0x0D,0x0A, 11 $T™M
0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

string var_value = socket_read_string("ntd_a", "#", newline, 2) /1 Prefix "#" Suffix \uODOA

I string ="" /I Return an empty string for # not in the prefix.
/I ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read_string("ntd_a", "$", newline, 2) 11 Prefix "$" Suffix \uODOA
/I string = "$Hello\uODOA"
/I Fetch the 15t match in the prefix required.
/I ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,
0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}
var_value = socket_read_string("ntd_a", "#", newline, 2) 1 Prefix "#" Suffix \uODOA
/I string = "#Hi\uODOA" /I Fetch the 15t match in the prefix required.
/I ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "$", newline, 3) // Prefix "$" Suffix \uODOA
/I string = "TM"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 272

e

/I ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "#", newline, 3) / prefix "#" Suffix \uODOA
/I string = "Robot"
/I ReceivedBuffer = {}

ReceivedBuffer =
{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64 }
string var_value = socket_read_string("ntd_a", newline) / suffix \uoD0OA
/I string = "Hello,\uODOA"
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}
var_value = socket_read_string("ntd_a", newline, 0) /1 Suffix \uODOA
/] string ="
/I Read a empty string for the fetch option unfulfilled.
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}
var_value = socket_read_string("ntd_a", newline, 1, 100)// Suffix \uoDOA
/I string ="
/I Read a empty string for the fetch option unfulfilled. Wait for 100ms.
/I ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}
/I ReceivedBuffer = {Ox57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x31,0x32,0x33,0x0D,0x0A}
/I Supposed the data comes in and fulfills the fetch option.
/I string = "World"
/I ReceivedBuffer = {0x31,0x32,0x33,0x0D,0x0A}
var_value = socket_read_string("ntd_a", newline, 2) /1 Suffix \uODOA
/I string = "123\uODOA"
/I ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 273

e

9.6 socket_send()

Send the data value to a remote device.

Syntax 1
int socket_send(
string,
?,
int,
int
)
Parameters
string Network device name
? The value to write. Available types: int, float, , bool, string, and array.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
int Send result
1 Sent successfully.
0 Unable to send the data value as an empty string or an empty array.
-1 Socket exception occurred during sending.
-2 Unable to connect to the remote device.
-3 The device name does not exist, or IP or port is incorrect.
Syntax 2
int socket_send(
string,
?,
int
)
Note

Same as syntax 1. Fill 0 as the length of the value to write by default.

Syntax 3
int socket_send(
string,
?
)
Note
Same as syntax 1. Fill 0 as the starting index and the length of the value to write by
default.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 274

e

int var_re = socket_send("ntd_a", 100) Il send 0x64
var_re = socket_send("ntd_a", 1000) /I send OXE8,0x03,0x00,0x00 (int, Little Endian)
var_re = socket_send("ntd_a", (float)1.234)
/Isend 0xB6,0xF3,0x9D,0x3F (float, Little Endian)
var_re = socket_send("ntd_a", (double)123.456)
Il send 0x77,0xBE,0x9F,0x1A,0x2F,0xDD,0x5E,0x40 (double, Little Endian)
var_re = socket_send("ntd_a", "Hello, World"+newline)
Il send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A (string, UTF8)
int[] var_ii = {100, 200, 300, 400}
var_re = socket_send("ntd_a", var_ii)
/I send 0x64,0x00,0x00,0x00,0xC8,0x00,0x00,0x00,0x2C,0x01,0x00,0x00,0x90,0x01,0x00,0x00 (int],
Little Endian)
string[] var_ss = {"TM", ", "Robot"}
var_re = socket_send("ntd_a", var_ss)
/I send 0x54,0x4D,0x52,0x6F,0x62,0x6F,0x74 (string[], UTF8)
/I var_ss[1] is an empty string. The conversion value is still empty.

var_re = socket_send("ntd_a", 1000, 1, 2)
/I Invalid in the value, the starting index, and the length
/I send 0xE8,0x03,0x00,0x00 (int, Little Endian)
var_re = socket_send("ntd_a", "Hello, World"+newline, 0, 7)
/I send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20 (string, UTF8)
byte[] var_bb = {100, 200}
var_re = socket_send("ntd_a", var_bb) /I send 0x64,0xC8
var_re = socket_send("ntd_a", var_bb, 1, 1) // send 0xC8
/I Array. Read 1 from address 1, [1]=200
var_re = socket_send("ntd_a", var_bb, -1, 1) /I send 0x64
/I Array. Read 1 from address 0. [0]=100
var_re = socket_send("ntd_a", "B A", 2)
I Array. Read from address 2 till the end. "#zs A"
/I send OxE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA (string, UTF8)
var_ss = {"TM", ", "iZiB#%zs A"}
var_re = socket_send("ntd_a", var_ss)
I/l send
0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xES5,0x99,0xA8,0xE4,0xBA,0xBA
re = socket_send("ntd_a", Byte_Concat(GetBytes(var_ss), GetBytes(newline)))
/I send
0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D, 0x
OA
var_re = socket_send("ntd_a", var_ss, 2, 100)
/I Array. Read 100 from address 2. (till the end) [2]=2ZRB#23 A
/I send OxE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0XE5,0x99,0xA8,0xE4,0xBA,0xBA

Omron TM Collaborative Robot: TMScript Language Manual (1664) 275

e

9.7 socket_sendline()

Send the data value and add line break symbols, 0xOD 0x0A, to a remote device.

Syntax 1
int socket_sendline(
string,
?,
int,
int
)
Parameters
string Network device name
? The value to write. Available types: int, float, , bool, string, and array.
Numeric values will be conversed in Little Endian, and string values will be
converse in UTF8.
int The starting index of the value to write (eligible for strings and arrays)
0 .. length-1 Legitimate value
<0 lllegitimate value. The starting index will be set to 0.
>= length lllegitimate value. The starting index will be set to 0.
int The length of the value to write (eligible for strings and arrays)
<=0 Write from the starting index to the end of the data.
>0 Write from the staring index for a specified number of the
length up to the data ends.
Return
int Send result
1 Sent successfully.
0 Unable to send the data value as an empty string or an empty array.
-1 Socket exception occurred during sending.
-2 Unable to connect to the remote device.
-3 The device name does not exist, or IP or port is incorrect.
Syntax 2
int socket_sendline(
string,
?,
int
)
Note

Same as syntax 1. Fill 0 as the length of the value to write by default.

Syntax 3
int socket_sendline(
string,
?
)
Note
Same as syntax 1. Fill 0 as the starting index and the length of the value to write by
default.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 276

e

int var_re = socket_sendline("ntd_a", 200) // send 0xC8,0x0D,0x0A
var_re = socket_sendline("ntd_a", 2000) /I send 0xD0,0x07,0x00,0x00,0x0D,0x0A (int,
Little Endian)
var_re = socket_sendline("ntd_a", (float)0.234) // send 0xB2,0x9D,0x6F,0x3E,0x0D,0x0A
(float, Little Endian)
var_re = socket_sendline("ntd_a", (double)0.234)

/I send 0xC1,0xCA,0xA1,0x45,0xB6,0xF3,0xCD,0x3F,0x0D,0x0A (double, Little Endian)
var_re = socket_sendline("ntd_a", "Hello, World"+newline)

/I send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x0D,0x0A
(string, UTF8)
int[] var_ii = {100, 200, 300}
var_re = socket_sendline("ntd_a", var_ii)

/I send 0x64,0x00,0x00,0x00,0xC8,0x00,0x00,0x00,0x2C,0x01,0x00,0x00,0x0D,0x0A (int[], Little
Endian)
string[] var_ss = {"TM", ", "Robot"}
var_re = socket_sendline("ntd_a", var_ss)

/I send 0x54,0x4D,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A (string[], UTF8)

/Ivar_ss[1] is an empty string. The conversion value is still empty.

var_re = socket_sendline("ntd_a", 1000, 1, 2)
/I Invalid in the value, the starting index, and the length
/I send OXE8,0x03,0x00,0x00,0x0D,0x0A (int, Little Endian)
var_re = socket_sendline("ntd_a", "Hello, World"+newline, 0, 7)
/I send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x0D,0x0A (string, UTF8)
byte[] var_bb = {123, 234}
var_re = socket_sendline("ntd_a", var_bb) /I send 0x7B,0xEA,0x0D,0x0A
var_re = socket_sendline("ntd_a", var_bb, 1, 1) // send OxEA,0x0D,0x0A
/[Array. Read 1 from address 1.
var_re = socket_sendline("ntd_a", var_bb, -1, 1)/ send 0x7B,0x0D,0x0A
/I Array. Read 1 from address 0.
var_re = socket_sendline("ntd_a", "ZRB#22 A", 2)
/I" Array. Read from address 2 till the end. "#zs A"
/I send OxXE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A (string, UTF8)
var_ss = {"TM", ", "iZiB#%zs A"}
var_re = socket_sendline("ntd_a", var_ss)
/I send
0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,
Ox0A
var_re = socket_sendline("ntd_a", Byte_Concat(GetBytes(var_ss),
GetBytes(newline)))
/I send
0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E, 0XE6,0xA9,0x9F,0XE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A ,0X0D,
Ox0A
var_re = socket_sendline("ntd_a", var_ss, 2, -1)
/I Array. Read from address 2 till the end. [2]=2ZRF#23 A
/I send
0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A

Omron TM Collaborative Robot: TMScript Language Manual (1664) 277

e

10. Manual Decision Functions
10.1 MDecision Class

Use the MDecision class with variable declaration to allow users to configure M-Decision
nodes for conditional judgments or to display pop-up messages.

Construct 1

MDecision VariableName

MDecision VariableName = string, string

Parameter
string Headline
string Text
Note
MDecision md1 /I Headline and text are empty strings.

MDecision md2 = "Test1", "MDecision Test"
/I The headline is "Testl", and the text, "MDecision Test".

Member Methods

Name Default Description

Reset() - Reset all MDecision parameters to the default.
Title() The pop-up headline

Description() The pop-up text

Timeout() -1 Timeout

TimeoutDefaultCase() 0 The default index after the timeout

Case() - Add, delete, or modify the conditional judgement
Show() Check the conditional judgement

Omron TM Collaborative Robot: TMScript Language Manual (1664)

278

e

Reset()

Reset all MDecision parameters to the default.

Syntax 1
void Reset(

)

Parameters

void No input value
Return

void No return
10.1.2 Title()

Set the pop-up headline

Syntax 1

void Title(
string
)

Parameters

string The headline
Return

void No return
10.1.3 Description()

Set the pop-up text

Syntax 1

void Description(
string
)

Parameters

string The text
Return

void No return
10.1.4 Timeout()

Set the stop condition of timeout.

Syntax 1
void Timeout(
int,
int
)
Parameters
int Timeout in millisecond
<0 Disable
>=0 Timeout duration

Omron TM Collaborative Robot: TMScript Language Manual (1664)

279

e

int The default index after timeout
Return
void No return
Syntax 2
void Timeout(
int
)
Note
Same as Syntax 1. For setting the timeout duration.
Syntax 3
void Timeout(
Larameters
void No input value for cancelling the timeout.
Return
void No return

10.1.5 TimeoutDefaultCase()

Set the default index after the timeout

Syntax 1
void TimeoutDefaultCase(
int
)
Parameters
int The default index after the timeout.
Return
void No return

10.1.6 Case()

Add, delete, or modify the conditional judgment. It creates a new index if none exists, updates
an existing index, or deletes an index if only the index parameter is available.

Syntax 1
void Case(
int,
string,
string,
string,
bool
)
Parameters
int The condition or the index of the button in the pop-up
<0 Error
>=0 Legal index value
string Text to display of the button
string Text color of the button

Omron TM Collaborative Robot: TMScript Language Manual (1664) 280

"Red" Set the text color to red.
"Green" Set the text color to green.
"Blue" Set the text color to blue.
"Yellow" Set the text color to yellow.
"Black" Set the text color to black.
"White" Set the text color to white.
"Gray" Set the text color to gray.
string Background color of the button
"Red" Set the background color to red.
"Green" Set the background color to green.
"Blue" Set the background color to blue.
"Yellow" Set the background color to yellow.
"Black" Set the background color to black.
"White" Set the background color to white.
"Gray" Set the background color to gray.
bool The conditional can be true/false or a bool return of the statement.
Return
void No return
Syntax 2
void Case(
int,
string,
string,
string
)
Parameters
int The condition or the index of the button in the pop-up
string Text to display of the button
string Text color of the button
string Background color of the button
Note
Same as syntax 1. The condition is set to false meaning the condition of the index does
not meet.
Syntax 3
void Case(
int,
string
)
Parameters
int The condition or the index of the button in the pop-up
string Text to display of the button
Note

Same as syntax 1. The condition is set to false, with the default text color as white and the
default background color as blue.

Syntax 4
void Case(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 281

e

int,

string,

bool
)
Parameters

int The condition or the index of the button in the pop-up

string Text to display of the button

bool The conditional can be true/false or a bool return of the statement.
Note

Same as syntax 1 with the default text color as white and the default background color as
blue.

Syntax 5

void Case(

int
)
Parameters

int The condition or the index of the button in the pop-up

<0 Error
>=0 Legal index value

Note

Delete the set conditional judgment.

10.1.7 Show()

Check the condition. If it is true, it returns the index value without prompting a pop-up window.
If the condition is false, it prompts a pop-up window and continues to loop it concurrently. It
returns the respective index value if the condition meets, or the button index value when a user
clicks it. If there is a set timeout, it returns the default index value after the timeout.

Syntax 1
int Show(
%’arameters
void No input value
Return
int The index value to return
Note

int var_count =0
MDecision md1 = "TM", "Techman Robot?"

md1.Case(1, "Yes") /I Add index 1, button text "Yes"
md1.Case(2, "OK") /I Add index 2
md1.Case(3, "No") /I Add index 3

md1.Case(4, "If", var_count > 100)

/I Add index 4, button text "If", and a condition of var_count > 100 for judgment.

md1.Timeout(10000) /I Timeout for 10000ms

md1.TimeoutDefaultCase(2)

md1.Case(2) /I Delete index 2

int re = md1.Show() /I Return the index that meets the condition or the index where the

button was clicked. If there is a timeout, it returns index 2.

Display(re)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 282

e

MDecision md2 = "TM", "Techman Robot?"

md2.Case(6, "YES") /I Add index 6, button text "YES"
md2.Case(2, "OK") /I Add index 2

md2.Case(1, "NO") /I Add index 1

md2.Case(2, "OK-2") /I Modify index 2

int re2 = md2.Show()
Display(re2)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 283

e

11.Parameterized objects

Using parameterized objects is the same as using user defined variables. Parameterized
objects can be used without declarations to get or modify point data through the syntaxes in the
project operations and make the robot go with more flexibility. The expression comes with 3 parts,
item, index, and attribute, and the syntax is shown as below.

parameterized item[index].attribute

The supported parameterized items include:

Point
Base
TCP
VPoint
[@]
Robot
7. FT

o0k wnNE

Definitions of the indexes and the attributes vary from parameterized items.

Take the reading and writing of the coordinate (attribute) of the Point (item) "P1" (index) as a
example. The index is defined as the name of the point, and the attribute, as the data type of
float (the same usage as the array’s) with modes of reading and writing.

Value float[] R/W

Read values
float[] f = Point['P1"].Value

float f1 = Point['P1"].Value[0]

Write values
Point["P1"].Value = {0, 0, 90, O,
90, 0}
Point["P1"].Value[2] = 120

point coordinate{X,Y,Z,RX,RY,RZ}

/I In the item Point, the index is defined as the name of the
point and the data type of string.
/I The x value of "P1" can be obtained solely

/I Replace to the coordinate of "P1" with {0,0,90,0,90,0}

I or replace the z value of "P1" with 12 solely

Omron TM Collaborative Robot: TMScript Language Manual (1664) 284

e

11.1 Point
Syntax
Base
Point[string].attribute
Item
Point
Index
string The name of the point in the point manager
Attribute
Name Type Mode |Description Format
Value float[] R/W The coordinate of the point |{X, Y, Z, RX, RY, RZ}, Size =6
Joint float[] R/W The joint angle {31, J2, J3, J4, J5, J6}, Size = 6
Configl, Config2, Config3}, Size =
Pose int[] R/W The pose of the robot {3 g g 93)
The coordinate of the .
Flange float] |R {X,Y, Z, RX, RY, RZ}, Size = 6
flange's center
BaseName |string R The name of the base "Base Name"
TCPName |string R The name of the TCP "TCP Name"
The original coordinate of
TeachValue (float]] |R g _ _ {X,Y, Z, RX, RY, RZ}, Size =6
the teaching point
. The joint angle (the original
TeachJoint |float] |R J gle (the original | ;) 55 33 34, 35, 36}, Size = 6
angle at the teach point)
The original pose of the Configl, Config2, Config3}, Size =
TeachPose |[int]] R ginarp _ _ { g g %3
robot on the teaching point |3
*It recalcutes the the Joint and Flange when setting the Value, and it recalcutates the Value and Flange
when setting the Joint. Therefore, it reports an error if it cannot calculate the set value.
Note

Omron TM Collaborative Robot: TMScript Language Manual (1664)

/l Read values

float[] f = Point["P1"].Value
float f1 = Point["P1"].Value[0]
float f1 = Point["P1"].Value|[6]
string s =Point["P1"].BaseName
/I Write values

Point["P1"].Value = {0, 0, 90, 0, 90, 0} // Replace the coordinate of "P1" with {0,0,90,0,90,0}
Point["P1"].Value[2] = 120 I or replace the z value of "P1" with 120 solely
Point["P1"].Flange = {0, 0, 90, 0, 90, 0} // Read only, invalid operation

Point["P1"].Value = {0, 0, 90, 0, 90} // Return error, writing elements to the array do not match to 6
(writing 5 elements)

/I Return error, writing elements to the array do not match to 3
(writing 4 elements)

/ Obtain the coordinate {X, Y, Z, RX, RY, RZ} of "P1"

/I or retrieve the x value of "P1" solely

/I Return error, exceeding the array’s access range
/I s ="RobotBase"

Point["P1"].Pose = {1, 2, 4, 0}

285

e

11.2 Base

Syntax
Base

Base[string].attribute or
Base[string, int].attribute

Item
Base
Index
string The name of the base in the base manager
*The name of the base comes with the attribute of the mode in reading
without writing only.
"RobotBase"
int The index of the base, available to assign with multiple bases built by vision
one shot get all, ranging from 0 as the default to N.
Attribute
Name Type Mode |Description Format
Value float(] R/W The base value {X,Y, Z, RX, RY, RZ}, Size =6
"R": Robot Base
Type string R The type of the base "V": Vision Base
"C": Custom Base
TeachValue [float] |R Izlieor'gmal teach base {X,Y, Z, RX, RY, RZ}, Size = 6
Note

/I Read values

float[] f = Base["RobotBase"].Value

float f1 = Base["base1"].Value|0]

string s =Base["base1"].Type

s =Base[Point["P1"].BaseName].Type
float[] f = Base["vision_osga",1].Value

/I Write values

Base["RobotBase"].Value = {0, 0, 90, 0, 90, 0}

Base["base1"].Value = {0, 90, 0, 0, 90, 0}
Base["base1"].Value[4] = 120
Base["base1"].Value[6] = 120

Base["base1"].Type = "C"
Base["base1"].Value = {0, 0, 90, 0, 90}

Base["base1"].Value = {0, 0, 90, 0, 90, 0, 100}

// Obtain the base value {0,0,0,0,0,0} of the base

"RobotBase"

/I or retrieve the x value of "basel" solely
II's="C"

/s ="R" [/l Given the type of "P1" is "RobotBase"

/I Obtain the 2" value of the "vision_osga"

"RobotBase" is the system base

/I Read only, invalid operation, because

/I Replace the value of "basel" with {0,90,0,0,90,0}

I or replace the RY value of "basel" with 120 solely
/I Return error, exceeding the array’s access range

/I Read only, invalid operation

/I Return error, writing elements to the array do

not match to 6 (writing 5 elements)

not match to 6 (writing 7 elements)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

/I Return error, writing elements to the array do

286

e

11.3 TCP
Syntax
TCP
TCP[string].attribute
Item
TCP
Index
string The name of the TCP in the TCP list
*The name of the TCP comes with the attribute of the mode in reading
without writing only.
"RobotEndFlange”
"HandCamera"
"HandCamera2"
Attribute
Name Type Mode |[Description Format
Value float[] R/W The value of the TCP {X,Y, Z, RX, RY, RZ}, Size =6
Mass float R/W The value of mass Mass in kg
MOI float] |Rw || e value of the Principal {Ixx, lyy, Izz}, Size = 3
Moments of Inertia
The value of Mass center frame
MCF float[] R/W with principle axes w.r.t tool {X,Y, Z, RX, RY, RZ}, Size =6
frame
TeachValue [float] |R The original value of the TCP [{X, Y, Z, RX, RY, RZ}, Size = 6
TeachMass |(float R The original value of mass Mass in kg
TeachMOI (float[] R Th_e (?rlglnal value of the _ {Ixx, lyy, Izz}, Size =3
Principal Moments of Inertia
The original value of Mass
TeachMCF |[float[] R center frame with principle axes [{X, Y, Z, RX, RY, RZ}, Size = 6
w.r.t tool frame
Note

/I Read values
float[] f = TCP["RobotEndFlange "].Value
// Obtain the value {0,0,0,0,0,0} of the TCP " RobotEndFlange "

float f1 = TCP["RobotEndFlange "].Value[0]
/I or retrieve the x value of " RobotEndFlange " solely

float mass = TCP["T1"].Mass Il mass = 2.0
float[] moi = TCP["T1"].MOI /I moi = {0,0,0}
float[] mcf = TCP["T1"].MCF /I mef = {0,0,0,0,0,0}

/I Write values
TCP["RobotEndFlange "].Value = {0, -10, 0, 0, 0, 0}

/I Read only, invalid operation, because " RobotEndFlange " is the system TCP

TCP["T1"].Value = {0, -10, 0, 0, 0, 0} /I Replace the value of "T1"with {0,-10,0,0,0,0}
TCP["T1"].Value[0] = 10 Il or replace the X value of "T1" with 10 solely
TCP["T1"].Mass = 2.4 /I Replace the mass value of "T1" with 2.4 kg
TCP["T1"].MOI ={0, 0, 0, 1, 2} /I Return error, writing elements to the array do not match

to 3 (writing 5 elements)
TCP["T1"].MCF = {0, -20, 0, 0, 0, 0, 0} // Return error, writing elements to the array do not match
to 6 (writing 7 elements)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 287

e

11.4 VPoint
Syntax
VPoint
VPoint[string].attribute
Item
VPoint Initial position of the vision job
Index
string The name of the VPoint
Attribute
Name Type Mode |Description Format
Value float] |R/W The ,'n't'al coordinate of {X,Y, Z, RX, RY, RZ}, Size = 6
VPoint
BaseName |string |R The name of the VPoint |"Base Name"
TeachValue [float] |R The o_r 'ginal job m'_t'al {X,Y, Z, RX, RY, RZ}, Size = 6
coordinate of VPoint
Note
/l Read values
float[] f = VPoint["Job1"].Value /I Obtain the initial coordinate {X, Y, Z, RX, RY, RZ} of VPoint
"Jobl"

Omron TM

float f1 = VPoint["Job1"].Value[O] // or retrieve the x value of "Job1"

float f1 = VPoint["Job1"].Value[6] // Return error, exceeding the array’s access range

string s = VPoint["Job1"].BaseName// s ="RobotBase"

/I Write values

VPoint["Job1"].Value = {0, 0, 90, 0, 90, 0} /I Replace the initial coordinate of VPoint "Job1" with
{0,0,90,0,90,0}

VPoint["Job1"].Value[2] = 120 I or replace the Z value of "Job1" with 120 solely
VPoint["Job1"].BaseName = "base1" /I Read only, invalid operation
VPoint["Job1"].Value = {0, 0, 90, 0, 90} /I Return error, writing elements to the array do

not match to 6 (writing 5 elements)
VPoint["Job1"].Value = {0, 0, 90, 0, 90, 0, 100} // Return error, writing elements to the array do
not match to 6 (writing 7 elements)

Collaborative Robot: TMScript Language Manual (1664) 288

e

11.5 10
Syntax
10
IO[string].attribute
Item
10 Input/Output
Index
string The name of the control module
ControlBox the control box
EndModule the end module
ExtModuleN the external module (N =0 .. n)
Safety the safety module
Attribute
ControlBox / EndModule / ExtModuleN
Name Type Mode |Description Format
[0]=DIO O: Low, 1: High
DI byte[] R Digital input [1] =DI1
[n] =DIn
[0] =DO0 0: Low, 1: High
DO byte[] R/W Digital output [1] = DO1
[n] = DON
[0] = AI0 -10.24V .. +10.24V (Voltage)
Al float[] R Analog input [1] = AlL
[n] = Aln
[0] = AOO -10.00V .. + 10.00V (Voltage)
AO float[] R/W Analog output [1] = AO1
[n] = AOn
Digital input (Instant [0=DIO 0: Low, 1: High
InstantDIl |byte[] R [1] =DI1
Command)
[n] = DIn
Digital output (Instant [0}=DO0 0:Low, 1: High
InstantDO |byte]] |R/IW [1]=DO1
Command)
[n] = DON
. [0] = AIO -10.24V .. +10.24V (Voltage)
InstantAl [foat] |R Analog input (Instant. |\ _ 4
Command)
[n] = Aln
Analog output (Instant [0] = AOO -10.00V ..+ 10.00V (Voltage)
InstantAQO |float[] R/W [1] = AO1
Command)
[n] = AOn

* The sets of DI[n]/DO[n])/AI[n)/AOI[n] vary from the actual hardware device identification.

Safety
Name Type Mode |Description Format
0: Low, 1: High
SI[0] = SF1 User Connected ESTOP input
Sl byte[] R Safety function input |SI[1] = SF3 User Connected External Safeguard
Input
SI[2] According to Safety Input Ports Assign

Omron TM Collaborative Robot: TMScript Language Manual (1664) 289

Name Type Mode |Description Format

SI[3] According to Safety Input Ports Assign

SI[7] According to Safety Input Ports Assign

0: Low, 1: High

SOI[0] According to Safety Output Ports Assign

Safety function SO[1] Accord?ng to Safety Output Ports Ass?gn

SO byte[| |R output SOJ[2] According to Safety Output Ports Assign
SO[3] According to Safety Output Ports Assign

SO[7] According to Safety Output Ports Assign

The differences between DI/DO/AI/AO and InstantDl/InstantDO/InstantAl/InstantAO

DI/DO/AI/AQ is the queue command with reservations in the main flow of the project. If a
DI/DO/AI/AO is after the robot motion function such as a point node with the mixture of
trajectories, the DI/DO/AI/AO will be operated after the point node is finished. If using an
InstantDl/InstantDO/InstantAl/InstantAO command, It will be operated while the point node is
on the run and without waiting for the point node to finish.

In addition, if DI/DO/AI/AO turns to an instant command automatically in the thread page
of a project as going without waiting for the point node to finish before running along, the result
is the same as using InstantDl/InstantDO/InstantAl/InstantAQO.

Note

/Il Read values

byte[] di = IO["ControlBox"].DI // Obtain the digital input status of ControlBox

int dilen = Length(di) /I Obtain the amount of digital PINs with the size of the array

byte di0 = [O["ControlBox"].DI[0] // Obtain the status of ControlBox DI[0]

byte di32 = IO["ControlBox"].DI[32]// Return error, exceeding the array’s access range (given DI is
an array with the length of 16 where the indexes start with O
and end with 15.

float[] ai = 10["ControlBox"].Al // Obtain the analog input status of ControlBox

float[] ao = IO["ControlBox"].AQ// Obtain the analog output status of ControlBox

byte si0 = 10["Safety"].SI[0] // Obtain the safety input status of Safety SI[0]

byte so4 = |O["Safety"].SO[4] /I Obtain the safety output status of Safety SO[4]

byte si1 = 10["ControlBox"].SI[1] /I Return error, ControlBox does not support Sl attribute.
byte di2 = |O["Safety"].DI[2] /I Return error, Safety does not support DI attribute.

byte di7 = |O["ControlBox"].InstantDI[7]// Obtain the status of ControlBox" DI[7] (instant execution)
/I Write values

IO["ControlBox"].DI = {1,1,0,0} /I Read only, invalid operation
IO["ControlBox"].DI[0] = 0 /I Read only, invalid operation
IO["ControlBox"].DO[2] = 1 /I Set DO 2 to High
IO["ControlBox"].AO[0] = 3.3 I/ Set AOO to 3.3V

IO["ControlBox"].DO = {1,1,0,0} /I Return error, elements to write mismatch to array’s size
(given Dl is an array with the length of 16 which covers 16

elements)
IO["ControlBox"].InstantDO[0] =1 // Set DO 0 to High (Instant Execution)
I0["Safety"].SI[0] =0 /I Read only, invalid operation
I0["Safety"].SO[4] = 1 /I Read only, invalid operation
IO["ControlBox"].SO[1] = 1 /I Return error, ControlBox does not support SO attribute.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 290

e

IO["Safety"].DO[2] = 1 /I Return error, Safety does not support DO attribute.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 291

e

/l Read values

float[] rtool = Robot[0].CoordRobot

float[] ftool = Robot[0].CoordBase

float f = Robot[0]. CoordBase[0]

f = Robot[0]. CoordBase[6]
float[] joint = Robot[0].Joint

float j = Robot[0].Joint[0]
string b = Robot[0].BaseName

string t = Robot[0]. TCPName
float load = Robot[0].Payload

// Obtain the current robot joint angle

byte light = Robot[0]. CameraLight
float tf3d = Robot[0].TCPForce3D

11.6 Robot
Syntax
Robot
Robot[int].attribute
Item
Robot
Index
int The index of the robot fixed at 0
Attribute
Name Type Mode |Description Format
The TCP coordinate of the)
_ , {X,Y, Z, RX, RY, RZ}, Size =
CoordRobot float]] |R robot end point opposite to the
RobotBase of the robot
The TCP coordinate of the .
_ _ {X,Y, Z, RX, RY, RZ}, Size =
CoordBase float] |R robot end point opposite to the
current base of the robot.
. . {J1, 32, J3, J4, J5, J6}, Size
Joint float]] |R The current robot joint angle 6
BaseName string [R The name of the current base |'Base Name"
TCPName string [R The name of the current TCP |"TCP Name"
Payload foat R The current compensatory kg
payload
CameraLight byte |Rw || e lighting of the robot's 0: Low (Off), 1: High (On)
camera
InstantCameralight |byte R/W The lighting of the robot's 0: Low (Off), 1: High (On)
camera (Instant Command)
The current TCP force as the
TCPForce3D float R composite force of the robot |N
base x, y, and z.
The current TCP speed as a
TCPSpeed3D float R composite speed of the robot |mm/s
base x, y, and z.
Note

// Obtain the current TCP coordinate of the robot end
point opposite to the RobotBase of the robot
/I Obtain the current TCP coordinate of the robot end point
opposite to the current base of the robot.
/I or retrieve the X value of the current TCP coordinate of the
robot end point opposite to the current base of the robot solely.
/I Return error, exceeding the array’s access range

/I or retrieve the current angle of the robot’s 15t joint solely

/I b = "RobotBase"
/I t = "RobotEndFlange”
/10
/'light = 0 (OFF)
/I tf3d = 1.234

Omron TM Collaborative Robot: TMScript Language Manual (1664)

292

e,

float ts3d = Robot[0]. TCPSpeed3D //ts3d = 1.234

/I Write values
Robot[0].CoordRobot = {0, 90, 0, 0, 0, 0}// Read only, invalid operation
Robot[0].CoordBase = {0, 0, 90, 0, 90, 0} /I Read only, invalid operation

Robot[0].BaseName = "Base1" /I Read only, invalid operation

Robot[0]. TCPName = "Tool1" /I Read only, invalid operation
Robot[0].Payload= 3.4 /I Read only, invalid operation
Robot[0].CameraLight = 1 /I Turn on the lighting of the robot’s camera
Robot[0].CameraLight = 0 /I Turn off the lighting of the robot’s camera
Robot[0].TCPSpeed3D = 1.234 /I Read only, invalid operation

Omron TM Collaborative Robot: TMScript Language Manual (1664) 293

e

11.7 FT
Syntax
FT
FT[string].attribute
Item
FT Force Torque sensor status
Index
string The name of F/T sensor in the F/T sensor list
Attribute
Name Type |Mode |Description Format
X float R The force value of the X axis
Y float R The force value of the y axis
Z float |R The force value of the z axis
X float |R The torque value of the X axis
TY float |R The torque value of the y axis
TZ float |R The torque value of the z axis
F3D float |R The XYZ resultant force value
T3D float |R The XYZ torque value
The XYZ resultant force value |{X, Y, Z, TX, TY, TZ},
Value float]] |R _
and torque value array. Size=6
The XYZ resultant force value i
ForceValue float]] |R {X,Y, Z}, Size=3
array
TorqueValue float] |R The XYZ torque value array {TX, TY, TZ}, Size = 3
The X-axis force value
RefCoordX float |R measured based on the
reference base set in the node
The Y-axis force value
RefCoordY float |R measured based on the
reference base set in the node
The Z-axis force value
RefCoordZ float |R measured based on the
reference base set in the node
The X-axis torque value
RefCoordTX float [R measured based on the
reference base set in the node
The Y-axis torque value
RefCoordTY float |R measured based on the
reference base set in the node
The Z-axis torque value
RefCoordTZ float [R measured based on the
reference base set in the node
The XYZ resultant force value
RefCoordF3D float |R measured based on the
reference base set in the node
The XYZ torque measured
RefCoordT3D float [R based on the reference base set
in the node

Omron TM Collaborative Robot: TMScript Language Manual (1664)

294

e

Name Type |Mode |Description Format

The XYZ resultant force value |{RefCoordX,
RefCoordForceValue |float]] |R matrix measured based on the |RefCoordY,
reference base set in the node |RefCoordZ}, Size =3

The XYZ torque value matrix {RefCoordTX,
RefCoordTorqueValue [float]] |R measured based on the RefCoordTY,
reference base set in the node |RefCoordTZ}, Size =3

The Model name of the F/T
sensor

Model string |R

Zero byte R/W [Turn on or off F/T sensor offset |0: Zero OFF, 1: Zero ON

Attributes associated with RefCoord come with values when in Force Control.

Note
/I Read values
float x = FT["fts1"].X /I Obtain the current X-axis force value of F/T sensor "fts1"
float tx = FT["fts1"].TX /I Obtain the current X-axis torque value of F/T sensor "fts1"
float f3d = FT["fts1"].F3D /I Obtain the current XYZ resultant force value of F/T sensor "fts1"
float[] force = FT["fts1"].ForceValue /I Obtain the current XYZ resultant force value array of
F/T sensor "fts1"
string mode = FT["fts1"].Model /I Obtain the model name of F/T sensor "fts1"
Il Write values
FT["fts1"].Y = 3.14 /I Read only, invalid operation
FT["fts1"].TY = 1.34 /I Read only, invalid operation
FT["fts1"].T3D = 4.13 /I Read only, invalid operation
FT["fts1"].TorqueValue = {1.1, 2.2, 3.3} // Read only, invalid operation
FT["fts1"].Zero = 1 I Book the current offset of F/T sensor

Omron TM Collaborative Robot: TMScript Language Manual (1664) 295

e

12.Robot Teach Class

12.1 TPoint Class

Use TPoint Class and declare variables to create the point names and the point values. The
variable name will be the point name. *It takes calculations for the values of the coordinates
and the angles to construct points. It returns an error if it fails to calculate tthe values of the
coordinates and the angles with the parameter values.

Construct 1

TPoint VariableName = float[]

TPoint VariableName = float, float, float, float, float, float

Parameters
float(]

Note

The Robot End TCP Coordinate: X(mm), Y(mm), Z(mm), RX(°), RY(®), RZ(°)
recorded by RobotBase and RobotEndFlange TCP.

TPoint p1 = {0,-282.75,1094.9,90,0,0}

/l the coordinate value 0,-282.75,1094.9,90,0,0 by RobotBase and
RobotEndFlange

TPoint p2 = 517.5,-147.8,442.45,180,0,90

Construct 2

/I the coordinate value 517.5,-147.8,442.45,180,0,90 by RobotBase and
RobotEndFlange

TPoint VariableName = string, float[]
TPoint VariableName = string, float, float, float, float, float, float

Parameters
string

float[]

Note

Point Definitions. Default to "C".

"C"

IIDII

IIJII

"JD"

Point coordinate. When the project operation ends, it does not write
the values back to the record file. It uses the declared values with
the next project operation.(Same as Construct 1)

Point coordinate. When the project operation ends, it writes the
values back to the record file. It prioritizes using the record file with
the next project operation. If the record file comes empty, it uses the
declared values.

Joint angle. When the project operation ends, it does not the values
back to the record file. It uses the declared values with the next
project operation.

Joint angle. When the project operation ends, it writes the values
back to the record file. It prioritizes using the record file with the next
project operation. If the record file comes empty, it uses the
declared values.

If expressed in coordinates, this is the six elements of the TCP coordinates
at the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°); if expressed in
angles, the six elements of the robot joints: Joint 1(°), Joint 2(°), Joint 3(°),
Joint 4(°), Joint 5(°), Joint 6(°) by the RobotBase base and RobotEndFlange
TCP records.

TPoint p3 = "D",{522.07,130.75,442.45,180,0,120}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 296

e

TPoint p4 = "D",134.95,-147.8,1094.9,90,0,90 // Return error , unable to calculate the angle

value by the coordinate value

TPoint p5 ="J",0,0,90,0,90,0

/I the angle value 0,0,90,0,90,0 by RobotBase and RobotEndFlange
TPoint p6 = "JD",{30,0,90,0,90,0}

/I the angle value 30,0,90,0,90,0 by RobotBase and RobotEndFlange

Construct 3

TPoint VariableName = string, float[], string, string

TPoint VariableName = string, float, float, float, float, float, float, string, string
TPoint VariableName = float[], string, string

TPoint VariableName = float, float, float, float, float, float, string, string

Parameters
string

float(]

string
string
Note

Point Definitions. Default to "C".

IICII

IIDII

IIJII

"JD"

Point coordinate. When the project operation ends, it does not write
the values back to the record file. It uses the declared values with
the next project operation.

Point coordinate. When the project operation ends, it writes the
values back to the record file. It prioritizes using the record file with
the next project operation. If the record file comes empty, it uses the
declared values.

Joint angle. When the project operation ends, it does not the values
back to the record file. It uses the declared values with the next
project operation.

Joint angle. When the project operation ends, it writes the values
back to the record file. It prioritizes using the record file with the next
project operation. If the record file comes empty, it uses the
declared values.

If expressed in coordinates, this is the six elements of the TCP coordinates
at the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°); if expressed
in angles, the six elements of the robot joints: Joint 1(°), Joint 2(°), Joint
3(°), Joint 4(°), Joint 5(°), Joint 6(°). Record by the base name and the
TCP name.

Base name. Use the current base name in the record if an empty string.
TCP name. Use the current TCP name in the record if an empty string.

TBase base1 = 0,0,90,0,0,0

TTCP tcp1 =0,0,10,0,0,0

TPoint p7 = "D",{0,-282.75,1094.9,90,0,0},"RobotBase"," RobotEndFlange "

TPoint p8 = "J",0,0,90,0,90,0,"base1"," RobotEndFlange "// by basel and RobotEndFlange
TPoint p9 ="JD",{30,0,90,0,90,0},"RobotBase","tcp1" /I by RobotBase and tcpl
TPoint p0 ="C",{5617.5,-147.8,342.45,180,0,90},"base1","tcp1" // by basel and tcpl

/I The syntax below is in the non-define section.

ChangeBase("base1")

TPoint p00 = {617.5,-147.8,342.45,180,0,90},"","tcp1" // by the current basel and the

Construct 4

assigned tcpl

TPoint VariableName = string, float[], float[], string, string
TPoint VariableName = string, float], float[]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 297

e

TPoint VariableName = float], float], string, string
TPoint VariableName = float[], float[]

Parameters
string Point Definitions. Default to "C".

"C" When the project operation ends, it does not write the values back
to the record file. It uses the declared values with the next project
operation.

"D" When the project operation ends, it writes the values back to the
record file. It prioritizes using the record file with the next project
operation. If the record file comes empty, it uses the declared values.

float(] Expressed in coordinates, this is the six elements of the TCP coordinates at
the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°).

float[] Expressed in angles, the six elements of the robot joints: Joint 1(°), Joint
2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°). Record by the base name
and the TCP name.

string Base name. Use the current base name in the record if an empty string.

string TCP name. Use the current TCP name in the record if an empty string.

Note

TBase base1 =0,0,90,0,0,0
TTCP tcp1=0,0,10,0,0,0
TPoint tp1 ="C",{0,-282.75,1094.9,90,0,0},{0,0,0,0,0,0},"RobotBase"," RobotEndFlange

TPoint tp2 = "D" {517.5,-147.8,442.45,180,0,90},{0,0,90,0,90,0}
/I by RobotBase and RobotEndFlange
TPoint tp3 = {0,-292.75,1004.9,90,0,0},{0,0,0,0,0,0},"base1","tcp1" // by basel and tcpl
TPoint tp4 = {134.95,-147.8,1094.9,90,0,90},{0,0,0,0,90,0}
/I by RobotBase and RobotEndFlange

/I The syntax below is in the non-define section.
ChangeBase("base1")
ChangeTCP("tcp1")

TPoint tp5 = {0,-292.75,1004.9,90,0,0},{0,0,0,0,0,0},

Member Attibutes

) I/l by the current basel and the

current tcpl

Name Type Mode |Description Format

Value float[] R/W |Point coordinate {X,Y, Z, RX, RY, RZ}, Size = 6

Joint float[] R/W |Joint angle {31, 32, J3, J4, J5, J6}, Size = 6

Pose int[] R/W |Robot pose {Configl, Config2, Config3}, Size = 3

Flange float[] R Flange center coordinate {X,Y, Z, RX, RY, RZ}, Size =6

BaseName string Base name "Base Name"

TCPName string TCP name "TCP Name"
Point coordinate (the original .

TeachValue float[] R i) {X,Y, Z, RX, RY, RZ}, Size =6
teach point coordinate)

) Joint angle (the original teach .

TeachJoint float[] R) {31, J2, J3, J4, J5, J6}, Size = 6

point angle)
_ Robot pose (the original teach i !) .

TeachPose int[] R) {Configl, Config2, Config3}, Size = 3

point pose)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

208

e

* It recalculates the Joint and the Flange while setting the Value, and it recalculates the Value and the Flange
while setting the Joint. Therefore, it returns an error if failed to calculate.

Note
TPoint P1 = {0,-282.75,1094.9,90,0,0}
/I "P1"Coordinate value 0,-282.75,1094.9,90,0,0 by RobotBase and

RobotEndFlange
/I Read values
float[] f = P1.Value /I Get the point coordinate of the point "P1" {0,-282.75,1094.9,90,0,0}
float f1 = P1.Value[1] /l or get the Y value along of point "P1"
float f2 = P1.Value[6] /I Return error. Exceeding the array’s access range
float[] f3 = P1.Joint /I Get the angle value of the point "P1" {0,0,0,0,0,0}

string s = P1.BaseName // s = "RobotBase"

/I Write values

P1.Value = {617.5,-147.8,442.45,180,0,90} // Modify the point coordinate of the point "P1" to

{517.5,-147.8,442.45,180,0,90}

P1.Value[2] = 450 /I or modify the z value along of point "P1" to 450

P1.Flange = {0,0,90,0,90,0} /I Read only, invalid operation

P1.Value = {0,0,90,0,90} // Return error. The amount of the array elements to wirte does not matach
to 6. (5)

P1.Pose ={1,2,4,0} // Return error. The amount of the array elements to wirte does not matach to 3.

4

Omron TM Collaborative Robot: TMScript Language Manual (1664) 299

e

12.2 TBase Class

Use TBase Class and declare variables to create the point names and the point values. The
variable name will be the point name.
*The system base name comes with the attribute of the read-only mode and without the write
mode.

"RobotBase"
Once the variable name is the system base name, it is for variable declaration only. The input
value is invalid in the construct.

Construct 1
TBase VariableName = float[]
TBase VariableName = float, float, float, float, float, float

Parameters
float(] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
Note
TBase base1 = {0,0,90,0,0,0} /I Name: basel, Type: C, Value: 0,0,90,0,0,0
TBase base?2 = 0,90,90,0,0,0 /l Name: base2, Type: C, Value: 0,90,90,0,0,0

TBase RobotBase = 0,0,90,0,0,90
/I Since RobotBase is the system base, the input values are void but variable
declarations.
Construct 2
TBase VariableName = string, float[]
TBase VariableName = string, float, float, float, float, float, float

Parameters
string Base Types. Default to "C".

"C" When the project operation ends, it does not write the values back
to the record file. It uses the declared values with the next project
operation.(Same as Construct 1)

"D" When the project operation ends, it writes the values back to the
record file. It prioritizes using the record file with the next project
operation. If the record file comes empty, it uses the declared values.

"V Defined the same as type "D." This type goes with vision jobs mainly.
The name must comply with the naming rule beginning with vision_.
* Only in the define variable section will the variable declaration come with the
write back to the record file mechanism.

float[] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Note
TBase base5 = "C",{0,0,90,0,0,0} /I Name: base5, Type: C, Value: 0,0,90,0,0,0
TBase base6 = "D",0,90,90,0,0,0 // Name: base6, Type: D, Value: 0,90,90,0,0,0
TBase vision_base7 ="V",90,90,90,0,0,0 // Name: vision_base7, Type: V, Value:

90,90,90,0,0,0
TBase base8 ="V",90,90,90,0,0,0

/I Return error. The name, base8 , does not comply the naming rule of the type

V.
Member Attibutes
Name Type Mode |Description Format
Value float[] R/W |Base value {X,Y, Z, RX, RY, RZ}, Size =6
Type string R Base type "R": Robot Base

Omron TM Collaborative Robot: TMScript Language Manual (1664) 300

Name Type Mode |Description Format

"C". Custom Base
"D": Custom Base with write-back
"V": Vision Base

Base value (the original teach .
TeachValue float[] R) {X,Y, Z, RX, RY, RZ}, Size = 6
point base value)

Member Methods
Name Description
GetValue() Retrieve the base value
SetValue() Set the base value
Conshift() Convert a new base value (the original teach value) with the base

value and the shift value.

12.2.1 GetValue()

Retrieve the base value. (applicable to multiple bases created in the vision jobs)

Syntax 1
float[] GetValue(
int
)
Parameters
int Base Index. Users can assign from multiple bases created by vision one shot
get all. The index is 0 to N and defaulted to 0.Base Index. Users can assign
from multiple bases created by vision one shot get all. The index is 0 to N
and defaulted to 0.
Return
float(] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

If the base index value is larger than the number of multiple bases, it returns
an empty array.

12.2.2 SetValue()

Set the base value. (applicable to multiple bases created in the vision jobs)

Syntax 1
bool SetValue(
int,
float(]
)
Parameters
int Base Index. Users can assign from multiple bases created by vision one shot
get all. The index is 0 to N and defaulted to O.
float([] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
Return
bool Return True if successful. Return False if failed.

If the base index value is larger than the number of multiple bases, it sets

Omron TM Collaborative Robot: TMScript Language Manual (1664) 301

e

failed.
Note
TBase base1 = {0,0,90,0,0,0} /I Name: basel, Type: C, Value: 0,0,90,0,0,0
TBase RobotBase = 0,0,90,0,0,90
/I Since RobotBase is the system base, the input values are void but variable declarations.
TBase base5 = "C",{0,0,90,0,0,0} /I Name: base5, Type: C, Value: 0,0,90,0,0,0
TBase base6 = "D",0,90,90,0,0,0 /I Name: base6, Type: D, Value: 0,90,90,0,0,0
TBase vision_base8 = "V",90,90,90,0,0,0
/l Name: vision_base8, Type: V, Value: 90,90,90,0,0,0

/I Read values

float[] b1 = base1.Value /I Base: "basel", Value: {0,0,90,0,0,0}
float[] b2 = RobotBase.Value /l Base: "RobotBase", Value {0,0,0,0,0,0}
float b3 = base1.Value[2] Il Z value of Base "basel": 90

string t1 = baseb.Type e

string t2 = base6.Type II"D"

string t3 = vision_base8.Type In"V"

float[] b50 = base5.GetValue(0) // {0,0,90,0,0,0} Obtain the 15t base value in the base "base5".
float[] b51 = base5.GetValue(1) /I {} empty array Obtain the 2" base value in the base "base5".
float[] vb = vision_base8.GetValue(1) // Obtain the 2" base value in the base"vision_base8".
/I Suppose there is a vision job, it creates and updates the base
value of vision_bases8.
/I Write values
RobotBase.Value = {0,0,90,0,90,0} // Read only, invalid operation for "RobotBase" being the
system base.

base1.Value = {0,90,0,0,90,0} /I Modify the base "basel" to {0,90,0,0,90,0}
base1.Value[4] = 120 /I or modify the the RY value of the base "base1" alone to 120.
base1.Value[6] = 120 /I Return error. Exceeding the array’s access range.
base1.Type ="C" /I Read only, invalid operation

base1.Value = {0,0,90,0,90}

/I Return error. The amount of the array elements to wirte does not matach to 6. (5)

base1.Value = {0,0,90,0,90,0,100}

/I Return error. The amount of the array elements to wirte does not matach to 6. (7)

base6.Value = {30,90,90,0,0,0} /I Write back to the record file since "base6" is type D.
base5.SetValue(0, {90,90,90,0,0,0}) // True. Set the 1%t coordinate value in the base "base5".
base5.SetValue(1, {0,0,0,90,90,90}) // False. Failed to set.

12.2.3 ConvShift()

Convert a new base value with the base value (the original base teach value) and the shift
value, where the shift depends on the position and direction of the original coordinate.

Syntax 1
float[]] ConvShift(
float(]
)

Parameters

float[l Shift value X(mm) Y(mm) Z(mm) RX(O) RY(O) RZ(O)
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 302

e

float[] the new base value calculated by the given position and direction of the
original base teach value and the shift value.
X(mm) Y(mm) Z(mm) RX(O) RY(O) RZ(O)

Syntax 2
float[] ConvShift(
float, float, float, float, float, float

)
Note
Same as Syntax 1. It replaces the float[] type with float,float,float,float,float,float parameters.
Syntax 3
float[] ConvShift(
float(],
float[]
)
Parameters
float(] Base value X(mm) Y(mm) Z(mm) RX(O) RY(O) RZ(O)
float[| Shift value X(mm) Y(mm) Z(mm) RX(O) RY(D) RZ(O)
Return
float[] the new base value calculated by the given position and direction of the
original base teach value and the shift value.
X(mm) Y(mm) Z(mm) RX(O) RY(D) RZ(O)
Note

]

\ Shift Base
Current Base

TBase base1 = {200,200,0,0,0,90} /I Name: basel, Type: C, Vaule: 200,200,0,0,090

float[] base_shift = {10,20,30,0,0,0}
float[] new_base = {0,0,0,0,0,0}

base1.Value = base1.ConvShift(base_shift) /1 {180,210,30,0,0,90}
new_base = base1.ConvShift(10,20,30,0,0,0) /1 {180,210,30,0,0,90}
new_base = base1.ConvShift(base1.Value, {10,20,30,0,0,0}) /1 {160,220,60,0,0,90}

new_base = base1.ConvShift(base1.TeachValue, {10,20,30,0,0,0}) //{180,210,30,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 303

e

12.3 TTCP Class

Use TTCP Class and declare variables to create the point names and the point values. The
variable name will be the point name.
*The system TCP name comes with the attribute of the read-only mode and without the write
mode.

"RobotEndFlange"

"HandCamera"

"HandCamera2"
Once the variable name is the system TCP name or is in the tool setting of TMflow, it is for
variable declaration only. The input value is invalid in the construct.

Construct 1
TTCP VariableName = float]], float
TTCP VariableName = float[]
TTCP VariableName = float, float, float, float, float, float, float
TTCP VariableName = float, float, float, float, float, float

Parameters
float(] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
float Tool Mass (kg). Default to 0.

Note

TTCP tcp1 ={0,0,90,0,0,0} /I Name: tcpl, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg
TTCP tcp2 = {0,0,90,0,0,0},2 // Name: tcp2, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg
TTCP tcp3 =0,0,90,0,0,0 /I Name: tcp3, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg
TTCP tcp4 = 0,0,90,0,0,0,2 /I Name: tcp4, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg
TTCP RobotEndFlange = 0,0,90,0,0,90
/I Since RobotEndFlange is the system tool name, the input values are void but variable
declarations.
Construct 2
TTCP VariableName = string, float[], float
TTCP VariableName = string, float[]
TTCP VariableName = string, float, float, float, float, float, float, float
TTCP VariableName = string, float, float, float, float, float, float

Parameters
string Tool Types. Default to "C".

"C" When the project operation ends, it does not write the values back
to the record file. It uses the declared values with the next project
operation.(Same as Construct 1)

"D" When the project operation ends, it writes the values back to the
record file. It prioritizes using the record file with the next project
operation. If the record file comes empty, it uses the declared values.

"V Defined the same as type "D." This type goes with vision jobs mainly.
The name must comply with the naming rule beginning with vision_.
* Only in the define variable section will the variable declaration come with the
write back to the record file mechanism.

float[] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
float Tool Mass (kg). Default to 0.
Note
TTCP tcp5 ="C",{0,0,90,0,0,0} // Name: tcp5, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg

Omron TM Collaborative Robot: TMScript Language Manual (1664) 304

e

TTCP tcp6 = "D",{0,90,90,0,0,0},2 /I Name: tcp6, Type: D, Value: 0,90,90,0,0,0, Mass: 2 kg
TTCP visionTCP_tcp7 = "V",90,90,90,0,0,0 // Name: visionTCP_tcp7, Type: V, Value:

90,90,90,0,0,0

TTCP tcp7v ="V",90,90,90,0,0,0

/I Return error. The name, tcp7v, does not comply the naming rule of the
type V.

TTCP tcp8 ="D",90,90,90,0,0,0,2 /I Name: tcp8, Type: D, Value: 90,90,90,0,0,0, Mass: 2 kg

Construct 3

TTCP VariableName = string, float[], float, float[], float[]
TTCP VariableName = float[], float, float[], float[]

Parameters

string Tool Types. Default to "C".

IICII

IIDII

IIVII

When the project operation ends, it does not write the values back
to the record file. It uses the declared values with the next project
operation.(Same as Construct 1)

When the project operation ends, it writes the values back to the
record file. It prioritizes using the record file with the next project
operation. If the record file comes empty, it uses the declared values.

Defined the same as type "D." This type goes with vision jobs mainly.

The name must comply with the naming rule beginning with vision_.
* Only in the define variable section will the variable declaration come with the
write back to the record file mechanism.

float[] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

float Tool Mass (kg). Default to 0.

float[] Principal Moments of Inertia: Ixx(kg-mm?), lyy(kg-mm?), Izz(kg-mm?)

float[] Mass Center Frame with Principle Axes w.r.t Tool Frame: X(mm), Y(mm), Z(mm), RX(°),
RY(®), RZ(%)

Note

TTCP tcp9 = {0,0,90,0,0,0},2,{2,0.5,0.5},{0,0,-80,0,0,0}
/I Name: tcp9, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg, Inertia: 2,0.5,0.5, The Reference Coordinate:

0,0,-80,0,0,0

TTCP tcp0 = "D",{0,0,150,0,0,90},1,{1,0.5,0.5},{0,0,-80,0,0,0}
/ Name: tcpO, Type: D, Value: 0,0,150,0,0,90, Mass: 1 kg, Inertia: 1,0.5,0.5, The Reference Coordinate:

0,0,-80,0,0,0

Member Attibutes

Name Type Mode |Description Format
X, Y, Z, RX, RY, RZ}, Size =

Value float(] R/W |TCP value 5
Mass float R/W |Mass Mass in kg
MOl float[] R/W |Principal Moments of Inertia {Ixx, lyy, 1zz}, Size = 3

Mass center frame with principle axes |{X, Y, Z, RX, RY, RZ}, Size =
MCF float]] |R/W

w.r.t tool frame 6

TCP value (the original TCP setting {X,Y, Z, RX, RY, RZ}, Size =
TeachValue float(] R

value) 6
TeachMass float R Mass (the original TCP setting value) Mass in kg

Principal Moments of Inertia (the original)
TeachMOI float[] R {Ixx, lyy, 1zz}, Size = 3

TCP setting value)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 305

e

Name Type Mode |Description Format

TeachMCF float[] R w.r.t tool frame (the original TCP setting

Mass center frame with principle axes i
{X,Y, Z, RX, RY, RZ}, Size =

6

value)

Note

TTCP tcp1 ={0,0,90,0,0,0},3 /l Name: tcp1, Type: C, Value: 0,0,90,0,0,0, Mass: 3 kg
TTCP RobotEndFlange = 0,0,90,0,0,90
/I Since RobotEndFlange is the system tool name, the input values are void but variable
declarations.
TTCP tcp9 = "D",{0,0,90,0,0,0},2,{2,0.5,0.5},{0,0,-80,0,0,0}
/I Read values
float[] tO = RobotEndFlange.Value
/I Obtain the TCP value of the tool named RobotEndFlange: {0,0,0,0,0,0}
float[] t1 = tcp1.Value /I Obtain the TCP value of the tool named tcp1: {0,0,90,0,0,0}
float t2 = tcp1.Value[2] // or obtain the Z value of the tool named tcp1l alone.

float mass = tcp1.Mass
float[] mcf = tcp1.MCF

float mass9 = tcp9.Mass

float[] moi9 = tcp9.MOI

/l mass = 3
/I mcf = {0,0,0,0,0,0}

/I'mass9 =2 // Obtain 2.1 kg if operate after tcp9.Mass = 2.1

/I moi9 = {2,0.5,0.5}

I/l Write values
RobotEndFlange.Value = {0, -10, 0, 0, 0, 0}

/I Read only, invalid operation for RobotEndFlange being the system TCP.
tcp1.Value = {0, -10, 0, 0, 0, O} // Modify the TCP named tcp1 to {0,-10,0,0,0,0}

tcp1.Value[0] =10 /I or modify the X value of tcpl alone to 10

tcp1.Mass = 2.4 /Il Modify the the mass of the TCP named tcpl to 2.4 kg.
tcp9.Mass = 2.1 /I Modify the the mass of the TCP named tcp9 to 2.1 kg.
tcp1.MOI={0, 0,0, 1, 2} /I Return error. The amount of the array elements to wirte does not

matach to 3. (5)
tep1.MCF = {0, -20, 0, 0, 0, 0, 0}

/I Return error. The amount of the array elements to wirte does not

matach to 6. (7)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

306

e

13.Robot Motion & Vision Job Function

For robot motion functions and vision job functions to be available if using flow projects, it
requires the External Script to have the project flow enter the Listen node (external script control
mode) or the script node. If using script project programming, they are available in the project
programming directly.

Calling in the main thread, namely, the main flows or subflows in the flow projects, or the main
functions and the functions to call in the script projects, is mandatory for robot motion functions and
vision job functions moving to the initial position.Calling motion functions is not allowed in other
threads. All the motion processes will be queued temporarily and processed in sequence. Users
can use the queue tag numbers to understand the current motion command process if necessary.

13.1 QueueTag()

Set robot motions with Queue Tag Numbers to denote the current robot motion in process. The
status of each queue tag can be monitored using TMSTA SubCmd 01.

Syntax 1
bool QueueTag(
int,
int
)
Parameters
int The tag number. Valid for integers between 1 and 15.
int Wait for the tagging to continue processing or not.
0 Not wait (default)
1 Wait
When the value is set to 1, the process stays in the function and waits for the
tagging to complete and continue processing.
Return
bool Return True when tagged successfully. Return False when tagged

unsuccessfully.

Syntax 2
bool QueueTag(
int
)
Note
Same as syntax 1. It default to 0 not waiting for the tagging to continue processing.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 307

e

13.2 WaitQueueTag()

Wait for the Queue Tag Number of the robot motion to complete.

Syntax 1
int WaitQueueTag(
int,
int
)
Parameters
int The tag number
1..15 Valid tag numbers.
0 Invalid tag number, but waits for the timeout. (No waiting for the time
out if set the timeout to infinite.)
<0 Unavailable tag number. No waiting for the time out.
>15 Unavailable tag number. No waiting for the time out.
int Set the time to the timeout
<0 Wait infinitely. Valid when the tag number is between 1 to 15
legitimately. (default) = 0 Wait to check once
>0 Wait in milliseconds before timeout
When using waiting in queue, the process stays in the function until the tagging
is completed, the tagging is not existed, or timeout, and then continues
processing.
Return
int Return the result of waiting
1 The tagging is completed
0 The tagging is incomplete or timeout
-1 The tagging is not existed

* Tag numbers can be reused.
* The tag number will retain the status of the final four tags, and if the tag number did not
occur or exceeds them, it returns not existed.

Syntax 2
int WaitQueueTag(
int

)
Note

The syntax is the same as syntax 1. The default is no timeout and required to wait for the
tagging to complete (or not existed)
WaitQueueTag(int, int) => WaitQueueTag(int, 0)

Syntax 3
void WaitQueueTag(
)
Parameters
void No input value
Return
void No return
Note

Omron TM Collaborative Robot: TMScript Language Manual (1664) 308

e

No tag number is required. It waits for all the robot motions in the current queue to complete
before going forward execution.

13.3 CheckQueueTag()

Check the Queue Tag Number of the robot motion to complete.

Syntax 1
int CheckQueueTag(
int
)
Parameters
int The tag number
1..15 Valid tag numbers.
Return
int Return the result of checking
1 The tagging is completed.
0 The tagging is incomplete.
-1 The tagging is not existed.

* Tag numbers can be reused.
* The tag number will retain the status of the final four tags, and if the tag number did not
occur or exceeds them, it returns not existed.

* Same as WaitQueueTag(int, 0) and denotes the result of one time checking only tag
number.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 309

e

e Motion Function Queue Tag

Motion function queue tags are used to cooperate with the robot motion functions. Since all
motion functions are queued in the buffer and executed in order, use the cooperative queue
tags, it is possible to know which motion function is in execution currently.

1. < $TMSCT,172,2 float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1)\r\n I QueueTag(1) not wait and continue processing
float[] targetP2 = {0,0,90,90,0,0}\r\n
PTP("JPP" targetP2,10,200,10,false)\r\n
QueueTag(2)\r\n /l QueueTag(2) not wait and continue processing
49\r\n
When executed the script content, since QueueTag() did not wait, after execution, the
process returned
> $TMSCT4,2,0K,*5F\r\n
When robot motion executed PTP() targetP1, because of QueueTag(1), it will return

> $TMSTA,10,01,01,true,*64\r\n /l TMSTA SubCmd 01, TagNumber 01, completed
When robot motion executed PTP() targetP2, because of QueueTag(2) , it will return
> $TMSTA,10,01,02,true,*67\r\n /l TMSTA SubCmd 01, TagNumber 02, completed

2. < $TMSCT,174,2 float[] targetP3= {0,0,90,0,90,0}\r\n
PTP("JPP" targetP3,10,200,0,false)\r\n
QueueTag(3,1)\r\n // QueueTag(3) wait and stay in the function until the tagging completed
float[] targetP4 = {0,0,90,90,0,0}\r\n
PTP("JPP" targetP4,10,200,10,false)\r\n
QueueTag(4)\r\n /I QueueTag(4) not wait and continue processing
J56\r\n
When executed the script content, since QueueTag(3,1) is set to wait, after tagging
completed, the process returned
> $TMSTA,10,01,03,true,*66\r\n /l TMSTA SubCmd 01, TagNumber 03, completed
When QueueTag(3) completed, the process continues, since QueueTag(4) is not set to wait,
after execution, the process returned
> $TMSCT,4,2,0K,*5F\r\n
When robot motion executed PTP() targetP2, because of QueueTag(4) , it will return
> $TMSTA,10,01,04 true,*61\r\n /l TMSTA SubCmd 01, TagNumber 04, completed

*$TMSCT,4,2,0K is returned when the process executed the script. Therefore, if using
QueueTag to wait or WaitQueueTag to wait, it will return after the execution as well.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 310

e,

13.4 StopAndClearBuffer()

Stop the motion of the robot and clear existing commands of the robot in the buffer.

Syntax
bool StopAndClearBuffer(
)
Parameter
void No parameter
Return
bool True Command accepted ; False Command rejected
Note

StopAndClearBuffer()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 31

e

13.5 ChangeBase()

Set the reference base for the consecutive motion.

Syntax 1
bool ChangeBase(
string,
int
)
Parameters
string The base name
int The base index. Users can specify the bases created by the vision task of one
shot get all. The value is 0 N, and the default is 0.
Return
bool True Change successfully.
False Change unsuccessfully.
Syntax 2
bool ChangeBase(
string
)
Note

Same as syntax 1 and fill 0 as the default base index.

ChangeBase("RobotBase") /Ichange the reference base for motion to "RobotBase"
ChangeBase("vision_job1", 1) //change the reference base to the 2" base value of "vision_job1". If

the name or the index specified of the base does exist, it reports an
error.

ChangeBase("RobotBase”, 10) //change the reference base for motion to "RobotBase". Since it is the
name of the base, the base index is invalid.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 312

e

Syntax 3
bool ChangeBase(
float(]
)
Parameters
float(] Base parameters X, Y, Z, RX, RY, and RZ
Return
bool True Change successfully.
False Change unsuccessfully.
Note
float[] Base1 = {20,30,10,0,0,90} /Ideclare a floating point array for the base values.
ChangeBase(Base1) /Ichange the reference base for motion to the set base value
Syntax 4

bool ChangeBase(
float, float, float, float, float, float

)
Parameters
float, float, float, float, float, float
Base parameters X, Y, Z, RX, RY, and RZ
Return
bool True Change successfully.
False Change unsuccessfully.
Note

ChangeBase(20,30,10,0,0,90) /lchange the reference base to {20,30,10,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 313

e

13.6 ChangeTCP()

Set the end tool parameters for the consecutive motion.

Syntax 1

bool ChangeTCP(
string
)

Parameters
string TCP name
Return

bool True Change successfully.
False Change unsuccessfully.
Note
ChangeTCP("RobotEndFlange") /Ichange the end tool to "RobotEndFlange"

Syntax 2

bool ChangeTCP(
float]]
)

Parameters

float(] TCP parameters X, Y, Z, RX, RY, and RZ
Return

bool True Change successfully.
False Change unsuccessfully.
Note
float[] Tool1 = {0,0,150,0,0,90} /I declare a floating point array for the end tool values.

ChangeTCP(Tool1) I change the end tool value to the set end tool value

Syntax 3

bool ChangeTCP(
float(],
float
)
Parameters
float]] TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass

Return
bool True Change successfully.
False Change unsuccessfully.
Note
float[] Tool1 ={0,0,150,0,0,90} Il declare a floating point array for the end tool values.
ChangeTCP(Tool1,2) /I change the end tool value to the set end tool value.
The weight of the end tool is 2kg.
Syntax 4
bool ChangeTCP(
float(],
float,
float(]
)
Parameters

float(] TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass

Omron TM Collaborative Robot: TMScript Language Manual (1664) 314

e

float TCP rotation inertia includes nine values: (1) Ixx, (2) lyy, (3) 1zz, along with the mass
Yy, g
center coordinates relative to the tool coordinates, which are (4) X, (5) Y, (6) Z, (7) RX,
(8) RY, (9) RZ.

Return
bool True Change successfully.
False Change unsuccessfully.
Note
float[] Tool1 = {0,0,150,0,0,90} /I declare a floating point array for the end tool values.

float[] COM1 ={2,0.5,0.5,0,0,-80,0,0,0} /I declare a floating point array for the rotation inertia and
the reference coordinate relative to the tool coordinates.
ChangeTCP(Tool1,2,COM1) Il change the end tool value to the set end tool value. The
weight of the end tool is 2kg,.and it applies the rotation
inertia and its reference base.
Syntax 5

bool ChangeTCP(
float, float, float, float, float, float
)

Parameters

float, float, float, float, float, float
TCP parameters X, Y, Z, RX, RY, and RZ
Return
bool True Change successfully.
False Change unsuccessfully.
Note
ChangeTCP(0,0,150,0,0,90) /l change the end tool value to {0,0,150,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 315

e

Syntax 6

bool ChangeTCP(
float, float, float, float, float, float,

float
)
Parameters

float, float, float, float, float, float

TCP parameters X, Y, Z, RX, RY, and RZ

float TCP mass

Return

bool True Change successfully.

False Change unsuccessfully.

Note

ChangeTCP(0,0,150,0,0,90,2) // change the end tool value to {0,0,150,0,0,90}. The weight of

the end tool is 2kg.
Syntax 7

bool ChangeTCP(
float, float, float, float, float, float,
float,
float, float, float, float, float, float, float, float, float

)
Parameters
float, float, float, float, float, float
TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass
float, float, float, float, float, float, float, float, float
TCP rotation inertia includes nine values: (1) Ixx, (2) lyy, (3) lzz, along with the mass
center coordinates relative to the tool coordinates, which are (4) X, (5) Y, (6) Z, (7) RX,
(8) RY, (9) RZ.
Return
bool True Change successfully.
False Change unsuccessfully.
Note

ChangeTCP(0,0,150,0,0,90,2, 2,0.5,0.5,0,0,-80,0,0,0) /I change the end tool value to
{0,0,150,0,0,90}. The weight of the end tool is 2kg. The rotation

inertia is {2,0.5,0.5} and its reference coordinate is {0,0,-
80,0,0,0}.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 316

e

13.7 ChangeLoad()

Set the load weight to compensate.

Syntax 1

bool ChangeLoad(
float
)

Parameters

float Load weight in kilograms
Return
bool True Change successfully.
False Change unsuccessfully.
Note
ChangeLoad(2.3) /I Set the load weight to 2.3 kg.

Syntax 2

bool ChangeLoad(
float,
float

)

Parameters

float Load weight in kilograms
float Weight Conversion Estimated Distance in millimeters
Return

bool True Change successfully.
False Change unsuccessfully.
Note
ChangelLoad(2.3, 100) // Set the load weight to 2.3 kg.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 317

e

Syntax 3
bool ChangeLoad(
string,
int,
float
)
Parameters
string the name of the sensor
int the sensing condition
0 Picking up unknown load
1 Releasing unknown load
float Weight Conversion Estimated Distance in millimeters
Return
bool True Change successfully.
False Change unsuccessfully.
Note

FTSensor fts1 =" TMFT300"
ChangeLoad("fts1", 0, 100) // Use sensor ftsl to pick up an unknown load and change the load weight

by the detected weight.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 318

e

13.8

PTP()

Define and send PTP motion command into buffer for execution.

Syntax 1

bool PTP(
string,
float(],
int,
int,
int,
bool

)

Parameters

string Definition of data format, combines three letters
#1: Motion target format:
"C" expressed in Cartesian coordinate
"J" expressed in joint angles
#2: Speed format:
"P" expressed as a percentage
#3: Blending format
"P" expressed as a percentage
float[] Motion target. If defined with coordinate, it includes the coordinate of tool center point
at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°). If defined with joint
angle, it includes the angles of six joints: Joint1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint
5(°), Joint 6(°).
int The robot end moving speed setting, expressed as a percentage (%)
20 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
int Blending value, expressed as a percentage (%)
bool Disable precise positioning
true Disable precise positioning
false Enable precise positioning
Return
bool True Command accepted; False Command rejected (format error)
Note

Data format parameter includes: (1) "CPP", (2) "JPP"

float[] target1 = {0,0,90,0,90,0}

PTP("JPP" target1,10,200,0,false) // variable ingress available

PTP("JPP",{0,0,90,0,90,0},10,200,0,false) // array constant ingress available

PTP("CPP",Point["P2"].Value,10,200,0,false) /I point coordinate retrieving with point
parameterization available (robot posture attention
required)

PTP("JPP",Point["P2"].Joint,10,200,0,false) /I joint angle retrieving with point parameterization
available

/I move to target with PTP, speed = 10%, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (1664) 319

e

Syntax 2

bool PTP(
string,
float(],
int,
int,
int,
bool,
int[]

)

Parameters
string

float]]

int

int
int
bool
int[]

Return

Definition of data format, combines three letters
#1: Motion target format:
"C" expressed in Cartesian coordinate
#2: Speed format:
"P" expressed as a percentage
#3: Blending format
"P" expressed as a percentage
Motion target. If defined with coordinate, it includes the coordinate of tool center point
at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°).
The robot end moving speed setting, expressed as a percentage (%)
20 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
Blending value, expressed as a percentage (%)
Disable precise positioning
true Disable precise positioning
false Enable precise positioning
The pose of robot : [Config1, Config2, Config3], please find more information in
appendix

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes: (1) "CPP"

float[] targetP1 = {417.50,-122.30,343.90,180.00,0.00,90.00}
float[] pose = {0,2,4}

PTP("CPP", target1,50,200,0,false, pose) // variable ingress available
PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,pose)

/[array constant ingress available

PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,{0,2,4})

/[array constant ingress available

PTP("CPP",Point["P2"].Value,10,200,0,false,{0,2,4}) // point coordinate retrieving with point

parameterization available

/l move to target with PTP, speed = 10%, time
to top speed = 200ms, and pose configuration
=024.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 320

e

® Pose Configuration Parameters: [Config1, Config2, Config3]

Config: configl, config2, config3

config1=0:

if [(Vector A + + Vector C) projects on X-Y plane] cross [Vector D
projects on X-Y plane] is on negative-Z

configl=1:

if [(Vector A + + Vector C) projects on X-Y plane] cross [Vector D
projects on X-Y plane] is on positive-Z

config2=2:
= if (configl=0 and J3 is positive) or (configl=1 and J3 is negative)
% Vector D config2=3:

- if (configl=0 and J3 is negative) or (configl=1 and J3 is positive)

ector A+\\ + Vector C)
+ projects on'\X-Y plane
()
Cable /&

o .
[config3=4:
Y if (configl=0 and J5 is positive) or (configl=1 and J5 is negative)
To config3=5:
I Viec, _ if (configl=0 and J5 is negative) or (configl=1 and J5 is positive)
Vector D projects

on X-Y plane

Omron TM Collaborative Robot: TMScript Language Manual (1664) 321

e

TM25S/TM30S
config1=0:
if [(Vector A +) projects on X-Y plane] cross [Vector D projects
on X-Y plane] is on negative-Z
configl=1:
if [(VectorA +) projects on X-Y plane] cross [Vector D projects

on X-Y plane] is on positive-Z

config2=2:
if (configl=0and J3 is positive) or (configl=1and J3 is negative)
config2=3:
if (configl=0and J3 is negative) or (configl=1and J3 is positive)

config3=4:
if (configl=0and J5 is positive) or (configl=1and J5 is negative)
c config3=>5:
projects on X-Y plane | if (configl=0and 15 is negative) or (configl=1and J5 is positive)

Top
View
X Vector D projects

on X-Y plane

Syntax 3
bool PTP(
string,
float(],
int,
int,
int,
bool,
float([],
)
Parameters
string Definition of data format, combines three letters
#1: Motion target format:
"C" expressed in coordinate
#2: Speed format:
"P" expressed as a percentage
#3: Blending format:
"P" expressed as a percentage
float[] Motion target expressed in coordinate, It is six elements of the TCP coordinate at the
robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°).
int The robot end moving speed setting, expressed as a percentage (%)
20 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value

Omron TM Collaborative Robot: TMScript Language Manual (1664) 322

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.

int Blending value, expressed as a percentage (%)

bool Disable precise positioning
true Disable precise positioning
false Enable precise positioning

float[] Motion target expressed in reference joint angles. It is six elements of the robot joints:
Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°).
Return
bool True Command accepted; False Command rejected
Note
Data format parameter includes: (1) "CPP"

float[] targetl = {417.50,-122.30,343.90,180.00,0.00,90.00}
float[] joint6 = {3.53,-13.26,116.3,-13.04,90,3.53}

PTP('"CPP"target1,10,200,0,false,joint6) /I variable ingress available
PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,joint6)

/I array constant ingress available
PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,{3.53,-13.26,116.3,-

13.04,90,3.53})
PTP("CPP",Point["P2"].Value,10,200,0,false,Point["P2"].Joint)

/I point coordinate retrieving with point

parameterization available

/I move to target with PTP, speed = 10%,

time to top speed = 200ms, and attempt to
reach the closest assigned joint target.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 323

e

13.9 Move PTP()

Define and send PTP relative motion commands for execution.

Syntax 1

bool Move PTP(

string,
float(],
int,
int,
int,
bool
)
Parameters
string

float(]

int

int

int
bool

Return
bool
Note

Definition of data format made of three letters
#1: Relative motion target format:
"C": expressed with the current robot base
"T": expressed with the tool coordinate
"J": expressed in joint angles
#2: Speed format:
"P": expressed as a percentage
#3: Blending format:
"P": expressed as a percentage
relative motion parameters. If expressed in coordinate, it includes the robot end TCP
relative motion value with respect to the specified coordinate: X (mm), Y (mm), Z (mm),
RX(°), RY(°), RZ(°); If defined with joint angle, it includes the angles of six joints:
Joint1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°)
The robot end moving speed setting, expressed as a percentage (%)
20 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
Blending value, expressed as a percentage (%)
Disable precise positioning
true Disable precise positioning
false Enable

True Command accepted; False Command rejected (format error)

Motion command parameter includes: (1) "CPP", (2) "TPP" or (3) "JPP"

float[] relmove = {0,0,10,45,0,0}

Move_PTP("TPP",var_rel,10,200,0,false) / variable ingress available

Move_ PTP("TPP",{0,0,10,45,0,0},10,200,0,false) /I array constant ingress available

/I Move 0,0,10,45,0,0, with respect to tool coordinate, with PTP, velocity = 10%, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (1664) 324

e

13.10 Line()

Define and send Line motion command into buffer for execution.

Syntax 1

bool Line(
string,
float(],
int,
int,
int,
bool

)

Parameters
string

float[]

int

int

int

bool
Return

bool
Note

Definition of data format, combines three letters
#1: Motion target format:
"C" expressed with Cartesian coordinate
#2: Speed format:
"P" expressed by percentage
"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project
speed
#3: Blending format:
"P" expressed by percentage
"R" expressed by radius
Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y
(mm), Z (mm), RX(°), RY(°), RZ(°)
The robot end moving speed setting, expressed as a percentage (%) or an absolute
speed (mm/s)
20 Percentage of speed (%) or absolute speed (mm/s)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
Blending value, expressed as a percentage (%) or in radius (mm)

Disable precise positioning
true Disable precise positioning

false Enable precise positioning

True Command accepted; False Command rejected (format error)

Data format parameter includes:

float[] target1 = {417.50,-122.30,343.90,180.00,0.00,90.00}
Line("CAR" target1,100,200,50,false) // variable ingress available
Line("CAR",{417.50,-122.30,343.90,180.00,0.00,90.00},100,200,50,false)

[/l array constant ingress available

Line("CAR",Point["P2"].Value,100,200,50,false)
/I point coordinate retrieving with point parameterization available
/I move to target with Line, speed = 10%, time to top speed = 200ms, and blending value = 50

Omron TM Collaborative Robot: TMScript Language Manual (1664) 325

e

/I Opt for the singularity handling mechanism set by LineSingularity().

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
/I Disable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, O, false)
// Disable, through singularity

LineSingularity(1) / Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
/I Enable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)
/l Enable, path avoidance

Syntax 2
bool Line(

)

string,
float(],
int,
int,
int,
bool,
int

Parameters

string Definition of data format, combines three letters
#1: Motion target format:
"C" expressed with Cartesian coordinate
#2: Speed format:
"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:
"P" expressed by percentage
"R" expressed by radius

float(] Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

20 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.

int Blending value, expressed as a percentage (%) or in radius (mm)

bool Disable precise positioning
true Disable precise positioning
false Enable precise positioning

Omron TM Collaborative Robot: TMScript Language Manual (1664)

326

int Singularity handling.
0 Disbale
1 Path avoidance
2 Speed change (TM25S, TM30S)

* After exiting from the function, the singularity handling mechanism returns to what it
was before entering.
Return
bool True Command accepted; False Command rejected (format error)
Note
Data format parameter includes:
(1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6) "CDR"
Line("CAR", 417.50,-122.30,343.90,180.00,0.00,90.00,100,200,50,false)
/l Move to 417.50,-122.30,343.90,180.00,0.00,90.00 with Line, velocity = 100mm/s, time to top speed =
200ms, blending radius = 50mm

Omron TM Collaborative Robot: TMScript Language Manual (1664) 327

e

13.11 Move_Line()

Define and send Line relative motion commands for execution.

Syntax 1

bool Move_Ling(

string,
float(],
int,
int,
int,
bool
)
Parameters
string

float]]

int

int

int
bool

Return

Definition of data format made of three letters
#1: Relative motion target format:
"C": expressed with w.r.t. current base
"T": expressed with w.r.t. tool coordinate
#2: Speed format:
"P". expressed by percentage
"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project
speed
#3: Blending format:
"P": expressed by percentage
"R": expressed by radius
Relative motion parameters. It includes the coordinate of tool center point at the robot
end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)
The robot end moving speed setting, expressed as a percentage (%) or an absolute
speed (mm/s)
20 Percentage of speed (%) or absolute speed (mm/s)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
Blending value, expressed as a percentage (%) or in radius (mm)
Disable precise positioning
true Disable precise positioning
false Enable

bool True Command accepted; False Command rejected (format error)

Note

Motion command parameter includes: (1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6)
"CDR", (7) "TPP", (8) "TPR", (9) "TAP", (10) "TAR", (11) "TDP", (12) "TDR"

float[] var_rel= {0, 0, 10, 25, 0, 0}

Move_Line("TAP" var_rel,125,200,0,false) / variable ingress available
Move_Line("TAP",{0,0,10,25,0,0},125,200,0,false) // array constant ingress available
/I move to target with Line, velocity = 125mm/s, time to top speed = 200ms

/I Opt for the singularity handling mechanism set by LineSingularity().

Omron TM Collaborative Robot: TMScript Language Manual (1664) 328

e

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) / Disable
Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Disable, through singularity

LineSingularity(1) / Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
/I Enable

Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Enable, path avoidance

Syntax 2
bool Move_Ling(
string,
float(],
int,
int,
int,
bool,
int
)
Parameters
string Definition of data format made of three letters
#1: Relative motion target format:
"C": expressed with w.r.t. current base
"T": expressed with w.r.t. tool coordinate
#2: Speed format:
"P": expressed by percentage
"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project
speed
#3: Blending format:
"P": expressed by percentage
"R": expressed by radius
float[] Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y
(mm), Z (mm), RX(°), RY(°), RZ(°)
int The robot end moving speed setting, expressed as a percentage (%) or an absolute
speed (mm/s)
20 Percentage of speed (%) or absolute speed (mm/s)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
int Blending value, expressed as a percentage (%) or in radius (mm)
bool Disable precise positioning
true Disable precise positioning
falseEnable
int Singularity handling.
0 Disbale
1 Path avoidance
2 Speed change (TM25S, TM30S)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 329

e

* After exiting from the function, the singularity handling mechanism returns to what it
was before entering.
Return

bool True Command accepted ; False Command rejected (format error)
Note

Motion command parameter includes: (1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6)
"CDR", (7) "TPP", (8) "TPR", (9) "TAP", (10) "TAR", (11) "TDP", (12) "TDR"

/I Opt for the singularity handling mechanism set by LineSingularity().
LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) // Disable
Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Disable, through singularity

LineSingularity(1) / Enable singularity handling: path avoidance.
PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
/I Enable

Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Enable, path avoidance

Omron TM Collaborative Robot: TMScript Language Manual (1664) 330

e

13.12 Circle()

Define and send Circle motion command into buffer for execution.

Syntax 1

bool Circle(
string,
float(],
float(],
int,
int,
int,
int,
bool

)

Parameters
string

float]]
float]]

int

int

int
int

bool

Return
bool

Note

Definition of data format, combines three letters
#1: Motion target format:
"C" expressed with Cartesian coordinate
#2: Speed format:
"P" expressed by percentage
"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project
speed
#3: Blending format:
"P" expressed by percentage
A point on arc. It includes the coordinate of tool center point at the robot end: X (mm), Y
(mm), Z (mm), RX(°), RY(°), RZ(°)
The end point of arc. It includes the coordinate of tool center point at the robot end: X
(mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)
The robot end moving speed setting, expressed as a percentage (%) or an absolute
speed (mm/s)
20 Percentage of speed (%) or absolute speed (mm/s)
-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value
The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.
Blending value, expressed as a percentage (%)
Arc angle(®), If non-zero value is given, the TCP will keep the same pose and move
from current point to the assigned arc angle via the given point and end point on arc; If
zero is given, the TCP will move from current point and pose to end point and pose via
the point on arc with linear interpolation on pose.
Disable precise positioning
true Disable precise positioning
false Enable precise positioning

True Command accepted; False Command rejected (format error)

Data format parameter includes: (1) "CPP", (2) "CAP", (3) "CDP"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 331

e

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)

float[] targetPass= {417.50,-122.30,343.90,180.00,0.00,90.00}

float[] targetEnd= {381.70,208.74,343.90,180.00,0.00,135.00}

Circle("CAP" targetPass,targetEnd,100,200,50,270,false) // variable ingress available
Circle("CAP" targetPass,{381.7,208.74,343.9,180,0,135},100,200,50,270,false)

/l array constant ingress available
Circle("CAP",Point["P1"].Value,{381.7,208.74,343.9,180,0,135},100,200,50,270,false)
/I point coordinate retrieving with point parameterization available

/[l Move on 270° arc, velocity = 100mm/s, time to top speed = 200ms, blending value = 50%

Syntax 2
bool Circle(

)

string,
float(],
float(],
int,
int,
int,
int,
int,
bool

Parameters

string Definition of data format, combines three letters
#1: Motion target format:
"C" expressed with Cartesian coordinate
#2: Speed format:
"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project

speed
#3: Blending format:
"P" expressed by percentage

float[] A point on arc. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(®), RY(°), RZ(°)

float]] The end point of arc. It includes the coordinate of tool center point at the robot end: X

(mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

=0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)
<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration
Table.

int Blending value, expressed as a percentage (%)

int Arc angle(®), If non-zero value is given, the TCP will keep the same pose and move

from current point to the assigned arc angle via the given point and end point on arc; If
zero is given, the TCP will move from current point and pose to end point and pose via

the point on arc with linear interpolation on pose.

Omron TM Collaborative Robot: TMScript Language Manual (1664)

332

Return

int Rotation
0 Linear Interpolation
1 Keep Rotation
bool Disable precise positioning
true Disable precise positioning
false Enable precise positioning
bool True Command accepted; False Command rejected (format error)

Note
Data format parameter includes: (1) "CPP", (2) "CAP", (3) "CDP"

float[] targetPass= {417.50,-122.30,343.90,180.00,0.00,90.00}
float[] targetEnd= {381.70,208.74,343.90,180.00,0.00,135.00}

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP" targetPass,targetEnd,100,200,50,270,false)
Circle("CAP" targetPass,targetEnd,100,200,50,270,1,false)

/ Move on 270° arc, rotation = keep rotation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP" targetPass,targetEnd,100,200,50,0,false)
Circle("CAP" targetPass,targetEnd,100,200,50,0,0,false)
/ Move on the reach end point arc, rotation = linear interpolation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP" targetPass,targetEnd,100,200,50,270,0,false)
/[l Move on 270° arc, rotation = linear interpolation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP" targetPass,targetEnd,100,200,50,0,1,false)
/I Move on the reach end point arc, rotation = keep rotation

Omron TM Collaborative Robot: TMScript Language Manual (1664)

333

e

13.13 PLine()

Define and send PLine motion command into buffer for execution.

Syntax 1

bool PLine(
string,
float(],
int,
int,
int

)

Parameters
string

float(]

int
int
int
Return

Definition of data format, combines three letters
#1: Motion target format:
"J". expressed with joint angles
"C": expressed with Cartesian coordinate
#2: Speed format:
"A" expressed with absolute speed and in synchronization with the project speed
"D" expressed with absolute speed and not in synchronization with the project
speed
#3: Blending format:
"P": expressed by percentage
Motion target. If expressed in joint angles, it includes the angles of six joints: Joint1(°),
Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°) ; If expressed in coordinate, it
includes the the coordinate of tool center point at the robot end: X (mm), Y (mm), Z
(mm), RX(®), RY(®), RZ(°)
The robot end moving speed setting, expressed as an absolute speed (mm/s)
The time interval to accelerate to top speed (ms)
Blending value, expressed as a percentage (%)

bool True Command accepted ; False Command rejected (format error)

Note

Data format parameter includes: (1) "CAP", (2) "CDP", (3) "JAP", (4) "JDP"

float[] targetP1 = {417.50,-122.30,343.90,180.00,0.00,90.00}
PLine("CAP" target1,100,200,50) // variable ingress available
PLine("CAP",{417.50,-122.30,343.90,180.00,0.00,120.00},100,200,50)
/[array constant ingress available

PLine("CAP",Point["P1"].Value,100,200,50)
/I point coordinate retrieving with point parameterization available
/[l move to target with PLine, speed = 100mm/s, time to top speed = 200ms, and blending value = 50

Omron TM Collaborative Robot: TMScript Language Manual (1664) 334

e

13.14 Move_PLine()

Define and send PLine relative motion commands for execution.

Syntax 1
bool Move_PLine(
string,
float(],
int,
int,
int
)
Parameters
string Definition of data format made of three letters
#1: Relative motion target format:
"C": expressed with w.r.t. current base
"T": expressed with w.r.t. tool coordinate
"J": expressed with joint angles
#2: Speed format:
"A" expressed with absolute speed and in synchronization with the project
speed
"D" expressed with absolute speed and not in synchronization with the
project speed
#3: Blending format:
"P": expressed by percentage
float[] Relative motion parameters expressed in coordinate. It includes the coordinate of tool
center point at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)
int The robot end moving speed setting, expressed as an absolute speed (mm/s)
int The time interval to accelerate to top speed (ms)
int Blending value, expressed as a percentage (%)
Return
bool True Command accepted; False Command rejected (format error)
Note

Motion command parameter includes:
(1) "CAP", (2) "CDP", (3) "TAP", (4) "TDP", (5) "JAP", (6) "JDP"

float[] var_rel= {0, 0, 10, 25, 0, 0}
Move_PLine("CAP",var_rel,125,200,0) Il variable ingress available

Move_PLine("CAP",{0,0,10,25,0,0},125,200,0) / array constant ingress available
/I move relatively to target with PLine, speed = 125mm/s, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (1664) 335

e

13.15 LineSingularity()

Set the line motion control with singularity handling or not.

Syntax 1
bool LineSingularity(
int
)
Parameters
int Singularity handling.
0 Disbale
1 Path avoidance
2 Speed change (TM25S, TM30S)
Return
bool True Command accepted; False Command rejected
Note

When the project is running, it defaults to 0 to disable. Once configured, it will affect the line
motion control used later.

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)

Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
// Disable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, O, false)
/I Disable, through singularity

LineSingularity(1) / Enable singularity handling: path avoidance.
PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) // Enable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)
/I Enable, path avoidance

Omron TM Collaborative Robot: TMScript Language Manual (1664) 336

e

13.16 CollisionCheck()

Pre-collision checks help prevent robots from interfering with self-testing and avoid collisions between
the gripper and the box. By adjusting and modifying the exported scene from TMstudio or using the built-in
box container in TMvision, users can simulate robot motions using robot parts, tools, and virtual boxes.
This simulation allows for early detection of potential issues during motions, reducing collisions in
applications like box picking, using large hardware, and executing critical poses.

Syntax 1
string CollisionCheck(
float,
string
)
Parameter
float Safety distance (mm)
string The subflow name. For use in flow projects only. Returns errors if using in script
projects.
Return

string the result of checking
The value returned is an empty string, and there was no collision
detected.
=" The value returned is a non-empty string, and there was a collision
detected. The contest will indicate which node.

Syntax 2

string CollisionCheck(
float,
?
)
Parameter
float Safety distance (mm)
? The target motion to check. It can be a statement or a self-defined function.
Return
string the result of checking
The value returned is an empty string, and there was no collision
detected.
=" The value returned is a non-empty string, and there was a collision
detected. The contest will indicate which line number.

* Check motion functions PTP(), Move_PTP(), Line(), Move_Line(), and Circle() only.

* Support variable operations, general functions, math functions, and parameterized objects (read
only) only. Does not operate with other functions.

* The result of the variable operation is vaild only during the pre-checking. The values revert to the
default after checking.

* All statements within the conditional expression will be checked.

* All statements within the loop expression will be checked only once and will not repeat.
Note

(1)
string result = CollisionCheck(15, "CCheck0")
/I Check subflow CCheckO (use only in Flow projects)
(2)
define

{
TPoint P2 = {5616.65,-147.75,445.37,179.44,-0.32,89.91},{0,0,90,0,90,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 337

e

main

}

TPoint P3 = {5616.14,156.17,443.43,179.59,0.30,111.24},{32.92,0.26,89.95,0,89.30,11.58}
TPoint P4 = {446.79,-313.56,435.31,-179.58,0.24,90.22},{-19.17,1.39,89.79,-0.32,89.31 -

19.49}

ModbusTCP localhost = 127.0.0.1,502
intcount=0

Display(count) Il count=0
Pause()

string re = CollisionCheck(15, TargetMotion())
/I Set safety distance to 15 mm for TargetMotion() function to check

if (re =="") TargetMotion() // No collision detected. Call TargetMotion() for the real operation.
else Display("Collision: " + re) /I Collistion detected.
Display(count) Il count =0 or 1

/I +1 during pre-checking. Revert to the default, 0, after checking. If no collision detected, it calls the function
TargetMotion(), and the the count value is 1. If collision detected, it does not call the function TargetMotion(), and
the the count value is 0.

void TargetMotion()

{

count++ /I count = 1 // Support variable operation during pre-checking.
while (true) /I The loop expression will be checked once only during pre-checking.
{
PTP("CPP",Point["P2"].Value,50,200,100,false) /I check
/I check only during pre-checking without motion
PTP("JPP",Point["P3"].Joint,50,200,100,false) /I check
Move_PTP("JPP"{0,0,0,0,0,60},50,200,100,false) Il check
Line("CPP",Point["P4"].Value,50,200,100,false) /I check

Move_Line("CPP", {20,20,20,0,0,0},50,200,100,false)// check

Circle("CPP", Point["P2"].Value, Point["P3"].Value, 50, 200, 100, 100, false) // check
WaitQueueTag() Il ignore // Do not support to this function during pre-checking.

byte[] bb = modbus_read("localhost", 1, "DO", 0, 10)

/I ignore // Do not support to this function during pre-checking.

string ss = GetString(bb) I/ General function. The operation result is ss = "{}".

Omron TM Collaborative Robot: TMScript Language Manual (1664) 338

e

13.17 PVTEnter()

Set PVT mode to start with Joint/Cartesian command

Syntax 1

bool PVTEnter(

int
)
Parameter

int PVT Mode

0 Joint
1 Cartesian

Return

bool True Command accepted; False Command rejected
Note

Syntax 2

bool PVTEnter(
)
Parameter

Void No parameter. Use PVT mode with Joint Command by default.
Return

bool True Command accepted; False Command rejected
Note

PVTEnter(1)

* Before switching to PVT mode, it waits for other robot motion instructions to
complete.

* When the PVT mode begins, it only supports to functions tied to PVT, QueueTag,
10, and Payload.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 339

e,

13.18 PVTEXit()
Set PVT mode motion to exit

Syntax 1
bool PVTEXit(
)
Parameter
void No parameter
Return
bool True Command accepted; False Command rejected
Note
PVTEXit()

* After exiting PVT mode, it waits for PVT function motion instructions to
complete.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 340

e

13.19 PVTPoint()

Set the PVT mode parameters of motion in position, velocity, and duration.

Syntax 1

bool PVTPoint(
float[],
float(],
float,
bool

)

Parameter
float(] Target position

{41, J2, J3, J4, J5, J6} in PVT mode with Joint
{X,Y, Z, RX, RY, RZ} in PVT mode with Cartesian
float[] Target velocity
{J1, J2, J3, J4, J5, J6} in PVT mode with Joint
{X,Y, Z, RX, RY, RZ} in PVT mode with Cartesian
float Duration (second), it requires > 0.01 seconds.
bool Synchronize to the project speed or not.
true Synchronize to the project speed
falseNot synchronize to the project speed

Return
bool True Command accepted; False Command rejected
Note

Syntax 2
bool PVTPoint(
float[],
float([],
float

)

Note
Same as Syntax 1. It default true to synchronize to the project speed or not.

Syntax 3
bool PVTPoint(
float, float, float, float, float, float,
float, float, float, float, float, float,

float,
bool
)
Parameter

float, float, float, float, float, float,
Target Position.
{J1, J2, J3, J4, J5, J6} in PVT mode with Joint
{X,Y, Z, RX, RY, RZ} in PVT mode with Cartesian
float, float, float, float, float, float,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 341

Target Velocity.
{41, J2, J3, J4, J5, J6} in PVT mode with Joint
{X,Y, Z, RX, RY, RZ} in PVT mode with Cartesian
float Duration (second), it requires = 0.01 seconds.
bool Synchronize to the project speed or not.
true Synchronize to the project speed
falseNot synchronize to the project speed

Return

bool True Command accepted; False Command rejected
Note

PVTEnter(1)

PVTPoint(467.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)
PVTPoint(467.5,-72.2,359.7,180,0,90,-50,50,0,0,0,0,0.5)
PVTPoint(417.5,-72.2,359.7,180,0,90,0,0,0,0,0,0,0.5)
PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)
PVTPoint(417.5,-122.2,359.7,180,0,60,50,50,0,0,0,0,3)
PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,3)
PVTEXit()

Syntax 4

bool PVTPoint(
float, float, float, float, float, float,
float, float, float, float, float, float,
float

)

Note

Same as Syntax 3. It default true to synchronize to the project speed or not.

PVTEnter(1)
PVTPoint(467.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)
PVTPoint(467.5,-72.2,359.7,180,0,90,-50,50,0,0,0,0,0.5)
PVTPoint(417.5,-72.2,359.7,180,0,90,0,0,0,0,0,0,0.5, true)
PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5, false)
PVTPoint(417.5,-122.2,359.7,180,0,60,50,50,0,0,0,0,3, false)
PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,3)
PVTEXit()

Omron TM Collaborative Robot: TMScript Language Manual (1664)

342

e

13.20 PVTPause()
Set PVT mode motion to pause

Syntax 1
bool PVTPause(
)
Parameter
void No parameter
Return
bool True Command accepted; False Command rejected
Note
PVTPause()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 343

e,

13.21 PVTResume()
Set PVT mode motion to resume

Syntax 1
bool PVTResume(
)
Parameter
void No parameter
Return
bool True Command accepted; False Command rejected
Note
PVTResume()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 344

e

13.22 PathOffset_Set()
Set Path Offset parameters

Syntax 1
bool PathOffset_Set(
bool,
float(],
int,
float
)
Parameter
bool Enable Path Offset or not.
false Disable
true Enable
float[] Offset values in coordinate for the six elements of the robot coordinate: X(mm),
Y(mm), Z(mm), RX(°), RY(°), RZ(°)

int Offset reference base
0 the robot base
1 tool (default)
2 the current base
3 trajectory

float Alpha filter coefficient value ranging from 0 to 1. The lesser the value is, the
slower the offset compensate speed is. In practical use, it is best to start testing
at a lower setting, such as 0.05, and gradually increase it to about 0.1 to
determine the most suitable value. Also, monitor closely for excessively rapid
compensation increases once the setting exceeds 0.5.

* Calling in the flow required.

Return
bool True Command accepted; False Command rejected

Syntax 2

bool PathOffset_Set(
bool,
float([],
int

)

Note
Parameter definition same as Syntax 1. Setting the enable path offset, the offset values,
and the offset reference base without setting the alpha filter coefficient value.
* Calling in the flow required.

Syntax 3

bool PathOffset_Set(
bool,
float[]

)

Note
Parameter definition same as Syntax 1. Setting the enable path offset and the offset values
by the tool reference base without setting the alpha filter coefficient value.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 345

e

* Calling in the flow required.

Syntax 4

bool PathOffset_Set(
bool,
float

)

Note
Parameter definition same as Syntax 1. Setting the enable path offset and the alpha
coefficient without setting the offset values and the alpha filter coefficient value.
* Calling in process required.

Syntax 5

bool PathOffset_Set(
bool

)

Note
Parameter definition same as Syntax 1. Setting the enable path offset only without setting
the offset values and the alpha filter coefficient value.
* Calling in process required.

Suppose in the Flow page
/I Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha
coefficient.
PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)
PathOffset_Set(false) /I Disable Path Offseting
/I Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and without setting the
alpha coefficient.
PathOffset_Set(true, {10,0,0,0,0,0}, 1)
PathOffset_Set(false) /I Disable Path Offseting
/I Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and without setting the
alpha coefficient.
PathOffset_Set(true, {10,0,0,0,0,0})
PathOffset_Set(false) /l Disable Path Offseting
/I Enable Path Offset with setting the offset value and the alpha coefficient.

PathOffset_Set(true)

Suppose in the Thread page
PathOffset_Set(true, {10,0,0,0,0,0}) /I Return Error. Must be in the Flow page to enable or
disable Path Offset.
PathOffset_Set(false) /I Return Error. Must be in the Flow page to enable or
disable Path Offset.

Syntax 6
bool PathOffset_Set(
float([],
int

)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (1664) 346

float([] Offset values in coordinate for the six elements of the robot coordinate:
X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
int Offset reference base
0 the robot base
1 tool (default)
2 the current base
3 trajectory
* Calling and setting the offset value and the reference base in the flow or the thread
available.
Return
bool True Command accepted; False Command rejected
Syntax 7
bool PathOffset_Set(
float(]
)
Note

Parameter definition same as Syntax 6. Setting the offset value by the reference tool base.

Suppose in the Flow page
PathOffset_Set(true) /I Enable Path Offset without setting the offset value and the
alpha coefficient.

Suppose in the Thread page

PathOffset_Set({10,0,0,0,0,0}, 0) // Set{10,0,0,0,0,0} as the offset value by the robot base.
PathOffset_Set({5,0,0,0,0,0}) Il Set {5,0,0,0,0,0} as the offset value by the tool base.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 347

e

13.23 PathOffset_Get()

Get the Path Offset values

Syntax 1
float[] PathOffset_Get(
int
)
Parameter
int Get the current offset value.
0 Get by the robot base.
1 Get by the offset reference base. (Default)
Return
float(] Offset values in coordinate for the six elements of the robot coordinate:
X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
Syntax 2
float[] PathOffset_Get(
)
Parameter
void No input value
Return
float[] Offset values in coordinate for the six elements of the robot coordinate:
X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)
Note

Same as Syntax 1. Get the offset value by the current offset reference base.

/I Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha
coefficient.

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)

I It proceeds with offset compensation, whether the robot is moving, once Path Offset is enabled.
/I So the current offset value to read tends to the setting offset value continuously.
PathOffset_Get() /1{1.1,0,0,0,0,0}

PathOffset_Get() 11{2.4,0,0,0,0,0}

PathOffset_Get() 11{9.999952,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 348

e,

13.24 PathOffset_IsEnabled()
Check if the Path Offset enabled.

Syntax 1
bool PathOffset_IsEnabled(
)
Parameter
void No input value
Return
bool if the Path Offset enabled
false Disabled

true Enabled
Note
PathOffset_IsEnabled() I/ false
PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)
PathOffset_IsEnabled() Il true

Omron TM Collaborative Robot: TMScript Language Manual (1664) 349

e

13.25 PathOffset_AlphaFilter()

Set the Alpha Filter coefficient to avoid over-acceleration.

Syntax 1
bool PathOffset_AlphaFilter(
float
)
Parameter
Float Alpha filter coefficient value ranging from 0 to 1. The lesser the value is, the
slower the offset compensate speed is. In practical use, it is best to start testing
at a lower setting, such as 0.05, and gradually increase it to about 0.1 to
determine the most suitable value. Also, monitor closely for excessively rapid
compensation increases once the setting exceeds 0.5.
Return

bool True Command accepted; False Command rejected
Note

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)
PathOffset_AlphaFilter(0.01)
PathOffset_AlphaFilter(1.2) /I Return false for out of range.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 350

e

13.26 PathOffset_MaxOffset()

Set the upper bounds of the distance and the rotation.

Syntax 1
bool PathOffset_MaxOffset(
float,
float
)
Parameter
float the distance upper bound in mm
float the rotation upper bound in degree
Return
bool True Command accepted; False Command rejected
Note
/I Set the offet compensation upper bound.
PathOffset_MaxOffset(10, 3)

/I Enable Path Offset with setting {20,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha
coefficient.

PathOffset_Set(true, {20,0,0,0,0,0}, 1, 0.005)

/' It proceeds with offset compensation, whether the robot is moving, once Path Offset is enabled.
/I So the current offset value to read tends to the setting offset value continuously.

PathOffset_Get() //{1.1,0,0,0,0,0}
PathOffset_Get() 11{2.4,0,0,0,0,0}
PathOffset_Get() 11{9.999952,0,0,0,0,0}

PathOffset_Get() /1 {9.999952,0,0,0,0,0} /l Set the distance upper bound to 10mm

(1) In the Flow project

Omron TM Collaborative Robot: TMScript Language Manual (1664) 351

e

Flow

Thread

Point Node: P1

Point Node: P2

Script Node: Script1
PathOffset_Set(true)
/I Enable Path Offset

Point Node: P3

Script Node: Script2
PathOffset_Set(false)
/I Disable Path Offsetting

Point Node: P4

... Link To P1 ...

Script Node: Script3
/I Set the alpha coeffcient
PathOffset_AlphaFilter(0.005)
Il Set the offset compensation upper bound
PathOffset_MaxOffset(20, 5)
/I Read the required offset compensation
value from mbus1l
var_X = modbus_read("mbusl”,
"offsetX")
/I Offset to the X coordinate
var_Offset[0] = var_X
/I Update the offset value by the tool base
PathOffset_Set(var_Offset, 1)
Goto Node: Goto1
... Link to Script3 ...

® |t enables Path Offset when it is on the
path of P2 toward P3.

® |t disables Path Offset after moving to
P3.

® Since the enable and the disable of the
Path Offset come in the Flow, it is
required to reset the AlphaFilter and the
MaxOffset in the Thread.

® Keep updating the offset value in the
Thread.

(2) In the Script project
define
{
floatvar X =0
float[] var_Offset = {0,0,0,0,0,0}
ModbusTCP mbus1 ="127.0.0.1"

}
main
{
ThreadRun(Offsetting())
while (true)
{
PTP("JPP"{15,0,90,0,90,0},50,200,100,false)
PTP("JPP"{15,0,75,0,90,0},50,200,100,false)
PathOffset_Set(true) /I Enable Path Offset
PTP("JPP"{-15,0,75,0,90,0},50,200,100,false)
PathOffset_Set(false) /I Disable Path Offset
PTP("JPP"{-15,0,90,0,90,0},50,200,100,false)
Sleep(10)
}
}
void Offsetting()
{

mbus1.Preset("offsetX", 1, "RO", 9000, "float")

while (true)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

352

{
PathOffset_AlphaFilter(0.005) Il Set the alpha coeffcient
PathOffset_MaxOffset(20, 5) Il Set the offset compensation upper bound
/I Read the required offset compensation value from mbus1.
var_X = modbus_read("mbus1", "offsetX")
var_Offset[0] = var_X /] Offset to the X coordinate.
PathOffset_Set(var_Offset, 1) /I Update the offset value by the tool base.
Sleep(10)

}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 353

e

13.27 Velocity()

Define and activate continuous speed control mode. Under this mode, robot will change
motion instantaneously once the target speed vector changes.

* Syntax 1/2/3/4 is to define the motion parameters, while syntax 5/6, the target speed

vector.

* When the robot is in continuous speed control mode, sending any other types of motion
control commands (such as PTP(), Line(), etc.) will trigger an error stop.

* This function is not affected by the project override speed (%), and the robot will run at
the speed specified in the function within the reachable speed range.

Users must carefully assess the risk of the trajectory generated by Velocity() before
sending the command. In other words, users or the motion control program must
constantly check whether the robot is moving beyond its working range or nearing a

singularity.
Syntax 1
bool Velocity(
bool,
string,
int,
int
)
Parameter
bool whether to enable the adaptive speed control mode or not
false disable
true enable
string control mode
"C": linear speed control with the current base
"T": linear speed control with the tool base
"J": angular speed control with joint angles
int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
int The control value protection time (millisecond). Valid value >= 0. If users do not
update and it is beyond the protection time, the Velocity(float[]) value will be
adjusted to 0 automatically.
* While disable can be called in the process or threads, enable must be called in the process.
Return

bool True Command accepted; False Command rejected (format error)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 354

e

Syntax 2
bool Velocity(
bool,
string,
int
)
Parameter
bool whether to enable the adaptive speed control mode or not
false disable
true enable
string control mode
"C": linear speed control with the current base
"T": linear speed control with the tool base
"J": angular speed control with joint angles
int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
* While disable can be called in the process or threads, enable must be called in the process.
Note

Same as syntax 1. It sets a 1000ms to the control value protection time.

Syntax 3
bool Velocity(
bool,
string
)
Parameter
bool whether to enable the adaptive speed control mode or not
false disable
true enable
string control mode

"C": linear speed control with the current base
"T": linear speed control with the tool base
"J": angular speed control with joint angles

* While disable can be called in the process or threads, enable must be called in the process.
Note

Same as syntax 1. It sets a 500 ms to the time interval to accelerate to the top speed and a 1000m
to the control value protection time.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 355

e

Syntax 4
bool Velocity(
bool
)
Parameter
bool whether to enable the adaptive speed control mode or not
false disable
true enable

* Disable can be called in the process or threads.
* For disable only.

Note

If on the Flow page
Velocity(true, "C", 300, 3000)

/I Enable velocity control for the linear speed by the current base, setting a 500 ms time interval to
accelerate to the top speed and a 3000 ms control value protection time.
Velocity(true, "T", 300)

[l'If continuing from the previous line, the "C" control will be turned off first.

/I Enable velocity control for the linear speed by the tool base, setting a 500 ms time interval to accelerate
to the top speed and a 1000 ms control value protection time.

Velocity(true, "J")
/l'If continuing from the previous line, the "T" control will be turned off first.

/I Enable velocity control for the angular speed by the joint angle, setting a 500 ms time interval to
accelerate to the top speed and a 1000 ms control value protection time.

Position(true, "J")
If continuing from the previous line, the "T" control will be turned off first.

/I Enable position control /I Only one control, Position or Velocity, can be active at a time.
Velocity(false) /I Disable velocity control
Velocity(true) I Return error. Control Mode Parameters Required to enable

If on the Thread page
Velocity(true, "J") /I Return error. Must be in the Flow page to enable velocity control

Velocity(false) /I Disable velocity control

Omron TM Collaborative Robot: TMScript Language Manual (1664) 356

e

Syntax 5

bool Velocity(
float(]
)

Parameter
float(] Speed control value for the associated applicable control mode

"C" or "T": linear speed control for X,Y,Z (mm/s) RX,RY,RZ (degree/s)
"J": angular speed control for J1,J2,J3,J4,J5,J6 (degree/s)

* Calling available in the process or threads.
Return
bool True Command accepted; False Command rejected

Syntax 6

bool Velocity(
float, float, float, float, float, float
)

Note
Same as syntax 5. It replaces float[] with parameters float,float,float,float,float,float.

PTP("JPP", {90,0,90,0,90,0}, 10, 500, 0, true)
Velocity(true, "J", 150, 5000)
/I Enable adaptive speed control for the angular speed by the joint angle

Sleep(1000)
for (inti=0;i< 30; i++)

float[] AngleSpeed ={0, 0, i, 0, 0, 0} // Adjust the speed for angle J3 along with the loop.

Velocity(AngleSpeed) Il Set the speed for angle J30
Sleep(100)

}

Velocity(false)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 357

e

13.28 Position()

Define and activate continuous position control mode. Under this mode, the robot will change
motion instantaneously once the target position vector changes.

*

Syntax 1/2/3/4 is to define the motion parameters, while syntax 5/6, the target position
vector.

When the robot is in continuous position control mode, sending any other types of motion
control commands (such as PTP(), Line(), etc.) will trigger an error stop.

Users must carefully assess the risk of the trajectory generated by Position() before
sending the command. In other words, users or the motion control program must
constantly check whether the robot is moving beyond its working range or nearing a
singularity.

Syntax 1
bool Position(
bool,
string,
int,
float,
int
)
Parameter
bool whether to enable the position adaptive speed control mode or not
false disable
true enable
string control mode
"C": target coordinate control with the current base
"T": target coordinate control with the tool base
"J": target angle control with the joint angle
int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
float The Motion Control Gain value. Valid range: 1 between 100. The larger the value,
the faster the response to the new control value.
int The expected control value protection time interval (millisecond). Valid value >=
20. In adaptive control mode, Position(float[]) requires updating regularly. If the
difference from the expected time interval varies significantly (less or more than), it
will affect the control speed algorithm.
* While disable can be called in the process or threads, enable must be called in the process.
Return
bool True Command accepted; False Command rejected (format error)
Syntax 2
bool Position(
bool,
string,
int,
float
)
Parameter
bool whether to enable the position adaptive speed control mode or not

false disable

Omron TM Collaborative Robot: TMScript Language Manual (1664) 358

e

string

int
float

true enable
control mode

"C": target coordinate control with the current base
"T": target coordinate control with the tool base
"J": target angle control with the joint angle

The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
The Motion Control Gain value. Valid range: 1 between 100. The larger the value,
the faster the response to the new control value.

* While disable can be called in the process or threads, enable must be called in the process.

Note

Same as syntax 1. It sets a 1000ms to the expected control value protection time interval.

Syntax 3

bool Position(

bool,
string
)
Parameter
bool

string

whether to enable the position adaptive speed control mode or not
false disable

true enable

control mode

"C": target coordinate control with the current base
"T": target coordinate control with the tool base
"J": target angle control with the joint angle

* While disable can be called in the process or threads, enable must be called in the process.

Note

Same as syntax 1. It sets a 500 ms to the time interval to accelerate to the top speed, a 4.0 to the
motion control gain value, and a 1000ms to the expected control value protection time.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 359

e

Syntax 4
bool Position(

bool
)
Parameter
bool whether to enable the adaptive speed control mode or not
false disable
true enable
* Disable can be called in the process or threads.
* For disable only.
Note

If on the Flow page

Position(true, "C", 300, 3, 500)

/I Enable position control for the target coordinate control by the current base, setting a 300 ms to the time
interval to accelerate to the top speed, a 3.0 to the motion control gain value, and a 500ms to the expected
control value protection time.

Position(true, "T", 300, 3)

/'If continuing from the previous line, the "C" control will be turned off first.

/I Enable position control for the target coordinate control by the tool base, setting a 300 ms to the time

interval to accelerate to the top speed, a 3.0 to the motion control gain value, and a 1000ms to the
expected control value protection time.

Position(true, "J")
/l'If continuing from the previous line, the "T" control will be turned off first.

/I Enable position control for the target angle control by the joint angle, setting a 500ms to the time interval
to accelerate to the top speed, a 4.0 to the motion control gain value, and a 1000ms to the expected
control value protection time.

Velocity(true, "J")

I If continuing from the previous line, the Position "J" control will be turned off first.
/I Enable velocity control // Only one control, Position or Velocity, can be active at a time.

Position(false) /I Disable position control
Position(true) /I Return error. Control Mode Parameters Required to enable

If on the Thread page

Position(true, "J") /I Return error. Must be in the Flow page to enable position control
Position(false) /I Disable position control

Omron TM Collaborative Robot: TMScript Language Manual (1664) 360

e

Syntax 5

bool Position(
float(]
)

Parameter
float(] Position control value for the associated applicable control mode
"C" or "T": target coordinate control for X,Y,Z (mm) RX,RY,RZ (degree)
"J": target angle control for J1,J2,J3,J4,J5,J6 (degree)
* Calling available in the process or threads.
Return
bool True Command accepted; False Command rejected

Syntax 6

bool Position(
float, float, float, float, float, float
)

Note
Same as syntax 5. It replaces float[] with parameters float,float,float,float,float,float.

PTP("JPP", {90,0,90,0,90,0}, 10, 500, 0, true)
Position(true, "J", 150, 1, 500) // Enable positon control by the angle
Sleep(1000)
for (inti=0;i< 30; i++)
float[] AngleTarget = {90, 0, 90+i, 0, 90, 0}
/I Adjust the angle for axix-angle J3 along with the loop.
Position(AngleTarget) // Set the speed for angle J30
Sleep(100)

Position(false)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 361

e

13.29 SetTCPSpeedLimit()

Set Linear Speed Limit and Rotation Speed Limit for Line Motion.

Syntax 1
bool SetTCPSpeedLimit(
bool,
int,
int
)
Parameter
bool whether to enable the line motion speed limit
false disable. Limited by the system default.
true enable. Limited by the input parameters for linear and rotation.
int Linear speed limit, expressed as mm/s. Maximum limit if <= 0.
int Rotation speed limit, expressed as deg/s. Maximum limit if <= 0.
Return
bool True Command accepted; False Command rejected.
Syntax 2
bool SetTCPSpeedLimit(
int,
int
)
Parameter
int Linear speed limit, expressed as mm/s. Maximum limit if <= 0.
int Rotation speed limit, expressed as deg/s. Maximum limit if <= 0.
Note
Same as syntax 1. It sets true to whether to enable the line motion speed limit.
Syntax 3
bool SetTCPSpeedLimit(
bool
)
Parameter
bool whether to enable the line motion speed limit
false disable. Limited by the system default.
true enable. Limited by the input parameters for linear and rotation.
Return
bool True Command accepted; False Command rejected.
Note

When activated, the line motion speed limit uses the existing settings for the Linear Speed Limit
and the Rotation Speed Limit. It defaults the limits to the maximum if never set.

SetTCPSpeedLimit(true, 0, 0)
Display("Default Speed Limit")

Line("CPP" {517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)
/] Point1

Line("CPP",{517.67505,-131.19205,343.19144,89.83959,89.9993,0},100,600,0,false)
// Point2

Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)
/! Point1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 362

e

SetTCPSpeedLimit(true, 0, 30)
Display("Rotational Speed Limit = 30 deg/s")
Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)
I/l Point1
Line("CPP",{517.67505,-131.19205,343.19144,89.83959,89.9993,0},100,600,0,false)
I/ Point2
Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)
I/ Point1

SetTCPSpeedLimit(false) /I Disable. Limited by the system default.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 363

e

13.30 SetAccTable()

Set the acceleration table, and the system will automatically fetch the speed and the time to
top speed from the table by the distance when the robot is in motion control. Currently, it is available

for the TM Robot S series models.

The acceleration table comes with five groups at most and with some rules.

1. There must be two groups at least, and the first and the last group cannot be disabled.
2. The maximum distance of each group must be greater than or equal to the maximum

distance of the previous group.

3. If Speed 2 (%) gets more than Speed 1 (%), it means speed up with distance; if less, it

means speed down with distance.

4. The default values vary from the robot models. The table below exemplifies one of the

default values in the acceleration table.

Distance Min Distance Max Speed 1 Speed 2 Time to Top Speed 1 Time to Top Speed 2
(mm) (mm) (%) (%) (ms) (ms)
0 50 5 15 172.5 217.5
50 300 15 45 217.5 352.5
300 700 45 65 352.5 442.5
700 1000 65 75 442.5 487.5
1000 1300 75 100 487.5 600
Syntax 1
bool SetAccTable(
)
Parameter
void No input
Return
bool True Command accepted; False Command rejected.
Note
Reset the acceleration table to defaults.
Syntax 2
bool SetAccTable(
int,
float,
float,
float,
float
)
Parameter
int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.
(Configuration disabling is available for intermediate groups.)
float Speed 1 (%)
float Speed 2 (%)
float Time to Top Speed 2 (ms)
Return
bool True Command accepted; False Command rejected.
Note
Time to top speed 1 (ms) is calculated using the following equation:
Omron TM Collaborative Robot: TMScript Language Manual (1664) 364

e

Speed 1 X (Time to Top Speed 2 — Accelerate Time Min)
Speed 2

Time to Top Speed 1 = Accelerate Time Min +

* Where Accelerate Time Min is defined based on the robot model.

Syntax 3

bool SetAccTable(
int,
float,
float,
float
)
Parameter
int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.
(Configuration disabling is available for intermediate groups.)
float Speed 1 (%)
float Speed 2 (%)
Note

Time to top speed 1 (ms) and Time to top speed 2 (ms) are calculated using the following equation:

Speed 1 X (Accelerate Time Default — Accelerate Time Min)

100
Speed 2 X (Accelerate Time Default — Accelerate Time Min)

100

Time to Top Speed 1 = Accelerate Time Min +

Time to Top Speed 2 = Accelerate Time Min +

* Where Accelerate Time Min and Accelerate Time Default are defined based on the robot model.

Syntax 4

bool SetAccTable(
int,
float,
float

)

Parameter
int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.

(Configuration disabling is available for intermediate groups.)
float Speed 2 (%)

Note
Same as syntax 3. It sets Speed 1 (%) the same as Speed 2 (%).

Syntax 5
bool SetAccTable(
int,
bool
)
Parameter
int The acceleration table group. Valid from 2 to 4. Groups 1 and 5 are permanently
enabled.
bool Enable or disable the configuration of the group.
Return
bool True Command accepted; False Command rejected.
Note

The acceleration table requires at least two groups (groups 1 and 5), so the sequence of groups

Omron TM Collaborative Robot: TMScript Language Manual (1664) 365

e,

to be enabled or disabled is 2 to 4.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 366

e

13.31 GetAccTable()

Retrieve the contents of the acceleration table. Available for TM Robot S series models currently.

Syntax 1
float[] GetAccTable(
int
)
Parameter
int The acceleration table group. Valid from1 to 5.
Return
float(] Retrieve the setting of the acceleration table index associated group. The array
length is six and goes by Distance Min, Distance Max, Speed 1, Speed 2, Time to
Top Speed 1, and Time to Top Speed 2. If all the values in the array are 0, the
group configuration is closed.
Note
SetAccTable() /I Reset the acceleration table to defaults.
string s1

for (inti=1;i<=5;i++)
s1 += GetString(GetAccTable(i)) + newline

Display(s1)

//{0,50,5,15,172.5,217.5}\uODOA
{50,300,15,45,217.5,352.5}\uODOA
{300,700,45,65,352.5,442.5\UODOA
{700,1000,65,75,442.5,487 .5\ uODOA
{1000,1300,75,100,487.5,600}

Pause()

SetAccTable(1, 50, 10, 20, 220)
SetAccTable(2, 320, 20, 50)
SetAccTable(3, 750, 70)
SetAccTable(4, false)
SetAccTable(5, 1300, 100)
string s2
for (inti=1;i<=5;i++)
s2 += GetString(GetAccTable(i)) + newline
Display(s2)
//{0,50,10,20,185,220\u0ODOA
{50,320,20,50,240,375}\uODOA
{320,750,70,70,465,465}\UODOA
{0,0,0,0,0\UODOA
{750,1300,100,100,600,600}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

367

e

13.32 Vision_DoJob()

Execute the existing vision jobs in the project but not the ones with vision capture points.

* Must create vision jobs in the project first without checking Vision Capture Point.

* Itis required to codify the respective variable definitions in the define segment if using
script projects.

* The respective variable definition values update after the vision job execution.

Syntax 1
bool Vision_DoJob(
string
)
Parameter
string Vision job name.
Return
bool True Vision job completed and the result is pass.
False Vision job failed. 1. The result is fail.
2. Fail to execute.
3. Vision job comes with the initial point.
Note

bool var_result = Vision_DoJob("job1")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 368

e

13.33 Vision_DoJob_PTP()

Execute the existing vision jobs in the project, move to the vision capture point by the PTP

motion, and queue with the motion commands.

* Must create vision jobs in the project first. Check Vision Capture Point for moving to the
initial position and uncheck for not.

* Itis required to codify the respective variable definitions in the define segment if using
script projects.

* The respective variable definition values update after the vision job execution.

Syntax 1
bool Vision_DoJob_PTP(
string,
int,
int,
bool
)
Parameters
string Vision job name.
int The robot end moving speed setting, expressed as a percentage (%)
=0 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series
models)
<0 Invalid value
int The time interval to accelerate to top speed (ms). Invalid when using the
Acceleration Table.
bool Whether to use the smart pose of robot selection mode
true Use the pose of robot by the system.
false Use the pose of robot recorded teaching the vision job.
Return
bool True Vision job completed and the result is pass.
False Vision job failed. 1. The result is fail.
2. Fail to execute.
Syntax 2
bool Vision_DoJob_PTP(
string,
int,
int
)
Note
Same as syntax 1. It defaults false to whether to use the smart pose of robot selection
mode.

bool var_result = Vision_DoJob_PTP("job1", 100, 500)
var_result = Vision_DoJob_PTP("job1", 100, 500, true)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 369

e

13.34 Vision_DoJob_Line()

Execute the existing vision jobs in the project, move to the initial position by the line motion,
and queue with the motion commands.

*Must create vision jobs in the project first. Check Start at Initial Position for moving to the
initial position and uncheck for not.

*It is required to codify the respective variable definitions in the define segment if using script
projects.

* The respective variable definition values update after the vision job execution.

Syntax 1
bool Vision_DoJob_Line(
string,
int
)
Parameters
string Vision job name
int The robot end moving speed setting, expressed as a percentage (%)
=0 Percentage of speed (%)
-1 Using the Acceleration Table (supported on TM Robot S series
models)
<0 Invalid value
Return
bool True Vision job completed and the result is pass.
False Vision job failed. 1. The result is fail.
2. Fail to execute.
Note

bool var_result = Vision_DoJob_Line("job1", 100)

Syntax 2
bool Vision_DoJob_Line(
string,
int,
int
bool
)
Parameters
string Vision job name
int The robot end moving speed setting, expressed as an absolute speed
(mm/s)
int The time interval to accelerate to top speed (ms)
bool Whether to link to the project speed.
True Link to the project speed.
false Unlink to the project speed.
Return
bool True Vision job completed and the result is pass.

False Vision job failed. 1. The result is fail.
2. Fail to execute.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 370

e

Syntax 3

bool Vision_DoJob_Line(
string,
int,
int

)

Note
Same as systax 2. It defaults true to whether to link to the project speed.

bool var_result = Vision_DoJob_Line("job1", 100, 500)
var_result = Vision_DoJob_Line("job1", 100, 500, false)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 371

e

14.Vision Functions
14.1 Vision_IsJobAvailable()

Check if the vision job in the current project present and valid

Syntax 1
bool Vision_IsJobAvailable(
string
)
Parameter
string Vision job name
Return
bool True the vision present and valid
False the vision absent and invalid
Note

Use this function to check the presence and validity of the visual job before calling to avoid
errors caused by absence or invalidity while calling.

bool var_result = Vision_IsJobAvailable("job1")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 372

e

14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks
Once the parameters in the output result of the vision job come with more than one

dimensions, or the visual job is created by Flying Trigger/Inspection, it requires function calls for
the relevant information retrieval. The parameter should lead in the variable name, which indicates
the result data of the desired vision job and the module to retrieve. For example,
“Job1_Count_Blob_1_DetectObjectX_ TM” is the output variable of the vision job Job1, which is
output by the Counting (Blobs) module 1. If there are multiple object outputs in the vision job, the
output variable values of the Counting (Blobs) module will be a two-dimensional array. Each row
of the array denotes the result of an object (find), and each column signifies the multiple results of
that object.

14.2.1 Vision_GetOutputArraySize()

Retrieve the array size of the 2D output variables after the vision job execution.

® For vision jobs not created by Flying Trigger or Flying Inspection.

Syntax 1
int Vision_GetOutputArraySize(
string
)
Parameter
string The variable name as the output by the vision job
Return
int the object count. (the row count of the 2D array)
Syntax 2
int Vision_GetOutputArraySize(
string,
int
)
Parameter
string The variable name as the output by the vision job
int the object index. (the row index of the 2D array)
Return
int The length of the result array under the object. (row index).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 373

e

® For vision jobs created by Flying Trigger or Flying Inspection.

Syntax 1
int Vision_GetOutputArraySize(
string
int or string
)
Parameter
string The variable name as the output by the vision job

int or string The index of the same visual job hame or the name of the Flying point in
in Flying Trigger/Inspection.
Return
int the object count. (the row count of the 2D array)

Syntax 2

int Vision_GetOutputArraySize(
string,
int or string,
int

)

Parameter
string The variable name as the output by the vision job
int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

int the find object index. (the row index of the 2D array)
Return
int The length of the result array under the object. (row index).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 374

e

14.2.2 Vision_GetOutputArrayValue()
Retrieve the array values of the 2D output variables after the vision job execution.

® For vision jobs not created by Flying Trigger or Flying Inspection.

Syntax 1
string[] Vision_GetOutputArrayValue(
string,
int
)
Parameter
string The variable name as the output by the vision job with the data type of
string array.
int the object index. (the row index of the 2D array)
Return
?[] The result array under the object. (row index).
Syntax 2
string Vision_GetOutputArrayValue(
string,
int,
int
)
Parameter
string The variable name as the output by the vision job with the data type of
string array.
int the object index. (the row index of the 2D array)
int The output result array value under the object. (column index)
Return
?[] The result value of the column index in the result array under the object.
(row index).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 375

e

® For vision jobs created by Flying Trigger or Flying Inspection.

Syntax 1
? Vision_GetOutputArrayValue(
string
int or string
)
Parameter
string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in
in Flying Trigger/Inspection.
Return
? The result output value

Syntax 2

? Vision_GetOutputArrayValue(
string,
int or string,
int
)
Parameter
string The variable name as the output by the vision job
int or string The index of the same visual job name or the name of the Flying point in
in Flying Trigger/Inspection.
int The index value. It can be a result index in a single-object multi-result value
or an object index in a multi-object single-result value.
Return
? The result output value

Omron TM Collaborative Robot: TMScript Language Manual (1664) 376

e

Syntax 3

? Vision_GetOutputArrayValue(
string,
int or string,
int,
int

)

Parameter
string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in
in Flying Trigger/Inspection.

int the object index. (the row index of the 2D array)
int The output result array value under the object. (column index)
Return
? The result value of the column index in the result array under the object.
(row index).

® For vision jobs not created by Flying Trigger or Flying Inspection.

Suppose that the visual job Job1 has four objects (find). The Counting Blobs result of the first
object is “0”, “17, and “2”. The Counting Blobs result of the second object is “3” and “4”. The
Counting Blobs result of the third object is “5”, and the Counting Blobs result of the fourth object is
“6” and “7”. Then, the variable Job1_Count_Blob_1 DetectObjectX_ TM represents the result as
an array: { {"0", "1", "2"}, {"3", "4"}, {"5"}, {"6", "7"} }.

Row Column 0 1 2
0 "0" "1 "2
1 "3 "4"
2 "5
3 "6" "7"

® Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM")
/I Retrieve the row count of the variable Jobl_Count_Blob_1 DetectObjectX TM (i.e. the object (find) count)

Il 4 /I Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 1)
I/ Retrieve the array length of the output result from row 1, the 29 object, of the variable

Jobl Count Blob 1 DetectObjectX TM
I 2 /I Column count of Row[1]

® Get the object (find) result value
Vision_GetOutputArrayValue("Job1_Count_Blob_1_ DetectObjectX_TM", 0)
/I Retrieve the array of the output result from row 0, the 15t object, of the variable
Jobl Count_Blob_1 DetectObjectX TM

i{or, 1t 2t
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 2, 0)
I Retrieve the output result from row 2 and column 0, the 3 object, of the variable

Jobl Count Blob 1 DetectObjectX TM

Omron TM Collaborative Robot: TMScript Language Manual (1664) 377

e

/5"

Vision_GetOutputArrayValue("Job1 _Count_Blob_1 DetectObjectX TM", 4, 0)

/I Return error. Exceeding the access range. (the object (find) count is 4, and the valid index is O to 3.

® For vision jobs not created by Flying Trigger or Flying Inspection.

In Flying Trigger or Flying Inspection, users can select the same vision job for repetitive

execution. Therefore, the added parameter is the index or the flying point name that uses the
same vision job name in Flying Trigger/Inspection. Assume the list of the vision job selected in
Flying Trigger/Inspection is {“*Job0”, “Job1”, “Job1”, “Job1”, “Job1”, “Job2”, “Job1”, “Job2”}, and

assume the count of its output objects and the result value is as follows.0

ngn
F1 | JobO | O Row umn 0 1
F2 [Jobl | 0 f 0 e | s
F3 [Jobl | 1] Row umn 0
F4 | Jobl | 2 / 0 nqn
F5 | Job2 | O 1 ngn
Fo [Jobl | 3 —— |, [Row lumn 0 1 2
F7 | Job2 | 1 0 "o o Y
1 "3" "4"
2 "5"
3 "6" "7
Omron TM Collaborative Robot: TMScript Language Manual (1664) 378

e

(1) Suppose the output of the first Jobl is a single object and a single result value.

F1 | JobO
F2 | Jobl
F3 | Jobl
F4 | Jobl
F5 | Job2
F6 | Jobl
F7 | Job2

/» ll5ll

PRI WO N~ O] O

® Get the object (find) count
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX_TM", 0)
Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F2")

/I Retrieve the row count (i.e. the object (find) count) of the variable
Jobl Count_Blob_1 DetectObjectX_TM in the first Jobl (the flying point name is F2.)

/1 /l Row count
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX_TM", 0, 0)
Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F2", 0)

/I Retrieve the array length of the output result from row 0, the 15t object, of the variable
Jobl Count_Blob_1 DetectObjectX_TM in the first Jobl (the flying point name is F2.)

/I 1 /I Column count of Row[1]

® Get the object (find) result value
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 0)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F2")

/I Retrieve the output result of the variable Job1l_ Count_Blob_1 DetectObjectX_TM in the first Jobl (the
flying point name is F2.)

/15"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 379

e

(2) Suppose the output of the second Jobl is a single object and a multiple result value.

F1 | JobO
F2 | Jobl
F3 | Jobl
F4 | Jobl
F5 | Job2
F6 | Jobl
F7 | Job2

% | Row olumn 0 1
Illll II5II

PRI WO NI R Q| O
o

® Get the object (find) count

Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX _TM", 1)
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", "F3")

/I Retrieve the row count (i.e. the object (find) count) of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the second Jobl (the flying point name is F3.)

/I 1 /I Row count

Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX_TM", 1, 0)
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", "F3", 0)

/I Retrieve the array length of the output result from row 0, the 15t object, of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the second Jobl (the flying point name is F3.)

I 2 /I Column count of Row[1]

® Get the object (find) result value
Vision_GetOutputArrayValue("Job1_Count_Blob_1_ DetectObjectX_TM", 1, 0)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F3",0)

/I Retrieve the index 0 output result of the variable Job1l Count_Blob_1 DetectObjectX_TM in the second
Job1 (the flying point name is F3.)

/1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 380

e

(3) Suppose the output of the third Job1 is a multiple object and a single result value.

F1 | JobO
F2 | Jobl
F3 | Jobl
F4 | Jobl
F5 | Job2
F6 | Jobl
F7 | Job2

Row olumn 0
O Illll
1 II5II

R WIOI Nl R|Q| O

® Get the object (find) count
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", 2)
Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F4")

/I Retrieve the row count (i.e. the object (find) count) of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the third Job1l (the flying point name is F4.)

I 2 /l Row count
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", 2, 1)
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", "F4", 1)

/I Retrieve the array length of the output result from row 1, the 29 object, of the variable
Job1_Count_Blob_1_DetectObjectX_TM in the third Job1l (the flying point name is F4.)

N1 /I Column count of Row[1]

® Get the object (find) result value
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 2, 1)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F4",1)

/I Retrieve the index 1 output result of the variable Job1l Count_Blob_1 DetectObjectX_TM in the third
Job1 (the flying point name is F4.)

/15"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 381

e,

(4) Suppose the output of the fourth Job1 is a multiple object and a multiple result value.

F1 | JobO | O
F2 |Jobl | 0
F3 | Jobl | 1
F4 | Jobl | 2
F5 | Job2 | O
e oni| 3 . — Row Column 0 1 2
0 "0" "1" "2"
F7 | Job2 | 1 1 ngn ngn
2 "5"
3 "6" 7"

® Get the object (find) count

Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", 3)
Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F6")

/I Retrieve the row count (i.e. the object (find) count) of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the fourth Jobl (the flying point name is F6.)

I 4 /l Row count
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX _TM", 3, 1)
Vision_GetOutputArraySize("Job1_Count Blob_1 DetectObjectX TM", "F6", 1)

/I Retrieve the array length of the output result from row 1, the 29 object, of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the fourth Jobl (the flying point name is F6.)

I 2 /I Column count of Row[1]

® Get the object (find) result value
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 3, 0, 2)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F6", 0, 2)

/I Retrieve the output result in row 0, the 1t object, and column 2, item 3, of the variable
Jobl_Count_Blob_1_DetectObjectX_TM in the fourth Jobl (the flying point name is F4.)

2"

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 3, 4, 0)

/I Return error. Exceeding the access range. (the object (find) count is 4, and the valid index is 0 to 3.)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_ DetectObjectX_TM", 4, 0, 0)

/I Return error. Exceeding the access range. (Job1l repeats four times, and the valid index is 0 to 3.)
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F8", 0, 0)

/l Return error. The Flying point named “F8” does not exist.
Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F7", 0, 0)

/I Return error. The vision job associated to the Flying point named “F7” is Job2

Omron TM Collaborative Robot: TMScript Language Manual (1664) 382

e

14.3 Vision_GetTriggerJobOutputCount()

Retrieve the output variable count in the buffer after the vision IO Trigger Job execution.

Syntax 1
int Vision_GetTriggerJobOutputCount(
string
)
Parameter
string The variable name as output by the 10 Trigger Job with the data type of
string array.
Return
int The output variable count of the designated variable in the buffer.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 383

e

14.4 Vision_GetTriggerJobOutputValue()

Retrieve the output variable values after the vision 10 Trigger Job execution.. (Retrieve and
remove from the buffer.)

Syntax 1
string[] Vision_GetTriggerJobOutputValue(
string
)
Parameter
string The variable name as output by the 10 Trigger Job with the data type of
string array.
Return
string(] The output values of the designated variables in the buffer.
Note

After the vision 10 Trigger Job execution (Enabling the 10 trigger mode is a must during
vision editing.), the result updates to the variable after each 10 trigger. Since the output of the
IO Trigger Job is multiple outputs, to prevent the output data from being overwritten because
of out-of-process, it stores the output data in the buffer one by one (first in, first out), and
users can use the function calls to retrieve the count or the values in the buffer. For example,
job1_Count_Blob_1 DetectObjectX TM is an output variable of the vision job job1 to be
output by the Counting (Blobs) module 1. After the vision execution, it updates and stores the
result in the buffer at each 10 trigger, so users can call the functions to retrieve the count or
the values of the variable job1_Count_Blob_1_DetectObjectX_ TM in the buffer.

The buffer comes with a capacity limit. When results are about to enter, if the buffer
capacity is insufficient, it removes the oldest data automatically and adds the latest to the
buffer.

Suppose the current content in the buffer goes by {{"0", "1", "2"}, {"3", "4"}, {"5"} }
Retrieve the output variable count of the vision trigger job in the buffer.
int var_count = Vision_GetTriggerJobOutputCount
("job1_Count_Blob 1 DetectObjectX TM")
/[var_count =3
Retrieve the output variable values in the buffer.
string[] var_s = Vision_GetTriggerJobOutputValue
("job1_Count_Blob_1_DetectObjectX_TM")
Il var_s = {"0", "1", "2"}
/I After retrieving, the content in the buffer turns to { {"3","4"}, {"5"} }.
var_count = Vision_GetTriggerJobOutputCount
("job1_Count_Blob_1_DetectObjectX_TM")
/l'var_count = 2
var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX_TM")
Il var_s = {"3","4"}
/I After retrieving, the content in the buffer turns to { {"5"} }.
var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX_ TM")
/I var_s = {"5"}
/I After retrieving, the content in the buffer turns to { }.
var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX TM")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 384

e,

/Ivar_s ={}
var_count = Vision_GetTriggerJobOutputCount
("job1_Count_Blob_1_DetectObjectX_TM")
/l'var_count=0

Omron TM Collaborative Robot: TMScript Language Manual (1664) 385

e

15. External Script

15.1 Listen Node

Users can establish a socket TCPlistener (server site) in the listen node to connect to external
devices and communicate based on the packet format. All features available in
TM_Robot_Function can also be operated in the listen node.

Listen x| 1. Send Message: When entering this node, it will initiate
Node Name Listen1 a message

Send message as emering this node 2. Print Log: Enable Communication Log (shown on the
tstent right)

Print received data nlog 3. Connection Timeout: When entering this node, if
more than the time (milliseconds) is not connected, it
will be overtime.

If <=0, no timeout

4. Data Timeout: When connected, the timeout will be
exceeded when there is no communication packet
If <=0, no timeout

Socket TCPListener is started up after the project being executed, and closed as the project
stopped. The IP and listen port will be shown on the Notice Log window on the right, after the
Socket TCPListener is started up.

IP HMI = System - Network - IP Address
Port 5890
When entering the Listen Node, the flow will keep at Listen Node until either of the two exit
conditions is fulfilled.
Pass: ScriptExit() is executed or the project is stopped
Fail: 1. Connection Timeout
2. Data Timeout
3. Before the TCP Listener is started up, the flow has entered this Listen Node

The command received by listen node will be executed in order. If the command is not valid, an
error message will be returned carrying the line number with errors. If the command is valid, it will
be executed.

The command can be divided into two categories. The first category is commands which can be
accomplished in instance, like assigning variable value. The second category is commands needs
to be executed in sequence, like motion command and 10 value assigning. The second category
command will be placed in queue and executed in order.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 386

e

15.2 Communication Protocol
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ Header Length Data , * Checksum \r \n
Checksum (XOR of these Bytes)
Name Size | ASCII | HEX Description
Start Byte 1 $ 0x24 Start Byte for Communication
Header X Header for Communication
Separator 1 , 0x2C Separator between Header and Length
Length Y Length of Data
Separator 1 , 0x2C Separator between Length and Data
Data Z Communication Data
Separator 1 , 0x2C Separator between Data and Checksum
Sign 1 * O0x2A Begin Sign of Checksum
Checksum 2 Checksum of Communication
End Byte 1 1 \r 0x0D
End Byte 2 1 \n 0x0A End Byte of Communication
1. Header

Defines the purpose of the communication package. The data definition could be different with
different Header.
® TMSCT External Script
® TMSTA Acquiring status or properties
® CPERR Communication data error (E.g. Packet error, checksum error, header error,

etc.

2. Length

)

Length defines the length in UTF8 byte. It can be represented in decimal, hexadecimal or
binary, the upper limit is int 32bits

Example:

$TMSCT,100,Data,*CS\r\n
$TMSCT,0x100,Data,*CS\r\n
$TMSCT,0b100,Data,*CS\r\n
$TMSCT,8,1,7EH5,*58\r\n

/I Decimal 100, that is the data length is 100 bytes

/l Hexadecimal 0x100, that is the data length is 256 bytes
/I Binary 0b100, that is the data length is 4 bytes

// The Data length 1,7#47 is 8 bytes (UTF8)

. Data

The content of the communication package. Arbitrary characters are supported (including
0x00 .. OxFF in UTF8). The data length is defined in Length and the purpose is defined in
Header

. Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664)

The checksum of the communication package. The checksum is calculated with
XOR(exclusive OR), and the range for checksum computation starts from $ to * ($ and * are
excluded) as shown below:

387

e

$TMSCT,100,Data,*CS\r\n
Checksum = Byte[1] A Byte[2] ... * Byte[N-6]
The representation of checksum is fixed to 2 bytes in hexadecimal format (without 0x).
For example:
$TMSCT,5,10,0K J*6D
CS = 0x54 * 0x4D * 0x53 * 0x43 " 0x54 * 0x2C * 0x35 * 0x2C * 0x31 * 0x30 * 0x2C * Ox4F A
0x4B * 0x2C = 0x6D
CS = 6D (0x36 0x44)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 388

e

15.3 TMSCT
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ TMSCT , Length , Data , * Checksum \r \n
ID SCRIPT
Script ID , Script Language

TMSCT defines the communication package as External Script Language. In External Script
Language, the data contains two parts and is separated by comma. One is ID and the other is
SCRIPT
ID Script ID, can be arbitrary English character or number (a CPERR 04 error will
be reported when encountering non-alphanumeric byte). The ID is used as
specifying the target SCRIPT of return message.
, Separator
SCRIPT The content defined in Script Language. In a communication package, multi-line
scripts can fit into the SCRIPT section with separator (OxOD 0x0A)
Note
TMSCT is available only when in the external script control mode, otherwise CPEER
error packets will be replied.

Return (Robot—External Device)
1. When it enters Listen Node, the robot will send a message to all the connected
device. The ID is set to 0.
$TMSCT,9,0,Listen1,*4C\r\n

9 The length of 0,Listen1 is 9 bytes
0 The Script ID is 0
, Separator

Listen1 The message to send
2. The OK or ERROR message is replied according to the Script’s content. For
message with ;N, ;N represents the number of line with error or warning. After the
message is received, robot will execute the message, then send back the return
message, if the Script is valid. For invalid Script, the return message will be sent back
immediately without executed.

$TMSCT,4,1,0K,*5C\r\n /I Response to ID 1
/I OK means valid Script.
$TMSCT,8,2,0K;2:3,*52\r\n /I Response to ID 2

/I OK;2;3 means valid Script with warnings in line 2 and 3.
$TMSCT,13,3,ERROR;1;2;3,*3F\r\n// Response to ID 3
/I ERROR;1;2;3 means invalid Script with errors in line 1, 2 and
3.
Receive (Robot—External Device)

1. When it enters the listen node, the robot will start to receive, check, and execute the
external script. If the robot did not enter the listen node (not in the external script
control mode), the Script received will be disposed and CPEER error packets will be
replied.

2. The message from external device should define the Script ID as a ID used in
messages replied by robot.

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\r\n // Defined as ID 1
> $TMSCT,4,1,0K,*5C\r\n // Response to ID 1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 389

e

3. In a communication package, multi-line scripts can fit into the SCRIPT section with
separator \r\n

< $TMSCT, 72,2,ChangeBase("RobotBase")\r\n
ChangeTCP("RobotEndFlange")\r\n
ChangelLoad(10.1),* 5A\r\n /I Three lines Script in a communication package (Lines
are separated by \r\n)

> $TMSCT,4,2,0K,*5F\r\n

4. In Listen Node, local variables are supported and valid before quitting the Listen
Node.

< $TMSCT,40,3,int var_i=100\r\n
var_i = 1000\r\n
var_i++,*5A\r\n

> $TMSCT,4,3,0K,*5E\r\n

< $TMSCT,42,4,int var_i=100\r\n
var_i = 1000\r\n

var_i++\r\n
;68\r\n
> $TMSCT,9,4,ERROR;1,*02\r\n /l Because int var_i has been declared, an error
occurred.

5. In the listen node, it is possible to access or modify the project’s variables, but no new

variable can be declared since the variables created in the listen node are local
variables.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 390

e

154 TMSTA
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ TMSTA Length Data , * Checksum \r \n
SubCmd
SubCmd (Based on SubCmd)

TMSTA defines the communication package as acquiring status or properties. The data section of
the package contains different sub command (SubCmd). The package format could be different

according to different SubCmd. The definitions are listed below.
SubCmd
00 In external script control mode or not
01 Complete the configured QueueTag numbering or not
90..99 Date message to send (the format of data is self-definable)
Note
TMSTA could be executed without entering the Listen Node

SubCmd 00 In external script control mode or not
Format
Response (Robot—External Device)
SubCmd Entry Message
00 , false ,
00 , true , message
Receive (Robot—External Device)
SubCmd
00

Response (Robot—External Device)
1. If not in external script control mode, it will reply false.
$TMSTA,9,00,false,,*37\r\n

9 Indicates the length of 00,false, is 9 bytes
00 Indicates SubCmd as 00

, Separator

false The flow has not entered Listen Node
, Separator

Empty string (Have not entered Listen Node)

2. If in external script control mode, it will reply true.
$TMSTA, 15,00, true,Listen1,*79\r\n

15 Indicates the length of 00,true,Listen1 is 15 bytes

00 Indicates SubCmd as 00

, Separator

true The flow has entered the Listen Node

, Separator

Listen1 The message to be sent as in Listen Node (It indicates the flow is in
Listen1)

Receive (Robot—External Device)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

391

e

1. Send to the robot from the external device
$TMSTA,2,00,*41\r\n
2 Indicates the length of 00 is 2 bytes.
00 Indicates the SubCmd is 00 whether in external script control mode or
not.

SubCmd 01 Complete the configured QueueTag numbering or not

Format
Send (Robot—External Device)
SubCmd Tag Number Status
01 , 01..15 , true/false/none
Receive (Robot«—External Device)
SubCmd Tag Number
01 , 01..15
Note

When inquiring with TMSTA 01, users can look up to the status of the last 4 tag numbers.

Send (Robot—External Device)
1. Send to the external device from the robot. Spontaneously sending after QueueTag
numbering completed.
$TMSTA,10,01,08,true,*6D\r\n

10 Indicates the length of 01,00,true is 10 bytes
01 Indicates SubCmd as 01 to send the status of Tag Number
, Separation symbol
08 Tag Number 08
: Separation symbol
true true Indicates Tag Number complete
false Indicates Tag Number incomplete

none Indicates Tag Number not existed

Receive (Robot—External Device)
1. Send from the external device to the robot. Users can look up to the status of the last
4 tag numbers.
$TMSTA,5,01,15,*6F\r\n

5 Indicates the length of 01,88 is 5 bytes
01 Indicates SubCmd as 01 to send the status of Tag Number
, Separation symbol
15 Tag Number 15
> $TMSTA,10,01,15,none,*7D\r\n /Il TagNumber 15 not existed

2. Tag Number uses the value of integers between 1 and 15. If the value is invalid, it
relies none for not existed.
$TMSTA,5,01,88,*6B\r\n
> $TMSTA,10,01,88,none,*79\r\n /Il TagNumber 88 not existed

SubCmd 90.. 99 Send data message

Format
Send (Robot—External Device)
SubCmd Data
90 .. 99 ,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 392

e

Receive (Robot—External Device)

Note

1.
2.

3.

None

When sending with TMSTA 90 .. 99, users can use their self-defined formats.
Self-defined formats denote the formats are defined by both the project flow and the
external device.
To enhance the flexibility of usages, users can various SubCmd of 90 .. 99 to define
different formats to send such as

SubCmd 90 defined as string ;

SubCmd 91 defined as float[] ;

SubCmd 92 defined as byte][]

and so on for the external device to analyze and resolve based on the SubCmd with
different methods.

Send (Robot—External Device)

1. Send to the external device from the robot. When the external script executes the

ListenSend() function, it will send data.

string var_s = "Hello World"

float[] var_f ={1,2,3,4}

byte[] var_b = {0x10, 0x11, 0x12, 0x13}

ListenSend(90, var_s)

/l the content of communication $TMSTA,14,90,Hello World,*73\r\n

I/l 0x39,0x30,0x2C,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64
ListenSend(91, var_f)

Il the content of communication $TMSTA,19,91,...,*60\r\n

1l
0x39,0x31,0x2C,0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40,0x00,0x00,0x80,0
x40

ListenSend(92, var_b)

/I the content of communication $TMSTA,7,92,...,*63\r\n
/I 0x39,0x32,0x2C,0x10,0x11,0x12,0x13

Omron TM Collaborative Robot: TMScript Language Manual (1664) 393

e

155 CPERR
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ CPERR , Length , Data , * Checksum \r \n

Error Code
Code (00 .. FF)

CPERR defines the communication package as sending the Communication Protocol Error. The
data section is defined as Error Code.

Error Code Error code, presented in 2 bytes hexadecimal format (without 0x)
00 Packet correct. No error. (The return message usually reply to the
content of packet instead of returning no error)
01 Packet Error.
02 Checksum Error.
03 Header Error.
04 Packet Data Error.
F1 Have not entered Listen Node
Note

Used by robot to response to external device

Response (Robot—External Device)
01 Packet Error

< $TMSCT,-100,1,ChangeBase("RobotBase"),*13\r\n // Length cannot be negative
> $CPERR,2,01,*49\r\n /I CPERR Error Code 01

01 Packet Error

< $TMSCT,24,1,ChangeBase("RobotBase"),*09\r\n
/I Length value is incorrect (should be 25)
> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,26,1,ChangeBase("RobotBase"),*0B\r\n

/I When sending only the packet mentioned above, it will not bring out a response because its Length
of 26 exceeds the actual data amount, indicating an insufficient number of packets.

< $TMSCT,26,1,ChangeBase("RobotBase"),*0B\r\n

/I Length value is incorrect (should be 25)

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*088\r\n
/1 088 is not a correct packet ending format.
> $CPERR,2,01,*49\r\n /I CPERR Error Code 01

01 Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*8\r\n

/I When sending only the packet mentioned above, it will not bring out a response because of a
Checksum Byte coming short.

< $TMSCT,25,1,ChangeBase("RobotBase"),*8\r\n

Omron TM Collaborative Robot: TMScript Language Manual (1664) 394

e

01

02

03

04

F1

// 8 is not a correct packet ending format.
> $CPERR,2,01,*49\r\n /I CPERR Error Code 01

Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\n
Il When sending only the packet mentioned above, it will not bring out a response because of an End
short.

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\n
/I'\n is not a correct packet ending format.
> $CPERR,2,01,*49\r\n // CPERR Error Code 01

Checksum Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*09\r\n // 09 is not a correct Checksum
> $CPERR,2,02,*4A\r\n /I CPERR Error Code 02

Header Error

< $TMsct,25,1,ChangeBase("RobotBase"),*28\r\n /l TMsct is not a correct
Header
> $CPERR,2,03,*4B\r\n /I CPERR Error Code 03

Packet Data Error

< S$TMSTA,4 XXXX,*47\r\n /I There is no XXXX SubCmd under
TMSTA
> $CPERR,2,04,*4C\r\n /I CPERR Error Code 04

No External Script Mode

< $TMSCT,25,1,ChangeBase("RobotBase"),*0D\r\n
/I Suppose currently not in external script control mode
> $CPERR,2,F1,*3F\r\n /I CPERR Error Code F1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 395

e

15.6 ScriptListen()

Enter the external script control mode.

Syntax 1
bool ScriptListen(
string,
bool,
int,
int
)
Parameters
string The message string to send while in the external script control mode.
bool Whether to display the receiving external messages in the notice window.
int After entering external Script control mode, it will time out if not connected within a
specific timeframe (measured in milliseconds).
If <=0 No timeout
Int After entering external Script control mode and connected, it will time out if no
communication packets received within a specific timeframe (measured in
milliseconds).
If <=0 No timeout
Return
bool When entering the external Script control mode, it will remain there until meeting
certain conditions and exit by the conditions.
True execute ScriptExit() or stop the project
False 1. Connection Timeout occured
2. Data Timeout occured
3. If the TCP Listener fails to set up, ScriptListen() is invoked.
* Accessible only through the Listen node, the Script node, or Script project
programming.
* Calling in the flow required.
Syntax 2
bool ScriptListen(
string,
bool
)
Note

Same as Syntax 1. Set the message strings to send and whether to show in the notice window.
There is no timeout by default.

Syntax 3

bool ScriptListen(
string
)

Note
Same as Syntax 1. Set the message strings to send. There is no show in the notice window and
no timeout by default.

if (ScriptListen("Listen1", false, 0, 0))
Display("PASS")

else
Display("FAIL")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 396

Omron TM Collaborative Robot: TMScript Language Manual (1664) 397

e

15.7

ScriptExit()

Exit the external script control mode.

Syntax 1
bool ScriptExit(

)

Parameters

void No parameter

Return

bool True Command accepted; False Command rejected (format error)

Note

Exit the external script control mode and wait for the command to finish, and then quit the
listen node and move on with the pass route, or quit ScriptListen() and return True.

* Execute via TMSCT communication packets required.
* Functions after ScriptExit() will not be executed such as

< $TMSCT,86,2,ChangeBase("RobotBase")\r\n
ChangeTCP("RobotEndFlange")\r\n
ScriptExit()\r\n /I Exit the external script control mode.
ChangelLoad(10.1),*58\r\n /I ChangeLoad will not be executed.

* After exiting the script mode, it is required to wait for all the commands and the
functions to complete executions until quitting the listen node and moving on with the
pass route. At the time being of waiting for quitting the listen node, it is not in the external
script control mode, so no more external commands will be accepted and CPEER error
packets will be replied.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 398

e

15.8 Priority Commands

Due to the serial execution nature of the TMscript syntax, if using the queue syntax such as
QueueTag(1, 1) or WaitQueueTag(1) to wait for the tag number to arrive, the program will stay put
until the conditions are comprehended before going on execution. Therefore, if received the
ScriptExit() syntax sent from the outside while waiting, it is impossible to exit the external Script
control mode since the program is still waiting for the condition to meet.

When the program comes to the Listen node (the external Script control mode), other than the
serial execution TMscript syntax, there are also priority commands to use. In Listen nodes, the
priority commands go with a higher execution priority than the syntax execution, and the priority
commands will run at once as defined below.

1. ScriptExit(0)
Stop the robot motion immediately, clear the robot motion instructions in the buffer, and exit the
external Script control mode. Go to the Fail path after leaving the Listen node.

2. ScriptExit(1)
Stop the robot motion immediately, clear the robot motion instructions in the buffer, and exit the
external Script control mode. Go to the Pass path after leaving the Listen node.

3. StopAndClearBuffer(0)
Stop the robot motion immediately and clear the robot motion instructions in the buffer.

4. StopAndClearBuffer(1)
Stop the robot motion immediately, clear the robot motion instructions in the buffer, exit the
current Script program in execution, and continue to the next Script program.

5. StopAndClearBuffer(2)
Stop the robot motion immediately, clear the robot motion instructions in the buffer, exit the
current Script program in execution, and clear all the script programs in the Received Script
buffer.

® Priority commands support the general use of the command definitions only but not the use
with variables and functions such as
< $TMSCT42,1,int var_st=2\r\n
StopAndClearBuffer(var_st),*3A\r\n
> $TMSCT,9,1,ERROR;2,*04\r\n /I Invalid syntax StopAndClearBuffer(var_st)

® Using priority commands with TMscript syntax leads to priority command executions only
but not syntax executions.
< $TMSCT,94,2 float[] targetP1= {0,0,90,0,90,0}\r\n // Will not execute.
PTP("JPP" targetP1,10,200,0,false)\r\n /I Will not execute.
StopAndClearBuffer(0),*75\r\n /I Priority execution StopAndClearBuffer(0)
> $TMSCT,4,2,0K,*5F\r\n

® The system will handle one priority command only in one external Script packet. If the
packet comes with numerous priority commands, the system will handle ScriptExit(0/1)
before StopAndClearBuffer(0/1/2). If there are numerous ScriptExit and
StopAndClearBuffer respectively, the system will handle the first only.
< $TMSCT,46,3,StopAndClearBuffer(2)\r\n // will execute.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 399

e

/I There are many of StopAndClearBuffer and the system will
handle the 1st of them.
StopAndClearBuffer(1),*68\r\n /I Will not execute.
> $TMSCT,4,3,0K,*5E\r\n
< $TMSCT,61,4,StopAndClearBuffer(2)\r\n /1 Will not execute.
StopAndClearBuffer(1)\r\n /I Will not execute.
ScriptExit(1),*52\r\n 11 Will execute.
/I Due to the higher priority, the system handles ScriptExit
before S topAndClearBuffer.
> $TMSCT,4,4,0K,*59\r\n

1. < $TMSCT,86,1 float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1,1),"60\r\n Il QueueTag(1,1) waits.
The program will stay put with the command until tag 1 finishes.
< $TMSCT,15,2,ScriptExit(0),*55\r\n
I When receiving the command ScriptExit(0), if tag 1 does not finish,
> $TMSCT,4,1,0K,*5C\r\n // Respond 1 OK
/'lt does not send out TMSTA tag number for finishing due to the clearing of the
motion command and QueueTag().
> $TMSCT,4,2,0K,*5F\r\n // Respond 2 OK
It will exit the external Script control mode and go to the Fail path after leaving the Listen
node.

2. < $TMSCT,86,1,float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1,1),"60\r\n Il QueueTag(1,1) waits.
The program will stay put with the command until tag 1 finishes.
< $TMSCT,23,2,StopAndClearBuffer(0),*55\r\n
/I When receiving the command StopAndClearBuffer(0), if tag 1 does not
finish
> $TMSCT,4,1,0K,*5C\r\n // Respond 1 OK
/'lt does not send out TMSTA tag number for finishing due to the clearing of the
motion command and QueueTag().
> $TMSCT,4,2,0K,*5F\r\n // Respond 2 OK
It does not exit the external Script control mode and is still in the Listen node.

3. < $TMSCT,145,1 float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1,0)\r\n
WaitQueueTag(0,60000)\r\n /I Tag 0 will wait for the 60-seconds timeout.
PTP("JPP" targetP1,40,200,0,false),*64\r\n // It takes a 60-seconds wait before the execution.
< $TMSCT,23,2,StopAndClearBuffer(0),*55\r\n
/I If receiving the command StopAndClearBuffer(0) in 60 seconds, it will clear the 15t PTP() function.
> $TMSCT,4,2,0K,*5F\r\n // Respond 2 OK
It waits for the 60-seconds timeout before the 2" PTP() function execution and responds 1
OK.
> $TMSCT,4,1,0K,*5C\r\n // Respond 1 OK

* StopAndClearBuffer(0) clears the motion commands only but not the function syntax or the

Omron TM Collaborative Robot: TMScript Language Manual (1664) 400

e

logic operations. While WaitQueueTag(0) sets the number 0, it waits for the timeout and is
impossible to exit with the motion command clearing. It is required to use the command
StopAndClearBuffer(1/2) to exit from the current Script program in execution.

4. < $TMSCT,86,1,float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1,1),"60\r\n Il QueueTag(1,1) waits.
The program will stay put with the command until tag 1 finishes.
< $TMSCT,86,2float[] targetP2= {90,0,0,90,0,0}\r\n
PTP("JPP" targetP2,10,200,0,false)\r\n
QueueTag(2,1),760\r\n /I The last packet still waits, and this packet does not execute.
< $TMSCT,23,3,StopAndClearBuffer(1),*55\r\n
I When receiving the command StopAndClearBuffer(1), if tag 1 does not finish
> $TMSCT,4,1,0K,*5C\r\n // Respond 1 OK
/I'lt does not send out TMSTA tag number for finishing due to the clearing of the
motion command and QueueTag().
> $TMSCT,4,3,0K,*5E\r\n // Respond 3 OK
It clears and exits the current Script 1 in execution, and it continues to the next, Script 2.
> $TMSCT,4,2,0K,*5F\r\n /I Respond 2 OK
> $TMSTA,10,01,02,true,*67\r\n // Tag 2 finished

5. < $TMSCT,86,1,float[] targetP1={0,0,90,0,90,0}\r\n
PTP("JPP" targetP1,10,200,0,false)\r\n
QueueTag(1,1),"60\r\n /l QueueTag(1,1) waits.
The program will stay put with the command until tag 1 finishes.
< $TMSCT,86,2 float[] targetP2= {90,0,0,90,0,0}\r\n
PTP("JPP" targetP2,10,200,0,false)\r\n
QueueTag(2,1),"60\r\n /I The last packet still waits, and this packet does not execute.
< $TMSCT,23,3,StopAndClearBuffer(2),*56\r\n
/I When receiving the command StopAndClearBuffer(2), if tag 1 does not
finish
> $TMSCT,4,1,0K,*5C\r\n // Respond 1 OK
/'lt does not send out TMSTA tag number for finishing due to the clearing of the
motion command and QueueTag().
> $TMSCT,4,3,0K,*5E\r\n // Respond 3 OK
It clears and exits the current Script 1 in execution, and clears all the Script programs in the
Received Script buffer. Therefore, it clears Script 2 without the response to Script 2.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 401

e

16.Modbus Functions
16.1 ModbusTCP Class

Use Modbus TCP class and declare variables to create a Modbus TCP device. The variable
name will be the device name.

Construct 1
ModbusTCP VariableName = string, int, int
ModbusTCP VariableName = string, int
ModbusTCP VariableName = string

Parameters

string remote host IP address

int remote host connection port (502 by default)

int read/write timeout in millisecond 0..10000 (10000ms by default)
Note

ModbusTCP mtcp1 ="192.168.1.10"
/I construct a device, with IP 192.168.1.10
ModbusTCP mtcp2 ="192.168.1.10", 502
/I construct a device, with IP 192.168.1.10, Port 502
ModbusTCP mtcp3 ="192.168.1.10", 502, 8000
/I construct a device, with IP 192.168.1.10, Port 502, Timeout 8000ms

* After construction, either in flow projects or script projects, the device will not connect
actively until proceeding to read or write.

Member Methods
Name Description
Preset() Configure the preset ModbusTCP parameters.
Read 10DD file and configure the preset ModbusTCP
IODDPreset()
parameters.

16.1.1 Preset()
Configure the preset ModbusTCP parameters.

Syntax 1

bool Preset(
string,
byte,
string,
int,
string,
int

)

Parameters
string preset device name
byte Slave 1D
string signal type "DO", "DI", "RO", "RI"
int starting address
string type "bool", "byte", "int16", "int32", "float", "double", "string"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 402

int suffix parameter, when type is
"int32" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"float" O Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"double" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"string" address count (0 by default)

This is invalid for other types.
Return
boolpreset successfully True, preset unsuccessfully False

Syntax 2

bool Preset(
string,
byte,
string,
int,
string

)

Note
Same as syntax 1. Fill default to suffix parameter by default.

Note
ModbusTCP mbus1 ="127.0.0.1"
/I construct a device, with IP 127.0.0.1, Port 502, Timeout 8000ms

mbus1.Preset("light", 1, "DQO", 7206, "bool") // set preset device name to "light"
mbus1.Preset("9000", 1, "RO", 9000, "string") /l set preset device name to "9000"
/l Return error, naming must be in alphanumeric combination.

mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 0)
/] set preset device name to "preset_9000" // Little Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 1)
/I set preset device name to "preset_9000" // Big Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "int")
/I set preset device name to "preset_9000" // Big Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "string", 5)
/I set preset device name to "preset_9000" // string type
/I Once the name, preset_9000, exists, it overwrites the content to the configuration of the same
name by the processing sequence.
bool flag = modbus_read("mbus1", "light") // flag =false // suppose camera light is off
modbus_write("mbus1”, "light", true) I write true Il camera light is on
flag = modbus_read("mbus1", "light") Il flag = true

modbus_write("mbus1 ", "preset_9000", Ctrl("\0\0\0\0\0\0\0\0\0\0"))

/I clears preset_9000 in string type and occupies five addresses (5 RO = 10 bytes)

modbus_write("mbus1”, "preset_9000", 1234) // write "1234" // because preset_9000 is in
string type

int var_i = modbus_read("mbus1", "preset_9000") //var_i=1234 / ittries to convert
"1234" to integer.

/I because preset_9000 is in string type and occupies five addresses, it then reads 10 bytes and converts by strings.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 403

e

(ends when encountered 0x00.)

modbus_write("mbus1”, "preset_9000", "HelloWorld") I/ write "HelloWorld"
string var_s = modbus_read("mbus1", "preset_9000") Il var_s = "HelloWorld"
var_i = modbus_read("mbus1", "preset_9000")

/I Return error, unable to convert HelloWorld to integer.

modbus_write("mbus1”, "preset_9000", 1234) I write "1234"
/I contiune the last piece of data and write "HelloWorld" /I therefore, the current data in the address 9000 is
"12340World"

var_i = modbus_read("mbus1", "preset_9000")
/I Return error, unable to convert 1234o0World to integer.

16.1.2 IODDPreset()
Read 10DD file and configure the preset ModbusTCP parameters.

Syntax 1
bool IODDPreset(
string,
byte,
int,
int
)
Parameters
string 10DD file name (read the 10DD file stored in the directory .\XmlIFiles\IODD at
local host)
byte Slave 1D
int starting address In
int starting address Out
Return
boolpreset successfully True, preset unsuccessfully False
Note

ModbusTCP mbus1 ="192.168.1.10"
/I construct a device, with IP 192.168.1.10, Port 502, Timeout 10000ms

mbus1.I0DDPreset("OMRON-E2EQ-X3B4-1L2-20170301-I0DD1.1.xml", 1, 100, 200)
/I'load the file, \XmIFiles\\ODD\OMRON-E2EQ-X3B4-1L2-20170301-10DD1.1.xml, and add the preset
configuration parameters.

/I define preset names in the same way as flow projects rules.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 404

e

16.2 ModbusRTU Class

Use Modbus TCP class and declare variables to create a Modbus TCP device. The variable
name will be the device name.

Construct
ModbusRTU VariableName = string, int, string, int, float, int, bool, bool, bool
ModbusRTU VariableName = string, int, string, int, float, int
ModbusRTU VariableName = string, int, string, int, float
ModbusRTU VariableName = string, int

Parameters
string connection description
int bits per second, BaudRate
string parity check "none", "odd", "even", "mark", "space" ("none" by default)
int Data Bits 5, 6, 7, 8(8 by default)
float Stop Bits 1, 1.5, 2 (1 by default)
int read/write timeout in millisecond 0..10000 (10000 ms by default)
boolDTR/DSR true, false (false by default)
boolRTS/CTS true, false (false by default)
bool XON/XOFF true, false (false by default)
Note

ModbusRTU mrtu1 = "COM2",115200
/I construct a device with Baudrate 115200
ModbusRTU mrtu2 = "COMZ2",115200,"none",8,1
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1
ModbusRTU mrtu3 = "COMZ2",115200,"none",8,1,10000
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

* After construction, either in flow projects or script projects, the device will not connect
actively until proceeding to read or write.

Member Methods
Name Description
Preset() Configure the preset ModbusTCP parameters.
Read 10DD file and configure the preset ModbusTCP
IODDPreset()
parameters.

16.2.1 Preset()
Configure the preset ModbusTCP parameters.

Syntax 1
bool Preset(

string,
byte,
string,
int,
string,
int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 405

e

)
Parameters
string preset device name
byte Slave ID
string signal type "DO", "DI", "RO", "RI"
int starting address
string type "bool", "byte", "int16", "int32", "float", "double", "string"
int suffix parameter, when type is
"int32" O Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"float" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"double” O Little Endian (CD AB) 1 Big Endian (AB CD) (default)
"string" address count (0 by default)
This is invalid for other types.
Return
boolpreset successfully True , preset unsuccessfully False
Syntax 2
bool Preset(
string,
byte,
string,
int,
string
)
Note
Same as syntax 1. Fill default to suffix parameter by default.
Note

Omron TM Collaborative Robot: TMScript Language Manual (1664)

ModbusRTU mbus1 = "COM2",115200
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

mbus1.Preset("light", 1, "DQO", 7206, "bool") // set preset device name to "light"
mbus1.Preset("9000", 1, "RO", 9000, "string") Il set preset device name to "9000"
/I Return error, naming must be in alphanumeric combination.

mbus1.Preset("preset_9000", 1, "RQO", 9000, "int", 0)
I set preset device name to "preset_9000" // Little Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 1)
I set preset device name to "preset_9000" // Big Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "int")
I set preset device name to "preset_9000" // Big Endian
mbus1.Preset("preset_9000", 1, "RO", 9000, "string", 5)
I set preset device name to "preset_9000" // string type
/I Once the name, preset_9000, exists, it overwrites the content to the configuration of the same
name by the processing sequence.

bool flag = modbus_read("mbus1", "light")// flag = false // suppose camera light is off
modbus_write("mbus1”, "light", true) I write true /I camera light is on
flag = modbus_read("mbus1", "light") Il flag = true

406

e

modbus_write("mbus1 ", "preset_9000", Ctrl("\0\0\0\0\0\0\0\0\0\0"))
/I clears preset_9000 in string type and occupies five addresses (5 RO = 10 bytes)

modbus_write("mbus1”, "preset_9000", 1234) // write "1234" // because preset_9000 is in
string type
int var_i = modbus_read("mbus1", "preset_9000") //var_i=1234 /it tries to convert
"1234" to integer.
/l because preset_9000 is in string type and occupies five addresses, it then reads 10 bytes and converts by strings.

(ends when encountered 0x00.)

modbus_write("mbus1”, "preset_9000", "HelloWorld") I/ write "HelloWorld"
string var_s = modbus_read("mbus1", "preset_9000") Il var_s = "HelloWorld"
var_i = modbus_read("mbus1", "preset_9000")

/I Return error, unable to convert HelloWorld to integer.

modbus_write("mbus1”, "preset_9000", 1234) Il write "1234"
/I contiune the last piece of data and write "HelloWworld" /I therefore, the current data in the address 9000 is
"12340World"

var_i = modbus_read("mbus1", "preset_9000")
/I Return error, unable to convert 1234o0World to integer.

16.2.2 IODDPreset()
Read 10DD file and configure the preset ModbusTCP parameters.

Syntax 1
bool IODDPreset(
string,
byte,
int,
int
)
Parameters
string 10DD file name (read the 10DD file stored in the directory .\XmlIFiles\IODD at
local host)
byte Slave ID
int starting address In
int starting address Out
Return
boolpreset successfully True, preset unsuccessfully False
Note

ModbusRTU mbus1 = "COMZ2",115200
/I construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

mbus1.I0DDPreset("OMRON-E2EQ-X3B4-1L2-20170301-I0DD1.1.xml", 1, 100, 200)
/I'load the file, \XmIFiles\\ODD\OMRON-E2EQ-X3B4-1L2-20170301-10DD1.1.xml, and add the preset
configuration parameters.

/I define preset names in the same way as flow projects rules.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 407

e,

16.3 modbus_open()

Open the connection to the Modbus TCP/RTU device.

Syntax 1
bool modbus_open(
string
)
Parameters
string TCP/RTU device name
Return

bool True Open successfully.

False Open unsuccessfully.

Note
ModbusTCP mbus1 ="127.0.0.1"

modbus_open("mbus1") /I connect to the device with IP: 127.0.0.1 and port: 502.

Omron TM Collaborative Robot: TMScript Language Manual (1664)

/I construct a device, with IP 127.0.0.1, Port 502, Timeout

408

e,

16.4 modbus_close()

Close the connection from the Modbus TCP/RTU device.

Syntax 1
bool modbus_close(
string
)
Parameters
string TCP/RTU device name
Return

bool True close successfully
False close unsuccessfully

Note

ModbusTCP mbus1 ="127.0.0.1" // construct a device, with IP 127.0.0.1, Port 502, Timeout
10000ms

modbus_open("mbus1") /I connect to the device with IP: 127.0.0.1 and port: 502.

modbus_close("mbus1") /I close the connection.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 409

e

16.5

modbus_read()

Modbus TCP/RTU read function

Syntax 1 (TCP/RTU)
? modbus_read(

string,
string
)
Parameters
string TCP/RTU device name
string The predefined parameters belong to TCP/RTU device
Return
? The return data type is decided by the predefined parameters
Signal Type Function Type Num Of Return data type
Code Addr
Digital Output | 01 byte 1 byte (H: 1)(L: 0)
bool 1 bool (H: true)(L:
false)
Digital Input 02 byte byte(H: 1)(L: 0)
bool bool (H: true)(L:
false)
Register 03 byte 1 byte
Output
int16 1 int
int32 2 int
float 2 float
double 4 double
string ? string
bool 1 bool
Register Input | 04 byte 1 byte
int16 1 int
int32 2 int
float 2 float
double 4 double
string ? string
bool 1 bool
* According to the Little Endian (CD AB) or Big Endian (AB CD) setting, the int32,
float, double data will transformed automatically.
* string will follows the UTF8 data format transformation (Stop at 0x00)
Note

Modbus Address data size

If the default values are applied in Preset Setting
800

Digital
Register

preset_800
preset 7202
preset 9000

Omron TM Collaborative Robot: TMScript Language Manual (1664)

DO
DI
RO

7202
9000

1 address = 1 bit size
1 address = 2 bytes size

byte

bool

string 4

410

e

preset_7001 RI 7001 float Big-Endian (AB CD)
value = modbus_read("TCP_1", "preset_800") //value=1 // DO 1 address = 1 bit
value = modbus_read("TCP_1", "preset_7202") // value = true /I DI 1 address = 1 bit
value = modbus_read("TCP_1", "preset_9000") // value = ab1234cd // RO 4 address = 8
bytes size
value = modbus_read("TCP_1", "preset_7001") //value =-314.1593 // RI 2 address = 4 bytes
size (float)
Syntax 2 (TCP/RTU)
byte[] modbus_read(
string,
byte,
string,
int,
int
)
Parameters
string TCP/RTU Device Name
byte Slave 1D
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
Return
byte[] The returned byte array from Modbus server
*User defined modbus_read only follows Big-Endian (AB CD) format to read
byte[]
Note
Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4
TCP device 0 DI 7202 3
TCP device 0 RO 9000 6
TCP device 0 RI 7001 12
TCP device 0 RI 7301 6

value = modbus_read("TCP_1", 0, "DO", 800, 4)

/I value = {0,0,0,0} // DO 4 address = 4 bit to byte array
value = modbus_read("TCP_1", 0, "DI", 7202, 3)

/[value = {1,0,0} /I DI 3 address = 3 bit to byte array
value = modbus_read("TCP_1", 0, "RO", 9000, 6)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 41

e

Il value = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}
/Il RO 6 address = 12 bytes size
value = modbus_read("TCP_1", 0, "RI", 7001, 12)

Il value =
{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00} /I R1 12 address = 24 bytes size

value = modbus_read("TCP_1", 0, "RI", 7301, 6)
I value = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x0A,0x00,0x39}
/I Rl 6 address = 12 bytes size

Omron TM Collaborative Robot: TMScript Language Manual (1664) 412

e

16.6

modbus_read_int16()

Modbus TCP/RTU read function, and transform Modbus address data array to int16 array

Syntax 1 (TCP/RTU)
int[] modbus_read_int16(

string,
byte,
string,
int,
int,
int
)
Parameters
string TCP/RTU Device Name
byte Slave ID
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address
data to int16 array. *Invalid Parameter. Only support int32, float, double
0 Little Endian
1 Big Endian (Default)
Return
int[] The returned int array from Modbus server
Syntax 2 (TCP/RTU)
int[] modbus_read_int16(
string,
byte,
string,
int,
int
)
Note

Similar to Syntax1 with Big Endian (AB CD) setting
modbus_read_int16("TCP_1", 0, "DI", 7200, 2) => modbus_read_int16("TCP_1", O,
"DI", 7200, 2, 1)
Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as
TCP device 0 DO 800 4
TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (1664) 413

e

TCP device 0 RO 9000 6
TCP device 0 RI 7001 12
TCP device 0 RI 7301 6

value = modbus_read_int16("TCP_1", 0, "DO", 800, 4)
I byte[] ={0,0,0,0} tointl6[] value ={0,0} // byte[0][1], byte[2][3]
value = modbus_read_int16("TCP_1", 0, "DI", 7202, 3)
/I byte[] = {1,0,0} to intl6[] value = {256,0}
I/ byte[O][1] , byte[2][3] // Fill up to [3] automatically
value = modbus_read_int16("TCP_1", 0, "RO", 9000, 6)
I byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}
/ to int16[] value = {21605,25448,28001,28393,-32364,-6504}
value = modbus_read_int16("TCP_1", 0, "RI", 7001, 12)
Il byte[] =
{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/1 to int16[] value = {10544,-24756,-15492,-26214,17502,-4915,17076,0,-32768,0,0,0}
value = modbus_read_int16("TCP_1", 0, "RI", 7301, 6)
I byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}
/ to int16[] value = {2018,5,18,15,49,35}
value = modbus_read_int16("TCP_1", 0, "RI", 7301, 6, 0)
I byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}
/l to int16[] value = {2018,5,18,15,49,35}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 414

e

16.7 modbus_read_int32()
Modbus TCP/RTU read function, and transform Modbus address data array to int32 array

Syntax 1 (TCP/RTU)
int[] modbus_read_int32(

string,
byte,
string,
int,
int,
int
)
Parameters
string TCP/RTU DEVICE NAME
byte Slave ID
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address
data to int32 array.
0 Little Endian
1 Big Endian (Default)
Return
int[] The returned int array from Modbus server
Syntax 2 (TCP/RTU)
int[] modbus_read_int32(
string,
byte,
string,
int,
int
)
Note
Similar to Syntax1 with Big Endian (AB CD) setting.
modbus_read_int32("TCP_1", 0, "DI", 7200, 2) => modbus_read_int32("TCP_1", 0,
"DI", 7200, 2, 1)
Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4
TCP device 0 D] 7202 3
TCP device 0 RO 9000 6

Omron TM Collaborative Robot: TMScript Language Manual (1664) 415

e

TCP device 0 RI 7001 12
TCP device 0 Rl 7301 6

value = modbus_read_int32("TCP_1", 0, "DO", 800, 4)
I/l byte[] ={0,0,0,0} toint32[] value = {0}// byte[0][1][2][3]
value = modbus_read_int32("TCP_1", 0, "DI", 7202, 3)
Il byte[] = {1,0,0} to int32[]] value = {16777216}
[/ byte[O][1][2][3] // Fill up to [3] automatically.
value = modbus_read_int32("TCP_1", 0, "RO", 9000, 6)
/I byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0XxE9,0x81,0x94,0xXE6,0x98}
/I to int32[] value = {1415930728,1835101929,-2120948072}
value = modbus_read_int32("TCP_1", 0, "RI", 7001, 12)
Il byte[] =
{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
I to int32[] value = {691052364,-1015244390,1147071693,1119092736,-2147483648,0}
value = modbus_read_int32("TCP_1", 0, "RI", 7301, 6)
Il byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}
/1 to int32[] value = {132251653,1179663,3211299}
value = modbus_read_int32("TCP_1", 0, "RI", 7301, 6, 0)// byte[2][3][0][1]
I byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}
/I to int32[] value ={0x000507E2,0x000F0012,0x00230031} = {329698,983058,2293809}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 416

e

16.8 modbus_read_float()
Modbus TCP/RTU read function, and transform Modbus address data array to float array

Syntax 1 (TCP/RTU)
float[] modbus_read_float(

string,
byte,
string,
int,
int,
int
)
Parameters
string TCP/RTU DEVICE NAME
byte Slave ID
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address
data to float array.
0 Little Endian
1 Big Endian (Default)
Return
float[] The returned float array from Modbus server
Syntax 2 (TCP/RTU)
float[] modbus_read_float(
string,
byte,
string,
int,
int
)
Note
Similar to Syntax1 with Big Endian (AB CD) setting.
modbus_read_float("TCP_1", 0, "DI", 7200, 2) => modbus_read_float("TCP_1", 0,
"DI", 7200, 2, 1)
Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as
TCP device 0 DO 800 4
TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (1664) 417

e

TCP device 0 RO 9000 6
TCP device 0 RI 7001 12
TCP device 0 RI 7301 6

value = modbus_read_float("TCP_1", 0, "DO", 800, 4)
/l byte[] ={0,0,0,0} tofloat]] value = {0}/ byte[0][1][2][3]
value = modbus_read_float("TCP_1", 0, "DI", 7202, 3)
/I byte[] ={1,0,0} tofloat]] value ={2.350989E-38} // byte[0][1][2][3]
[Fill up to [3] automatically.
value = modbus_read_float("TCP_1", 0, "RO", 9000, 6)
I byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

I/ to float[] value = {3.940861E+12,4.360513E+27,-5.46975E-38}
value = modbus_read_float("TCP_1", 0, "RI", 7001, 12)
I byte[] =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

/1 to float]] value = {3.921802E-14,-252.6,891.7,90,0,0}
value = modbus_read_float("TCP_1", 0, "RI", 7001, 12, 0) /1 byte[2][3][0][1]
/1 to float]] value =

{0x9F4C2930,0x999AC37C,0XECCD445E,0x000042B4,0x00008000,0x00000000}
= {-4.323275E-20,-1.600218E-23,-1.985221E+27,2.392857E-41,4.591775E-
41,0}
value = modbus_read_float("TCP_1", 0, "RI", 7301, 6)
I/ byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x3A,0x00,0x26}
/1 to float]] value = {3.400471E-34,1.65306E-39,5.326512E-39}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 418

e

16.9 modbus_read_double()
Modbus TCP/RTU read function, and transform Modbus address data array to double array.

Syntax 1 (TCP/RTU)
double[] modbus_read_double(

string,
byte,
string,
int,
int,
int
)
Parameters
string TCP/RTU DEVICE NAME
byte Slave ID
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address
data to double array.
0 Little Endian
1 Big Endian (Default)
Return
double[] The returned double array from Modbus server
Syntax 2 (TCP/RTU)
double[] modbus_read_double(
string,
byte,
string,
int,
int
)
Note

Similar to Syntax1 with Big Endian (AB CD) setting.
modbus_read_double("TCP_1", 0, "DI", 7200, 2) => modbus_read_double("TCP_1",
0, "DI", 7200, 2, 1)

Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as
TCP device 0 DO 800 4
TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (1664) 419

e

TCP device 0 RO 9000 6
TCP device 0 RI 7001 12
TCP device 0 RI 7301 6

value = modbus_read_double("TCP_1", 0, "DO", 800, 4)

I/ byte[] = {0,0,0,0} to double[] value = {0}/ byte[0][1][2][3][4][5][6][7]
value = modbus_read_double("TCP_1", 0, "DI", 7202, 3)
I byte[] = {1,0,0} to double[] value = {7.2911220195564E-304}

/' byte[O][1][2][3][4][5]1[6][7]
value = modbus_read_double("TCP_1", 0, "RO", 9000, 6)
I byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}
/I to double[] value = {3.65481260356117E+98,-4.87647898854073E-301}
value = modbus_read_double("TCP_1", 0, "RI", 7001, 12)
/I byte[] =
{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I to double[] value = {2.76472410615396E-110,2.2818627604613E+21,0}
value = modbus_read_double("TCP_1", 0, "RI", 7001, 12, 0) // byte[6][7][4][5][2][3][0][1]
// to double[]] value = {0x999AC37C9F4C2930,0x000042B4ECCD445E,0x0000000000008000}
= {-2.4604103205376E-185,3.62371629877526E-310,1.6189543082926E-319}
value = modbus_read_double("TCP_1", 0, "RI", 7301, 6)
I byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x10,0x00,0x0B,0x00,0x29}
/l to double[] value = {1.06475148078395E-270,1.52982527955113E-308}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 420

e

16.10 modbus_read_string()

Modbus TCP/RTU read function, and convert Modbus address data array to string text in

UTF8

Syntax 1 (TCP/RTU)
string modbus_read_string(

string,
byte,
string,
int,
int,
int
)
Parameters
string TCP/RTU DEVICE NAME
byte Slave ID
string Read type
DO Digital Output (FC 01 Read Coil Status)
DI Digital Input (FC 02 Read Input Status)
RO Register Output (FC 03 Read Holding Registers)
RI Register Input (FC 04 Read Input Registers)
int Starting address
int Data length
int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address
data to string. *Invalid Parameter. Only support int32, float, double. String
follows UTF8 and is sequentially transferred according to address.
0 Little Endian
1 Big Endian (Default)
Return
string The returned UTF8 string from Modbus server (Stop at 0x00)
Syntax 2 (TCP/RTU)
string modbus_read_string(
string,
byte,
string,
int,
int
)
Note

Similar to Syntax1 with Big Endian (AB CD) setting.
modbus_read_string("TCP_1", 0, "RO", 9000, 2) => modbus_read_string("TCP_1",
0, "RO", 9000, 2, 1)

Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

Omron TM Collaborative Robot: TMScript Language Manual (1664) 421

e

TCP device 0 RO 9000 12

modbus_write("TCP_1", 0, "RO", 9000) = "1234 iZRR#lzs F&"
/I Undefined numbers of addresses to write, the default value 0 denotes to write the complete
data length of 22 bytes.
/I Write byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,
0xE6,0x9C,0xBA,0xE5,0x99,0xA8,0xE6,0x89,0x8B,0xE8,0x87,0x82}
value = modbus_read_string("TCP_1", 0, "RO", 9000, 3)
/I byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81} /I RO 3 address = 6 bytes size
/I to string = 1234¢
value = modbus_read_string("TCP_1", 0, "RO", 9000, 6)
I byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,0XE6,0x9C}
/ to string = 1234 ZEfH ¢
value = modbus_read_string("TCP_1", 0, "RO", 9000, 12)
I byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,
0XE6,0x9C,0xBA,0xE5,0x99,0xA8,0xE6,0x89,0x8B,0xE8,0x87,0x82, 0x41,0x42}
Il to string = 1234 ZHAY28 =& AB // UTF8 format conversion
/I The ending, 0x00, will not be included when writing data. When reading 12 addresses, it will
read beyond the range.
modbus_write("TCP_1", 0, "RO", 9000) = "1234"+Ctrl("\0")
/I Write byte[] = {0x31,0x32,0x33,0x34,0x00} /I Needs to write 3 Register address
value = modbus_read_string("TCP_1", 0, "RO", 9000, 5)
I byte[] = {0x31,0x32,0x33,0x34,0x00,0x00, 0x94,0xE6,0x98,0x8E} // The last 4 values are the
original data at those addresses
/I to string = 1234 /I UTF8 format conversion stops at 0x00

Omron TM Collaborative Robot: TMScript Language Manual (1664) 422

e

16.11 modbus_write()

Modbus TCP/RTU write function

Syntax 1 (TCP/RTU)

bool modbus_write(
string,
string,
?,
int
)
Parameters
string TCP/RTU Device Name
string TCP/RTU The predefined parameters belong to TCP/RTU device
? The input data. The predefined parameters will be applied according to the table
below.
Signal Type Function Type Input type Input value
Code
Digital Output | 05 byte byte (H: 1)(L: 0)
bool bool (H: true)(L:
false)
Register 06 byte byte
Output
bool bool
int16 int
Register 16 int32 int
Output
float float
double | double
string string

* int32, float, double will be transferred with Little Endian (CD AB) or Big Endian (AB
CD) according to user’s setting.
* string will be transferred with UTF8 format
* Writing array value is not supported with predefined parameters. To write with the
array value, user defined method should be applied (Syntax 3/4)
int The maximum number of addresses to be write, only effective to string type
data
>0 Valid address length. Write with defined address length
<=0 Invalid address length. Write all the data
When this parameter is skipped (As shown in Syntax2), the predefined address
length will be applied.

Return
bool True Write success
False Write failed 1. If the input data ? is empty string or array
2. If an error occurred in Modbus communication
Syntax 2 (TCP/RTU)
bool modbus_write(
string,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 423

e

string,
?,
)
Note
Similar to Syntax1 with predefined address length to write. If the predefined address
length <= 0, it will write all the data.
Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size
If the user defined values are applied to User Setting as
preset_800 DO 800 bool
preset 9000 RO 9000 string 4
modbus_write("TCP_1", "preset_800", 1) Il write 1 (true)
modbus_write("TCP_1", "preset_800", 0) I/ write O (false)
bool flag = true
modbus_write("TCP_1", "preset_800", flag) // write 1 (true)
modbus_write("TCP_1", "preset_800", false) // write 0 (false)
string ss = "ABCDEFGHIJKLMNOPQRST" // With no number of address, the predefined
address length, 4, is applied. That is 4 RO = 8 bytes size
can be written.
modbus_write("TCP_1", "preset_9000", ss) // write ABCDEFGH // The exceeding part will be
skipped
/' With no number of address, the predefined address
length, 4, is applied. That is 4 RO = 8 bytes size can be
written.
modbus_write("TCP_1", "preset_9000", "1234567") // write 1234567\0 // Use 0x00 to fill up
4 address
/I With address length = 0, write all the data.
"09AB123" needs 4 addresses.
modbus_write("TCP_1", "preset_9000", "09AB123", 0) // write 09AB123\0 // Use 0x00 to
fill up 4 address
/I With address length = 5, write data in 5
addresses. That is 5 RO = 10 bytes size can
be wrote.
modbus_write("TCP_1", "preset_9000", "09AB1234", 5) // write 09AB1234 // The input
data needs only 4 addresses.
Syntax 3 (TCP/RTU)
bool modbus_write(
string,
byte,
string,
int,
?,
int

)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 424

e

Parameters
string TCP/RTU DEVICE NAME
byte Slave ID
string Write type
DO Digital Output (FC 05/15 Write Single/Multiple Coil(s))
RO Register Output (FC 06/16 Write Single/Multiple Register(s))
int Starting address
? Input data
Signal Type Function Input ? type | Input value
Code
Digital Output | 05 byte (H: 1)(L: 0)
bool (H: true)(L:
false)
Digital Output | 15 byte[] (H: 1)(L: 0)
bool[] (H: true)(L:
false)
Register 06 byte
Output
bool
Register 16 int
Output
float
double
string
bytef]
int[]
float([]
double[]
string(]
bool[]
*User defined modbus_write will follows Big-Endian (AB CD) format to write
* Here int means int32. For int16 type data, GetBytes() needs to be applied first
to change int16 to byte]]
int The maximum number of addresses to be write, only effective to string type
data
>0 Valid address length. Write with defined address length
<=0 Invalid address length. Write all the data
Return
bool True Write success
False Write failed 1. If the input data ? is empty string or array
2. If an error occurred in Modbus communication
Syntax 4 (TCP/RTU)
bool modbus_write(
string,
byte,
string,
int,
?

Omron TM Collaborative Robot: TMScript Language Manual (1664)

425

e

)

Note

Similar to Syntax3 with address length <= 0, it will write all the data.
modbus_write("TCP_1", 0, "RO", 9000, bb) => modbus_write("TCP_1", 0, "RO", 9000,
bb, 0)

Modbus Address data size
Digital 1 address = 1 bit size
Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as
TCP device 0 DO 800 4
TCP device 0 RO 9000 12

byte[] bb = {10, 20, 30}
modbus_write("TCP_1", 0, "DO", 800, bb) // write 1,1,1
I/l Zero value, write 0. Non-zero value, write 1.
modbus_write("TCP_1", 0, "DO", 800, bb, 2) // write 1,1
/I Address number = 2, only write 2 addresses.
modbus_write("TCP_1", 0, "DO", 800, true) // write 1
inti= 10000
modbus_write("TCP_1", 0, "RO", 9000, i) // write 0x00,0x00,0x27,0x10
[/ with int32 BigEndian (AB CD) default
bb = GetBytes(i, 0, 1) /I bb = {0x10,0x27}
/I transfer to int16 LittleEndian (CD AB)
modbus_write("TCP_1", 0, "RO", 9000, bb) // write 0x10,0x27
string[] n = {"ABC", "12", "34"}
modbus_write("TCP_1", 0, "RO", 9000, n, 2) // write ABC1
/I Only 2 addresses available, the exceeding values
cannot be applied.
modbus_write("TCP_1", 0, "RQO", 9000, n, 5) Il write ABC12340
/I The data needs 4 addresses (0xAB 0xC1 0x23 -
0x40)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 426

e

17.TM Ethernet Slave

Ethernet Slave comes with functions established with Socket TCP based on the framework of
client/server connections. Once enabled, the robot establishes a Socket TCP Listener Serve to send
the robot status and data to all of the connected clients or receive the contents from the clients to
execute the respective instructions and update the respective information periodically and promptly
without the real-time guarantee.

Like the Modbus Slave, the Ethernet Slave will automatically start on its own after power cycling
if it was previously set to Enable. The established |IP and Port will be shown in the notice window.

IP TMflow > System - Network - |IP Address
Port 5891
17.1 GUI Setting
Modbus Slave v Status Enable

IP Filter:

Enable/Disable Enable or disable Ethernet Slave
IP Filter IP whitelist

Write

Sets ranges for eligible IP addresses that are allowed to connect to the Ethernet
Slave. If nofilters are set, all devices on the network can connect to the Ethernet
Slave.

If checked, allows devices within the corresponding IP range to write to the

Permission Ethernet Server with TMSVR commands.

For example, setting IP Filter.

Group 1 192.168.1.100 ~ 200 denotes IP 192.168.1.100, 192.168.1.101, ... , and
192.168.1.200 are available for connections.
Group 2 192.168.2.100 ~ 200 denotes IP 192.168.2.100, 192.168.2.101, ... , and

192.168.2.200 are available for connections.
If the IP address of the client is not in the range of the IPs listed above, it rejects the client

to connect.

Group 1, 192.168.1.100 ~ 200, has permission to write, so clients connecting within this
group range sending data to Ethernet Slave makes Ethernet Slave write data. Group 2,
192.168.2.100 ~ 200, does not have permission to write. When sending data to Ethernet
Slave, it does not write data and will respond with the error code of write permission.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 427

e

17.2 Data Table

Users can use the items listed the Data Table to customize the required data content as well
as configure the communication protocol to transmit between the Ethernet Slave and clients,
and save the settings as a communication file. When the Ethernet Slave is enabled, the data
items in the communication file will be established with the relevant data content to the item to
send to the connected clients periodically (no real-time guarantee). The types of the data
format is defined by the settings in the communication file. The client can send data to the
server with any type of the supported data formats.
In the protocol, the types of the supported data format are:

BINARY Binary format, converse in Byte array (Little Endian / UTF8)

STRING String format, similar to the external command format

JSON JSON string format

Transmit File (Data Table)
ltem Descri ption Data Type Dz Setting Transmit File Name Communicate Mode

Get_UI_Control Get Ul Control or Not bool 1 TransTable STRING N

Get_Control Get Ul Control or Not bool 1
Item Description Data Type

Robot_Error Error or Not bool 1
TCP_Value TCP Value float

Error_Code Last Error Code int 1
>> Ctrl_DOO0 Digital Output 0 byte

Error_Time Last Error Time string 1
Ctrl_DO1 Digital Output 1 byte

Camera, _Light Light byte 1
g_ss string[]

Project_ Speed Project Running Speed byte 1

The configuration interface is a left-to-right mechanism. Users can add items at the left to the
communication data table at the right and adjust the arrangement order of each item in the
communication data table at the right. In the content to send, there will always be an
item, Robot_Link, predefined in Ethernet Slave as a type of byte with the attribute of read-only to
denote whether to connect to the robot.

1. Predefined
Items and settings in this section are defined by TMflow, and the data content of the items is
updated by TMflow. The defined items are the general statuses of the robot, such as the
coordinates of the robot, the state of the project, the state of the electrical control box, or the
10 related statuses, such as digital input / digital output, analog input / analog output.

2. User defined
Items and settings in this section are defined by TMflow users for project programs to read /
write item data through the Expression Editor or for external users to read / write item data
through the TMSVR commands over a TCP/IP connection. With the user defined tab, the
project programs can work with external communication devices as a data exchange protocol.
The item list in the user-defined tab can be saved as a custom-defined fil to be edited or
exchanged data in the future.

3. Global Variable
In the global variable tab, the variable list created by the TMflow users provides a way to directly
use the variable name for read / write operations in the project programming, and the external
communication devices can read / write global variables with the communication protocol.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 428

e

4. TransmitFile

When the Ethernet Slave starts up, it will create the data content of the associated item by the
list of items in the selected communication file and send the content to the connected client
according to a fixed cycle. The Data section format will follow the specifications defined in the
communication file. The Ext?_DO_Mask and Ext?_AO_Mask in the Predefined System
Definition Area are primarily used by the client to transmit data to the server along with their
associated Ext?_DO and Ext?_AO. Since they are intended solely for client-to-server
communication, Ext?_ DO_Mask and Ext? AO_Mask are not in the periodic communication
data table.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 429

e

17.3 Communication Protocol

Start Byte Hdr Len Data Checksum | End Byte1 End Byte2

$ Header , Length , Data , * Checksum \r \n
mR of these Bytes)

Name Size | ASCII | HEX Description

Start Byte 1 $ 0x24 Start Byte for Communication

Header X Header for Communication

Separator 1 , 0x2C Separator between Header and Length

Length Y Length of Data

Separator 1 , 0x2C Separator between Length and Data

Data Z Communication Data

Separator 1 , 0x2C Separator between Data and Checksum

Sign 1 * 0x2A Begin Sign of Checksum

Checksum 2 Checksum of Communication

End Byte 1 1 \r 0x0D

End Byte 2 1 \n 0x0A End Byte of Communication

*Using the same communication protocol with external commands.
1. Header

Defines the purpose of communication packets. Different headers come with different
definitions of communication packets and data.

® TMSVR Defines the function of TM Ethernet Slave
® CPERR Defines the errors of the communication packets such as packer errors, checksum
errors, header errors, and so on.
*Using the same content definitions with CPERR in external commands.

2. Length

The length indicates the length in the UTF8 bytes occupied by Data. Users can use decimal,

hexadecimal, or binary format. The maximum length is 32 bits.

For example,
$TMSVR,100,Data,*CS\r\n /1 100 in decimal indicates the data length is 100 bytes
$TMSVR,0x100,Data,*CS\r\n // 0x100 in hexadecimal indicates the data length is 256 bytes
$TMSVR,0b100,Data,*CS\r\n // 0b100 in binary indicates the data length is 4 bytes
$TMSVR,8,1,2Z05,*CS\r\n /l indicates the length of Data, 1,%FR, is 8 bytes (UTF8)

3. Data
The content of the communication packet can support any character (including 0x00 .. OxFF and
uses UTF8 encoding), and the data length is determined by Length. The purpose and description

defined in Data must be defined by the header.

4. Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 430

e

The checksum of the communication packet. The calculation method is XOR (exclusive OR).

The calculation range is all Bytes between $ and * (excluding $ and *) as shown below.
$TMSVR, 100,Data*CS\r\n

Checksum = Byte[1] A Byte[2] ... * Byte[N-6]

The checksum format is set to 2 bytes in hexadecimal (but not 0x), such as
$TMSVR,5,10,0K *7E

CS = 0x54 » 0x4D " 0x53 * 0x56 * 0x52 * 0x2C * 0x35 * 0x2C » 0x31 A 0x30 * 0x2C ~ Ox4F A

0x4B * 0x2C = Ox7E

CS = 7E (0x37 0x45)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 431

e,

17.4 TMSVR
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ TMSVR , Length , Data , * Checksum \r \n

ID Mode Content
0/1/2/3/
11/12/13

Transaction ID , , Iltem and Value

TMSVR is defined as the TM Ethernet Slave protocol. The Data section of the packet is further
divided into three segments, ID (Transaction ID), Mode (Content Mode), and Content (Item and
Value), separated with commas and described below.
ID The transaction number expressed in any alphanumeric characters. (Reports the
CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a
communication packet response, it is a transaction number that identifies which
group of commands to respond.
, the symbol to separate
Mode The mode as the format of the data content
0 Indicates the server responds to the client command in string format.
1 Indicates the content data type in binary format
2 Indicates the content data type in string format
3 Indicates the content data type in JSON format
11 Indicates the content data type in binary format (Request read)
12 Indicates the content data type in string format (Request read)
13 Indicates the content data type in JSON format (Request read)
® 1/2/3 are for client write to server and client read from server. The client read
from server is that the server sends contents to the connected client
periodically.
® 11/12/13 are for client read from server with request read, which is the client
sends read request for the item and the server responds with the item value
to the client.
, the symbol to separate
Content The data content. Formatted by the mode definition.

Note

TMSVR command is for the client and the server to communicate in both directions. Under
normal circumstances, the server will broadcast the data items from the Transmit and User
Defined communication files to the connected clients periodically. When the server sends to
the client, the data is sent to the client to read from the server with no response to the server
required. When the client sends to the server, the data is received by the server from the client
to write with response to the client required.

® |D Transaction Number

When the server sends data, cycles from 0 to 9 with each iteration. When the client sends
data to the server, the transaction number can be in any alphanumeric characters customized
at the client side. If the communication packet format is checked and correct , the server will

reply the client with the command processing status by the transaction number in the packet.

® Mode Format and Mode for the Data Content
When the Mode is 1/2/3, it can be the function of client write to server or client read from

Omron TM Collaborative Robot: TMScript Language Manual (1664) 432

e

server, in which client read from server means the server sends content to the connected client
periodically. If client write to server, it means the clients sends data writing to the server. When
the client sends an item to write, not only can one item be written, but multiple items at a time,
and the server will send the command processing status according to the format of Mode 0.

When the Mode is 11/12/13, the request read method is used. The client sends an item
request and the server responds to the item value. The purpose is to get the other item data
not in the communication data table sent periodically. When the client sends a request to read,
not only can one item be retrieved, but multiple items at a time. When the request succeeds,
the server will send the item value to the client associated to the format of Mode 11/12/13.
However, if the request fails, for example, the item name does not exist, the server will send
the command processing status according to the format of Mode 0.

Whether data to write or request to read, the items can be all in the Predefined area but
not limited to saving in the data table. However, in the Userdefined area and the GlobalVariable
area, for the sake of custom definitions, it still need to be saved in the data table to proceed
with writing or reading.

® Writing or Reading Confirmation

When the client sends data writing or reading requests to the server, no matter what format
the data table used to proceed sending periodically, the servers supports to the data format of
Mode 1/2/3/11/12/13 concurrently and checks whether all the criteria are correct before
performing the request. If there is any error with the write command, no request will be
performed. The criteria to write for inspection are:

The validity of the mode as the format of the data content

The connected client's write permissions based on the IP Filter.
The data content matches to the mode.

The item to write or read exists.

The attribute of the item to write is not read only.

The robot is in the appropriate mode (M/A).

The written data matches the data type of each item.

NoookwbdPRE

17.4.1 Mode =0 (the status the server responds to the client command
processing)
After the server receives and processes a write command from a client, it will respond with
another TMSVR command with Mode 0. The details for Mode 0 are as follows.

Data
ID Mode Error Code Error Description
Transaction , 0 , 00 ..07 ,
ID
Transaction ID Defined while the client sends the command for the server to reply with.
Mode 0 for the server to respond to the client
Error Code Error code definitions. Fixed as 2 bytes and in hexadecimal (but not 0x)
00 Correct writing. No error.
01 The communication format or mode is not supported. (Ex. Mode =

Omron TM Collaborative Robot: TMScript Language Manual (1664) 433

99)

02 The connected client is not permitted to write. (IP filer without write

permission)

03 The communication format and the data content format are

mismatched.

(Ex. Mode = 3, but the data content is not in JSON format)

04 Item to write or read does not exist.

05 Unable to write to read-only items.

06 Incorrect M/A mode while writing.

07 Values to write mismatches with the configured type or the size.
Error Description Error description, following the error code.

00 OK

01 NotSupport

02 WritePermission

03 InvalidData

04 NotExist; XXX /I ;XXX denotes which data item

05 ReadOnly; XXX

06 ModeError; XXX

07 ValueError; XXX

< $TMSVR,15,50,2,Ctrl_DO0=1,*76\r\n // transaction ID SO, string format, set Ctrl_DO0=1
> $TMSVR,10,50,0,00,0K,*18\r\n

/I server responds transaction ID SO, mode 0, error code 00, correct writing

< $TMSVR,16,51,99,Ctrl_DOO0=1,*46\r\n // transaction ID S1, mode 99

> $TMSVR,18,51,0,01,NotSupport,*0E\r\n
/I server responds transaction ID S1, mode O, error code 01, mode not
support

< $TMSVR,15,S2,2,Ctrl_DO0=1,*74\r\n // transaction ID S2, string format, set Ctrl_DO0=1

> $TMSVR,23,52,0,02,WritePermission,*6A\r\n
/I server responds transaction ID S2, mode 0, error code 02, the connected client is not granted with
write permission.

< $TMSVR,15,S3,3,Ctrl_DO0=1,*74\r\n // transaction ID S3, JSON format, set Ctr_DO0=1
> $TMSVR,19,53,0,03,InvalidData,*74\r\n

/I server responds transaction ID S3, mode 0, error code 03, JSON format, data format (JSON)
mismatched with the content data format (STRING)

< $TMSVR,16,54,2,Ctrl_DO32=1,*40\r\n // transaction ID S4, string format, set Ctr_DO32=1
> $TMSVR,26,54,0,04,NotExist;Ctrl_DO32,*58\r\n
/I server responds transaction ID S4, mode 0, error ode 04, item Ctrl_DO32 does not exist.

< $TMSVR,17,S5,2,Robot_Link=1,*07\r\n
/I transaction ID S5, string format, set Robot_Link=1
> $TMSVR,27,55,0,05,ReadOnly;Robot_Link,*1E\r\n

/I server responds transaction ID S5, mode 0, error code 05, the item Robot_Link is read only.
Supposed the user defined ltem: adata, Type: int, Size: 4, and Write: Auto.

< $TMSVR,20,56,2,adata={1,2,3,4},*55\r\n
/ transaction ID S6, string format, set adata={1,2,3,4}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 434

e

<
>

$TMSVR,23,56,0,06,ModeError;adata,*2D\r\n
/I server responds transaction ID S6, mode 0, error code 06, M/A mode mismatched while writing
(suppose it Manual Mode while writing).

$TMSVR,18,57,2,adata={1,2,3},*47\r\n // transaction ID S7, string format, set adata={1,2,3}
$TMSVR,24,57,0,07,ValueError;adata,*42\r\n

/I server responds transaction ID S7, mode O, error code 07, writing values and data size or type
mismatched. (the configured size is 4, but there is only 3 to write.)

17.4.2 Mode = 1 BINARY

The data content is transmitted in binary mode by converting the data item name with the Little
Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

Data
2 Mode Content
Transaction | 1 ; ltem and Value
ID
Length of Item tem | Lengthof Value ~ Value
2 bytes Little Endian | UTFg | 2 Pytes Littie Little Endian /
Endian UTFS8

Length of ltem 2 bytes in Little Endian, value from 0 to 65535 indicating the length of
the item that follows

Item

item name

Length of Value 2 bytes in Little Endian), value from 0 to 65535 indicating the length of
the data value that follows

Value

data value

Suppose taking Check TCP_Value float[] and Ctrl_DOO byte as the communication data and
transmitting in binary mode.

Transmit File (Data Table)
ftem Description Data Type Setting Transmit File Name Communicate Mode

Get_UI_Control Get Ul Control or Not bool

Get_Control Get Ul Control or Not bool

<

tem Description DataType Datale

Robat_Error Error or Not bool
TCP Value TCP Value float 6

Error_Code Last Error Code int
> culooo Digital Output 0 byte

24 54 4D 53 56 52 2C Il $STMSVR, Il Header
36 39 2C I 69, /I Length
30 2C 3712C 10,1, /l transaction ID 0, mode 1, binary

OA 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0

/I The name occupied 10 bytes, the value, 1 byte

09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD
CCCCi3bCcbcCcC4C3ECDCCCC3D // TCP_Value={1,1,1,0.1,0.2,0.1}

/I The name occupied 9 bytes, the value, 24 bytes

08 00 43 74 72 6C 5F 44 4F 30 01 00 00 /I Ctrl_DO0=0

/I The name occupied 8 bytes, the value, 1 byte

2C 2A 39 36 0D 0A /' *96\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 435

e

>

24 54 4D 53 56 52 2C Il $STMSVR, Il Header

3138 2C /118, /I Length

54 31 2C 31 2C T1,1, /l transaction ID T1, mode 1, binary
0800437472 6C 5F 44 4F 30 01 00 01 /I Ctrl_DO0=1

/I The name occupied 8 bytes, the value, 1 byte

2C 2A 37 41 0D OA 11 *7TA\NN /I Checksum
$TMSVR,10,T1,0,00,0K,*1E\r\n

/I server responds to ID T1, mode 1, error code 00, correct writing

Once the data type of the item to send is string [], two bytes, 0x00 0x00, are inserted between
the string elements as the separators.

>

24 54 4D 53 56 52 2C /I $TMSVR, /[Header
39 30 2C 11 90, /I Length
30 2C 312C 10,1 // transaction ID 0, mode 1, binary
0A 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0
/IThe name occupied 10 bytes, the value, 1 byte
09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD
cccc3bcCcbcCc4C3ECD CCcC3b /l TCP_Value={1,1,1,0.1,0.2,0.1}
/IThe name occupied 9 bytes, the value, 24 bytes
08 00 43 74 72 6C 5F 44 4F 30 01 00 01 Il Ctrl_DO0=1
/I The name occupied 8 bytes, the value, 1 byte
04 00 67 5F 73 73 0D 00 48 69 00 00 54 4D 00 00 52 6F 62 6F 74
/I g_ss={"Hi","TM","Robot"}
/I The name occupied 4 bytes, the value, 13 bytes

2C 2A 44 43 0D 0A /I *DC\r\n // Checksum

Also, if the data type of the item to receive is string [], when converting to a byte array, two bytes,
00 00, are inserted between the string elements as the separators.

24 54 4D 53 56 52 2C /I $TMSVR, // Header
32352C Il 25, Il Length
54 32 2C 31 2C T2, /l transaction ID T2, mode 1, binary
04 00 67 5F 73 73 0C 00 48 65 6C 6C 6F 00 00 57 6F 72 6C 64

/I g_ss={"Hello", "World"} // The name occupied 4 bytes, the value, 12 bytes
2C 2A 3032 0D 0OA //,*02\r\n /I Checksum
$TMSVR,10,72,0,00,0K,*1D\r\n

/Iserver responds to ID T2, mode O, error code 00, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 436

e

17.4.3 Mode = 2 STRING

The data content is transmitted as a string with the name and value of the data item in the Script
string of an external command. The format is shown as below.

Data
ID Mode Content
Transaction ID 5 2 s Iltem and Value
| Item | = | Value | \win]

Item item name

= equal

Value data value

\r\n symbol of carriage return as required if there is an item up next for separation.

Suppose taking Check TCP_Value float[] and Ctrl_DOO byte, Ctrl_ DO1 byte, g_ss string[] as
the communication data and transmitting in string mode.

Transmit File (Data Table)

ftem Description Data Type Dz Setting Transmit File Name Communicate Mode

Get_Ul_Control Get Ul Control or Not bool 1 TransTable STRING v
Get_Control Get Ul Control or Not bool 1

Item Description Data Type Data L¢
Robot_Error Error or Not bool 1

TCP_Value TCP Value float 6
Error_Code Last Error Code int 1

» Cirl_DOO Digital Output 0 byte 1

Error_Time Last Error Time string 1

Ctrl_DO1 Digital Qutput 1 byte 1
Camera_Light Light byte 1

g._ss string[] 0

> $TMSVR,97,9,2,Robot_Link=0\r\n // Robot_Link=0// transaction ID 9, mode 2, string
TCP_Value={1,1,1,0.1,0.2,0.1}\\n // TCP_Value={1,1,1,0.1,0.2,0.1}
Ctrl_DOO0=1\r\n /I Ctrl_DO0=1
Ctrl_DO1=0\r\n /I Ctrl_DO1=0
g_ss={"Hi","TM","Robot"},*77\r\n // g_ss={"Hi","TM","Robot"}

< $TMSVR,15,72,2,Ctrl_ DOO=0\r\n // set Ctrl DO0=0 // transaction ID T2, mode 2, string
Ctrl_DO1=1,*34\r\n Il set Ctrl_DO1=1
> $TMSVR,10,72,0,00,0K,*1D\r\n

/I server responds to ID T2, mode O, error code 00, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 437

e

17.4.4 Mode = 3 JSON

The data content is transmitted as a JSON string with the name and value of the data item
serialized in the JSON format as shown below.

Data
ID Mode Content
Transaction , 3 , Iltem and Value
ID \
. public class TMSVRJsonData
ltem item name {
Value data value

public string Item;
public object Value;
}

*[] array is in use when it comes it multiple items.

Suppose taking TCP_Value float[] and Ctrl_ DOO byte, Ctrl_ DO1 byte, g_ss string[] as the
communication data and transmitting in JSON mode.

Transmit File (Data Table)

ftem Description Data Type Dz Setting Transmit File Name Communicate Mode
Get_Ul_Control Get Ul Control or Not bool 1 TransTable JSON v
Get_Control Get Ul Control or Not bool 1

Item Description Data Type Data Le
Robot_Error Error or Not bool 1

TCP_Value TCP Value float 6
Error_Code Last Error Code int 1

>> Ctrl_DOO Digital Output 0 byte 1

Error_Time Last Error Time string 1

Ctrl_DO1 Digital Output 1 byte 1
Camera _Light Light byte 1

g_ss string[] 0

" nn H nmn ", H -
> $TMSVR,196,5,3,[{"ltem":"Robot_Link","Value":0}, /I Robot_Link=0

/I transaction ID 5, mode 3, JSON
{"ltem™:"TCP_Value","Value":[1.0,1.0,1.0,0.1,0.2,0.1]},
/l TCP_Value={1,1,1,0.1,0.2,0.1}
{"ltem":"Ctrl_DOO0","Value":0}, /I Ctrl_DO0=0
{"ltem":"Ctrl_DO1","Value":0}, /I Ctrl_DO1=0
{"ltem™:"g_ss","Value":["Hi","TM","Robot"]}],*3A\r\n
Il g_ss={"Hi","TM","Robot"}

< $TMSVR,113,T9,3,[{"lItem":"Ctrl_DOOQ","Value":1}, // Ctrl_DO0=1
{"ltem™":"Ctrl_DO1","Value":0}, /I Ctrl_DO1=0
{"ltem":"g_ss","Value":["Hello","TM","Robot"]}],*7C\r\n
Il g_ss={"Hello","TM","Robot"}

> $TMSVR,10,79,0,00,0K,*16\r\n

/I server responds to ID T9, mode O, error code 0O, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 438

e

17.4.5 Mode = 11 BINARY (Request read)

The data content is transmitted in binary mode by converting the data item name with the Little
Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

Data (client to server)

ID Mode Content
Transaction , 11 , Item
ID

The difference of the read
request from Mode = 1 is no
value required.

Length of Item Item
2 bytes Little Endian | UTF8

Length of ltem 2 bytes in Little Endian, value from 0 to 65535 indicating the length of
the item that follows
ltem ltem name

Suppose taking TCP_Value float[] and Ctrl DOO byte as the communication data and
transmitting in binary mode.

Transmit File (Data Table)

Item Description Data Type tting Transmit File Name Communicate Mode

Get_Control Get Ul Control or Not bool

D
Get_UI_Control Get Ul Control or Not baol 1 BINARY W
1
tem Description DataType Datale
3

Robat_Error Error or Not bool
TCP Value TCP Value float 6

Error_Code Last Error Code int
> culooo Digital Output 0 byte

server periodical delivery

> 24 54 4D 53 56 52 2C // $TMSVR, / Header
36 39 2C 11 69, /I Length
30 2C 312C /10,1, // transaction ID 0, mode 1, binary

OA 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0

/I The name occupied 10 bytes, the value, 1 byte

09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD
cccc3bcCcbcc4C3ECD CCcC3b /I TCP_Value={1,1,1,0.1,0.2,0.1}

/I The name occupied 9 bytes, the value, 24 bytes

08 00 4374 72 6C 5F 44 4F 30 01 00 00 /I Ctrl_DO0=0

/I The name occupied 8 bytes, the value, 1 byte

2C 2A 39 36 0D OA I *96\n\n // Checksum

client requested to read
< 24544D 535652 2C /I $TMSVR, // Header

3236 2C Il 26, Il Length

51312C 31 312C /1 Q1,11, // transaction ID Q1, mode 11 binary (Request read)
0800437472 6C 5F 44 4F 30 /[Ctrl_DOO /I The name occupied 8 bytes

08 00 54 43 50 5F 4D 61 7373 /I TCP_Mass // The name occupied 8 bytes

2C 2A 37 46 0D OA /1 *7TF\n\n /I Checksum

server replied with the item value
> 2454 4D 53 56 52 2C /I $TMSVR, // Header
33352C I 35, /I Length

Omron TM Collaborative Robot: TMScript Language Manual (1664) 439

e

51312C 37 312C 11 Q1,11, Il server responds to ID Q1, mode 11 binary
08 00 4374 72 6C 5F 44 4F 30 01 00 00
/I Ctrl_DOO0=0 // The name occupied 8 bytes, the value, 1 byte
08 00 54 43 50 5F 4D 61 73 73 04 00 00 00 00 00
/I TCP_Mass=0 // The name occupied 8 bytes, the value, 4 byte
2C 2A 37 38 0D OA Il *78\n\n /I Checksum
* server replied the same content format as Mode = 1 BINARY

client requested to read
< 2454 4D 5356 52 2C /I $TMSVR, // Header

32 36 2C Il 26, /I Length

51322C 31 312C 11 Q2,11, /l transaction ID Q1, mode 11 binary (Request read)
0800437472 6C 5F 44 4F 30 /I Ctrl_DOO0 /I The name occupied 8 bytes

08 00 54 43 50 5F 4D 61 58 58 /[l TCP_MaXX // The name occupied 8 bytes

2C 2A 37 43 0D OA Il ¥7C\r\n /I Checksum

server replied with the item value
> $TMSVR,25,Q2,0,04,NotExist; TCP_MaXX,*17\r\n
/I server responds to ID Q2, mode 0, error code 04, item not existed

Omron TM Collaborative Robot: TMScript Language Manual (1664) 440

e

17.4.6 Mode = 12 STRING (Request read)

The data content is transmitted as a string with the name and value of the data item in the Script
string of an external command. The format is shown as below.

Data (client to server)

ID Mode Content
Transaction , 12 , Item and Value
ID
Item \r\n No \{alue
required.
ltem Item name
\r\n The newline characters. Required only as a delimiter if the next item comes.

Suppose taking TCP_Value float[] and Ctrl_ DOO byte, Ctrl_ DO1 byte, g_ss string[] as the
communication data and transmitting in STRING mode.

Transmit File (Data Table)

Item Descri ption Data Type
Get_Ul_Control Get Ul Control or Not bool
Get_Control Get Ul Control or Not bool
Robot_Error Error or Not bool
Error_Code Last Error Code int
Error_Time Last Error Time string
Camera Light Light byte

server periodical delivery

> $TMSVR,97,9,2,Robot_Link=0\r\n
TCP_Value={1,1,1,0.1,0.2,0.1)\r\n

Ctrl_DOO0=1\r\n
Ctrl_DO1=0\r\n

g_ss={"Hi","TM","Robot"},*77\r\n

client requested to read

Dz

»

Setting Transmit File Name

TransTable

Item

TCP_Value

Ctrl_DOO

Ctrl_DO1

g_ss

Description
TCP Value
Digital Output 0

Digital Qutput 1

/l Robot_Link=0
// TCP_Value={1,1,1,0.1,0.2,0.1}

/I Ctrl_DOO0=1
/I Ctr_DO1=0

< $TMSVR,28,02,12,Robot_Link\r\n // Item Robot_Link
/ transaction ID Q2, mode 12 JSON (Request read)
/I ltem TCP_Mass

TCP_Mass,*0E\r\n
server replied with the item value

> $TMSVR,30,Q02,12,Robot_Link=0\r\n

TCP_Mass=0,*09\r\n

STRING v
Data Type Data L¢
float 6
byte 1
byte 1
string[] 0

/I transaction ID 9, mode 2

Il g_ss={"Hi","TM" "Robot"}

/I server responds to ID Q2, mode 12

* server replied the same content format as Mode = 2 STRING

Omron TM Collaborative Robot: TMScript Language Manual (1664)

441

e

17.4.7 Mode = 13 JSON (Request

read)

The data content is transmitted as a JSON string with the name and value of the data item
serialized in the JSON format as shown below.

Data (client to server)

AN

ID Mode Content
Transaction , 13 , Item and Value
ID
public class TMSVRJsonData
Iltem Item name {
Value Data value

public string Item;
public object Value;
}

* [] array is in use when it comes it multiple items.
* Shared with Mode = 3 JSON for using the same class for serialization / deserialization, but

the Value attribute may not exist

Suppose taking TCP_Value float[] and Ctrl_DOO byte, Ctrl_DO1 byte, g_ss string[] as the
communication data and transmitting in JSON mode.

Transmit File (Data Table)

ftem Description Data Type Dz Setting Transmit File Name
Get_Ul_Control Get Ul Control or Not bool 1 TransTable
Get_Control Get Ul Control or Not bool 1

Item Description
Robot_Error Error or Not bool 1

TCP_Value TCP Value
Error_Code Last Error Code int 1

>> Ctrl_DOO Digital Output 0

Error_Time Last Error Time string 1

Ctrl_DO1 Digital Output 1
Camera _Light Light byte 1

server periodical delivery

g_ss

> $TMSVR,196,5,3,[{"ltem":"Robot_Link","Value":0},

/I transaction ID 5, mode 3

Communicate Mode

JSON v

Data Type Data Le
float 6
byte 1
byte 1

string[] 0

/I Robot_Link=0

{"ltem":"TCP_Value","Value":[1.0,1.0,1.0,0.1,0.2,0.1]}, // TCP_Value={1,1,1,0.1,0.2,0.1}

{"ltem™:"Ctrl_DOQ","Value":0},
{"ltem":"Ctrl_DO1","Value":0},

{"ltem™:"g_ss","Value":["Hi","TM","Robot"]}],*3A\r\n

client requested to read

< $TMSVR,27,Q3,13,[{"ltem":

"TCP_Mass"}],*3C\r\n

/I Ctrl_DO0=0
/I Ctrl_DO1=0
/' g_ss={"Hi","TM","Robot"}

/I transaction ID Q3, mode 13 JSON (Request

read)

server replied with the item value

> $TMSVR,39,Q3,13,[{"ltem":"TCP_Mass","Value":0.0}],*40\r\n

/I server responds to ID Q3, mode 13

* server replied the same content format as Mode = 3 JSON

Omron TM Collaborative Robot: TMScript Language Manual (1664)

442

e

17.5

svr_read()

Read the item value in the communication data table of Ethernet Slave in the Connection Tab
of Robot Setting at the local host.

Syntax 1
? svr_read(

)

string

Parameter

string ltem name

Return

? Return value by set data type

Note

Suppose taking TCP_Value float[], Ctrl_DOO byte, Ctrl_DO1 byte, and g_ss string[] as the
communication data table.

Transmit File (Data Table)

Item Description Data Type De Setting Transmit File Name Communicate Mode

Get_Ul_Control Get Ul Control or Not bool 1 TransTable STRING v
Get_Control Get Ul Control or Not bool 1
Item Description Data Type Data L¢
Robot_Error Error or Not bool 1
TCP_Value TCP Value float 6
Error_Code Last Error Code int 1 >> - S— - .
Error_Time Last Error Time string 1
Ctrl_DO1 Digital Output 1 byte 1
Camera_Light Light byte 1
g.ss string[] 0
float[] fvaO= svr_read("TCP_Value") /1{1,1,1,0.1,0.2,0.1}
byte b0 = svr_read("Ctrl_DOQ") 110
byte b1 = svr_read("Ctrl_DO1") N1
string[]ss = svr_read("g_ss") /1 {"Hi","TM","Robot"}
SS =(Qg_sSS /I make the variable to take, g_ss, a variable name directly

byte st = svr_read("Robot_Link") // 0 (Robot disconnected) 1 (Robot connected)

float[] fval = svr_read("TCP_Value") // Report error. Suppose Ethernet Slave is not launched.
float[] fva2 = svr_read("TCP_Value1") // Report error. ltem name TCP_Valuel does not exist.

float[] fva3 = svr_read("g_ff") /I Report error.. Item name g_ff does not exist in the
communication table.

/l'If g_ff is assumed to exist among the global variables, it cannot be accessed because not it does not load

all global variables.

float[] fva4 = svr_read("Coord_Base_Flange") //{0.01,-252.6,891.7,90,0,0}

/I Although added as the communication data, it's accessible for item name Coord_Base_Flange is in the

system definitions.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 443

e

17.6 svr_write()

Write the item value into the communication data table of Ethernet Slave in the Connection Tab
of Robot Setting at the local host.

Syntax 1
bool svr_write(
string,
?
)
Parameters
string ltem name
? Item value
Return
bool True Write successfully
False Write failed Possible causes
1. Iltem name does not exist.
2. Unable to write the read-only item name.
3. Item value to write mismatched with item data type.
Note
Suppose taking TCP_Value float[], Ctrl_DOO byte, Ctrl_DO1 byte, and g_ss string[] in the
communication data table.

Transmit File (Data Table)
ftem Description Data Type D¢ Setting Transmit File Name Communicate Mode

Get_Ul_Control Get Ul Control or Not bool 1

TransTable STRING v
Get_Control Get Ul Control or Not bool 1
Item Description Data Type Data Le
Robot_Error Error or Not bool 1
TCP_Value TCP Value float 6
Error_Code Last Error Code int 1
> Ctrl_DOO Digital Output 0 byte 1
Error_Time Last Error Time string 1
Ctrl_DO1 Digital Output 1 byte 1
Camera _Light Light byte 1
g.ss string[] 0

float[] tvalue = {1,2,3,0.1,0.2,0.3}

bool flag = false

flag = svr_write("TCP_Value", tvalue) // flag =false read-only, invalid process (not an error)
flag = svr_write("Ctrl_DOO0", 1) Il flag = true , Ctrl_DOO =1

flag = svr_write("Ctrl_DO1", 0) Il flag = true , Ctrl_DO1 =10

flag = svr_write("TCP_Value", tvalue) // Error. Suppose Ethernet Slave is not launched.

flag = svr_write("TCP_Value1", tvalue) // Error. Item name TCP_Valuel does not exist.

flag = svr_write("Ctrl_DOO0", "True") /I Error. Item name Ctrl_DOO writes value as string (the
data type is set to byte)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 444

e

18.Profinet Functions

The robot communicates with external controllers via the Profinet communication protocol. In
the mechanism of the Profinet communication protocol, the robot works as a Profinet |O device for
external devices to read and write the robot data. Meanwhile, TMflow monitors the table of data
receiving from external devices and the table of data sending to external devices with Profinet
functions as well as changes the custom definition section in the table of data sending to external
devices.

Communication Data Table
The data table is composed of the input data and the output data. Input Data Table is for
external devices posting on the robot, and Output Data Table is for the robot sending to
external devices. Both of the data tables come with System Definition Section and
Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data
contents are updated by the robot or external devices. The defined items are robot status
relevant such as robot bases, project status, control box status, or input/output status
relevant such as digital I/Os and analog I/Os. Users can use Profinet functions to read
the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data
contents are updated by users or external devices. In the meantime of the project editing,
users can use Profinet functions to read and write the output data table in the custom
definition section or read input data table in the custom definition section as well as use
the custom definition section as a data exchange register between the project and
external devices.

Communication
Data Table Data TMflow Profinet External Device
(at the robot’s | Section Function Permissions | Permissions
viewpoint)
System
Definition Read Write
Input Data Section
Table Custom
Definition Read Write
Section
System
Definition Read Read
Output Data Section
Table Custom
Definition Read/Write Read
Section

Omron TM Collaborative Robot: TMScript Language Manual (1664) 445

e

18.1 profinet_read_input()

Read the input table content.

Syntax 1
byte[] profinet_read_input(
int,
int
)
Parameters
int Starting address
int The address amount to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = profinet_read_input(148,16)
/1 {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

Syntax 2
byte profinet_read_input(
int,
)
Parameters
int Starting address
Return
byte Return data in byte.
Note
byte var_b = profinet_read_input(148)
/1 0x30
Syntax 3
? profinet_read_input(
string,
int,
int
)
Parameters
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Syntax 4
? profinet_read_input(
string,
int,
)
Parameters

Omron TM Collaborative Robot: TMScript Language Manual (1664) 446

e

string ltem name

int The starting shifted address of the item
Return
? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string
Note
* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5
? profinet_read_input(
string
)
Parameter
string ltem name
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = profinet_read_input("StickStatus",0,1)
/1 0x02

var_b = profinet_read_input("StickStatus",0)
/1 0x02

var_b = profinet_read_input("StickStatus")
/1 0x02

byte[] var_ba = profinet_read_input("CtriBox_D0",0,2)
/1 {0x00,0x04}

var_ba = profinet_read_input("CtrIBox_DQO")
/1 {0x00,0x04}

int[] var_ia = profinet_read_input("Register_Int",0,12)
I/ byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int]
/1 int[] = {0x00000001,0x00000002,0x00000003} (Little Endian)
Il'int]] ={1,2,3}

var_ia = profinet_read_input("Register_Int",12)

Il byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,
0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,
0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int]]

/' int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,
0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 447

e

0x00000000,0x00000000,0x00000000} (Little Endian)

I'int]] = {4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

var_ia = profinet_read_input("Register_Int")

/I byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,
0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,
0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,
0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Little Endian)

I1int]] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

float[] var_fa = profinet_read_input("Register_Float",4,12)

I byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

/1 float]] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

/I float]] = {1.2,1.3,2.1}

var_fa = profinet_read_input("Register_Float",12)

I byte[] = {0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float(]

// float[] = {0x40066666,0x400CCCCD,0x40133333,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000} (Big Endian)

Il float]] = {2.1,2.2,2.3,0}

var_fa = profinet_read_input("Register_Float")

I byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,
0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]

I/ float[] = {0Ox3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Big Endian)

I/l float[] ={1.1,1.2,1.3,2.1,2.2,2.3,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 448

Omron TM Collaborative Robot: TMScript Language Manual (1664) 449

e

18.2 profinet_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1
int[] profinet_read_input_int(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] profinet_read_input_int(
int,
int
)
Parameters
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = profinet_read_input_int(164,12,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x0001869F, 0xFFFF8000} (Little Endian)
/1int[] = {32767,99999,-32768}

var_ia = profinet_read_input_int(164,11,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]
/1 int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)
Iint[] = {32767,99999,16744448}

var_ia = profinet_read_input_int(164,10,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian)to int[]
/1'int]] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)
/'int[] = {32767,99999,32768}

var_ia = profinet_read_input_int(164,12,1)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 450

e

I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Big Endian) to int[]
/'int[] = {OXxFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)
I'int]] = {-8454144,-1618607872,8454143}

var_ia = profinet_read_input_int(164,12,2)
Il byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1'int]] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
Il'int[] = {32767,99999,-32768}

var_ia = profinet_read_input_int(164,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/'int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
/int[] = {32767,99999,-32768}

Syntax 3
int profinet_read_input_int(
int
)
Parameters
int Starting address
* Convert the read data to an int array based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = profinet_read_input_int(164)
I/ byte[] = {OxE4,0x07,0x00,0x00} (Little Endian) to int
[/l int = 0x000007E4 (Little Endian)
I/l int = 2020
var_i = profinet_read_input_int(164)
I byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int
/I int = 0x000007E4 (Big Endian)
I/l int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (1664) 451

e

18.3 profinet_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] profinet_read_input_float(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return

float[] Return data in a floating-point number array.

Syntax 2

float[] profinet_read_input_float(
int,
int

)

Note
Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
* Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = profinet_read_input_float(284,12,0)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
// float[] = {1.0,2.0,3.0}
var_fa = profinet_read_input_float(284,11,0)
/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]
I/ float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)
// float[] = {1.0,2.0,5.877472E-39}
var_fa = profinet_read_input_float(284,10,0)
I/ byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]
I/ float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)
// float[] = {1.0,2.0,0.0}

var_fa = profinet_read_input_float(284,12,1)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
Il float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)
/] float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 452

e

var_fa = profinet_read_input_float(284,12,2)
/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
/1 float[] = {0Ox3F800000,0x40000000,0x40400000} (Little Endian)
Il float] = {1.0,2.0,3.0}

var_fa = profinet_read_input_float(284,12)
/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
/1 float[] = {Ox3F800000,0x40000000,0x40400000} (Little Endian)
Il float] = {1.0,2.0,3.0}

Syntax 3
float profinet_read_input_float(
int
)
Parameters
int Starting address
* Convert the read data to a floating-point number based on Little Endian
(DCBA) or Big Endian (ABCD).
Return
float Return data in floating-point number.
Note

float var_f = profinet_read_input_float(284)
/I byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float
/I float = 0x3F800000 (Little Endian)
I float = 1.0

var_f = profinet_read_input_float(284)
/I byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float
/I float = {0x3F800000} (Big Endian)
/I float = {1.0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 453

e

18.4 profinet_read_input_string()

Read the input table content and convert the data to the string encoded in UTFS8.

Syntax 1
string profinet_read_input_string(
int,
int
)
Parameters
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note

string var_s = profinet_read_input_string(148,16)
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"
var_s = profinet_read_input_string(148,32)
/I byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "01060112"
var_s = profinet_read_input_string(148,32)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0XxE5,0%x99,0x A8,
0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "abcd ZZERA#=3 A 1234"
var_s = profinet_read_input_string(148,10)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}
I string = "abcd ZEEB"
var_s = profinet_read_input_string(148,8)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}
/I string = "abcd ZE@"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 454

e

18.5 profinet_read_input_bit()
Read the input table content and retrieve the nt" bit value of the data byte.

Syntax 1
byte profinet_read_input_bit(
int,
int
)
Parameters
int Starting address
int The nt" bit value in the data byte
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
Note
byte var_b = profinet_read_input_bit(148,0)
// 0x30 get bit: "0"
110
var_b = profinet_read_input_bit(148,5)
/I 0x30 get bit: "5"
1

Syntax 2
byte profinet_read_input_bit(
string,
int
)
Parameters
string ltem name
int The n" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = profinet_read_input_bit("Register_Bit",0)
/ byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/11 get bit: "0"
var_b = profinet_read_input_bit("Register_Bit",17)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/[0 getbit: "17"

Syntax 3
byte[] profinet_read_input_bit(
int,
int,
int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 455

e

)
Parameters
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_ba = profinet_read_input_bit(148,0,20)
I/ byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = profinet_read_input_bit(148,12,8)
// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/l byte[] ={1,1,0,1,0,0,1,1}
Syntax 4
byte[] profinet_read_input_bit(
string,
int,
int
)
Parameters
string ltem name
int Starting bit
int he amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_ba = profinet_read_input_bit("Register_Bit",0,20)
/ byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = profinet_read_input_bit("Register_Bit",12,8)
// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/I byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 456

e

18.6 profinet_read_output()

Read the output table content.

Syntax 1
byte[] profinet_read_output(
int,
int
)
Parameters
int Starting address
int The address length to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = profinet_read_output(540,16)
/1 {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

Syntax 2
byte profinet_read_output(
int
)
Parameters
int Starting address
Return
byte Return data in byte
Note
byte var_b = profinet_read_output(540)
/1 0x30
Syntax 3
? profinet_read_output(
string,
int,
int
)
Parameters
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Syntax 4
? profinet_read_output(
string,
int,
)
Parameters

string ltem name

Omron TM Collaborative Robot: TMScript Language Manual (1664) 457

e

int The starting shifted address of the item
Return
? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string
Note
* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5
? profinet_read_output(
string
)
Parameter
string ltem name
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end
of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = profinet_read_output("ManualAuto",0,1)
/1 0x02

var_b = profinet_read_output("ManualAuto",0)
/1 0x02

var_b = profinet_read_output("ManualAuto")
/1 0x02

byte[] var_ba = profinet_read_output("Error_Code",0,4)
/1 {0x00,0x04,0x80,0x0C}

var_ba = profinet_read_output("Error_Code",0,2)
/1 {0x00,0x04}

var_ba = profinet_read_output("Error_Code")
/1 {0x00,0x04,0x80,0x0C}

var_int i = profinet_read_output("Current_Time_YY")
/I byte[] = {0x00,0x00,0x07,0xE4} (Little Endian) to int
/l int = 0Xx0O00007E4 (Little Endian)
Il int = 2020

int[] var_ia = profinet_read_output("Register_Int",0,12)
/1 byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int[]
I int[] = { 0x00000001,0x00000002,0x00000003} (Little Endian)
Il'int]] ={1,2,3}

var_ia = profinet_read_output("Register_Int",12)
I/ byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,
0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,
0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 458

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

/'int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,
0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000} (Little Endian)

/lint]] = {4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

var_ia = profinet_read_output("Register_Int")

/' byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,
0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,
0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

/int]] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,
0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Little Endian)

/lint] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

float var_f = profinet_read_output("Current_ TCP_Mass")
Il byte[] = {0x40,0x40,0x00,0x00} (Big Endian) to float
/1 float = 0x40400000 (Big Endian)
I float = 3.0

var_fa = profinet_read_output("Current_TCP_Value",4,12)
I byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]
I/ float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)
/I float]] ={1.2,1.3,2.1}
var_fa = profinet_read_output("Current_TCP_Value",12)
I/ byte[] = { 0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian)
to float]]
I/ float[] = {0x40066666,0x400CCCCD,0x40133333} (Big Endian)
// float[] = {2.1,2.2,2.3}
var_fa = profinet_read_output("Current_TCP_Value")
/1 byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,
0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian) to float[]
I/ float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333}
(Big Endian)
Il float[] = { 1.1,1.2,1.3,2.1,2.2,2.3}

string var_s = profinet_read_output ("RobotModel",0,16)
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 459

e

var_s = profinet_read_output ("RobotModel",4,3)
I byte[] = {0x37,0x30,0x30}
/I string = "700"
var_s = profinet_read_output ("RobotModel")
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 460

e

18.7 profinet_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1
int[] profinet_read_output_int(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] profinet_read_output_int(
int,
int
)
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = profinet_read_output_int(556,12,0)
Il byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
I1'int[] = {32767,99999,-32768}
var_ia = profinet_read_output_int(556,11,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]
/1 int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)
I1'int]] = {32767,99999,16744448}
var_ia = profinet_read_output_int(556,10,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian)to int[]
/1 int[] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)
/int[] = {32767,99999,32768}

var_ia = profinet_read_output_int(556,12,1)
Il byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {OxFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)
/'int[] = {-8454144,-1618607872,8454143}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 461

e

var_ia = profinet_read_output_int(556,12,2)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
/int[] = {32767,99999,-32768}

var_ia = profinet_read_output_int(556,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0x FF} (Little Endian)
to int[]
/'int[] = {0x00007FFF,0x0001869F ,0xFFFF8000} (Little Endian)
/'int[] = {32767,99999,-32768}

Syntax 3
int profinet_read_output_int(
int
)
Parameters
int Starting address
* Convert the read data to an integer based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = profinet_read_output_int(556)
I byte[] = {OxE4,0x07,0x00,0x00} (Little Endian) to int
[/l int = 0x000007E4 (Little Endian)
I/l int = 2020

var_i = profinet_read_output_int(556)
/1 byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int
/I int = 0x000007E4 (Big Endian)
I/l int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (1664) 462

e

18.8 profinet_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] profinet_read_output_float(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return

float[] Return data in a floating-point number array.

Syntax 2

float[] profinet_read output_float(
int,
int

)

Note
Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = profinet_read_output_float(676,12,0)
/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
/I float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
// float[] = {1.0,2.0,3.0}
var_fa = profinet_read_output_float(676,11,0)
I/ byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float]]
/I float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)
I/ float[] = {1.0,2.0,5.877472E-39}
var_fa = profinet_read_output_float(676,10,0)
I/ byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]
/I float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)
// float[] = {1.0,2.0,0.0}

var_fa = profinet_read_output_float(676,12,1)
/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]
I/ float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 463

e

/I float]] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = profinet_read_output_float(676,12,2)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
Il float[] = {1.0,2.0,3.0}

var_fa = profinet_read_output_float(676,12)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
Il float[] = {1.0,2.0,3.0}

Syntax 3
float profinet_read_output_float(
int
)
Parameters
int Starting address
* Convert the read data to a floating-point number based on Little Endian
(DCBA) or Big Endian (ABCD).
Return
float Return data in a floating-point number.
Note

float var_f = profinet_read_output_float(676)
/I byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float
/I float = 0x3F800000 (Little Endian)
I float = 1.0

var_f = profinet_read_output_float(676)
/I byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float
/I float = 0x3F800000 (Big Endian)
I float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (1664) 464

e

18.9 profinet_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1
string profinet_read_output_string(
int,
int
)
Parameters
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note

string var_s = profinet_read_output_string(540,16)
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"

var_s = profinet_read_output_string(540,32)
/I byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
// string ="01060112"

var_s = profinet_read_output_string(540,32)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F ,0XE5,0x99,0xA8,
0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
Il string = "abcd ZERA#=3 A 1234"
var_s = profinet_read_output_string(540,10)
Il byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}
// string = "abcd ZEEB"
var_s = profinet_read_output_string(540,8)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}
/I string = "abcd ZE@"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 465

e

18.10 profinet_read_output_bit()
Read the output table content and retrieve the n" bit value of the data byte.

Syntax 1
byte profinet_read_output_bit(
int,
int
)
Parameters
int Starting address
int The nt" bit value in the data byte
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
Note
byte var_b = profinet_read_output_bit(540,0)
// 0x30 get bit: "0"
110
var_b = profinet_read_output_bit(540,5)
/I 0x30 get bit: "5"
N1
Syntax 2
byte profinet_read_output_bit(
string,
int
)
Parameters
string Item name
int The nt" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte.
Note
byte[] var_data = {57,184,12}
profinet_write_output(540,var_data,3)
//{00111001,10111000,00001100} (binary)
byte var_b = profinet_read_output_bit("Register_Bit",0)
N1
var_b = profinet_read_output_bit("Register_Bit",17)
110

Syntax 3
byte[] profinet_read_output_bit(
int,
int,
int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 466

e

)
Parameters
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_data = {57,184,12}
profinet_write_output(540,var_data,3)
//{00111001,10111000,00001100} (binary)
byte[] var_ba = profinet_read_output_bit(540,0,20)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = profinet_read_output_bit(540,12,8)
I byte[] = {1,1,0,1,0,0,1,1}
Syntax 4
byte[] profinet_read_output_bit(
string,
int,
int
)
Parameters
string ltem name
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte][].
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_data = {57,184,12}

profinet_write_output(540,var_data,3)
//{00111001,10111000,00001100} (binary)

byte[] var_ba = profinet_read_output_bit("Register_Bit",0,20)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = profinet_read_output_bit("Register_Bit",12,8)
I byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

467

e

18.11 profinet_write_output()

Write data to the output table.

Syntax 1
bool profinet_write_output (
int,
?,
int
)
Parameters
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int The maximum amount of the address to write
>0 Legitimate data length. Write by the amount of the address.
<=0 lllegitimate data length. Write by the complete length of the data to
write.
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.

Note
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.
Syntax 2
bool profinet_write_output(
int,
?
)
Parameters
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
Bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 1. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.
Syntax 3

bool profinet_write_output(

int,

?,

int,

int

Omron TM Collaborative Robot: TMScript Language Manual (1664) 468

e

)
Parameters
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
int The amount of the address to write
Return
bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correcily.
Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

profinet_write_output(540,var_data,1)

byte var_b = profinet_read_output(540)
Il OXFF

byte[] var_data = {1,127,255}
profinet_write_output(540,var_data,3)
byte[] var_ba = profinet_read_output(540,3)

/1 {Ox01,0x7F,0xFF}
profinet_write_output(540,var_data,2)
var_ba = profinet_read_output(540,3)

/1 {0x01,0x7F,0x00}
profinet_write_output(540,var_data,-1)
var_ba = profinet_read_output(540,3)

/1 {Ox00,0x7F,0xFF}

int var_data = 32767
profinet_write_output(556,var_data,4)
int var_i = profinet_read_output_int(556)
/I byte[] = {OxFF,0x7F,0x00,0x00} (Little Endian) to int
I int = 0X00007FFF (Little Endian)
/l'int = 32767
profinet_write_output(556,var_data,1)
var_i = profinet_read_output_int(556)
I byte[] = {OxFF,0x00,0x00,0x00} (Little Endian) to int
/I int = 0OXO00000FF (Little Endian)
Il int = 255

int[] var_data = {32767,99999,-32768}

profinet_write_output(556,var_data,12)

int[] var_ia = profinet_read_output_int(556,12)
Il byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
[/ int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 469

e

I1'int[] = {32767,99999,-32768}
profinet_write_output(556,var_data,3)
var_ia = profinet_read_output_int(556,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)
/l'int[] = {32767,0,0}
profinet_write_output(556,var_data,11)
var_ia = profinet_read_output_int(556,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0x00} (Little Endian)
to int[]
/'int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)
I1'int[] = {32767,99999,16744448}
profinet_write_output(556,var_data,4,4)
var_ia = profinet_read_output_int(556,12)
I byte[] = {0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int[]
/'int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)
/1'int[] = {99999,0,0}

float var_data =-10.0
profinet_write_output(676,var_data,4)
float var_f = profinet_read_output_float(676)
/I byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float
/I float = 0xC1200000 (Little Endian)
/I float = -10.0
profinet_write_output(676,var_data,1)
var_f = profinet_read_output_float(676)
I/ byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float
/I float = 0x00000000 (Little Endian)
Il float =0

float[] var_data = {-10.0,3.3,123.45}
profinet_write_output(676,var_data,12)
float[] var_fa = profinet_read_output_float(676,12)
/I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0XxE6,0xF6,0x42} (Little Endian)
to float(]
/I float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {-10,3.3,123.45}
profinet_write_output(676,var_data,3)
var_fa = profinet_read_output_float(676,12)
/I byte[] = {0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to float(]
/I float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)
// float[] = {2.938736E-39,0,0}
profinet_write_output(676,var_data,11)
var_fa = profinet_read_output_float(676,12)
/I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x00} (Little Endian)
to float(]
Il float[] = {0xC1200000,0x40533333,0x00F6E666} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 470

e

I/ float]] = {-10,3.3,2.267418E-38}
profinet_write_output(676,var_data,4,4)
var_fa = profinet_read_output_float(676,12)
I byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to float]]
I/ float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)
/I float]] = {3.3,0,0}

string var_data = "abcd 3ZRPH%E8 A 1234"
profinet_write_output(540,var_data,32)
string var_s = profinet_read_output_string(540,32)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0XE6,0xA9,0x9F,0XE5,0x99,0xA8,
0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/l string = "abcd AP A 1234"
profinet_write_output(540,var_data,10)
var_s = profinet_read_output_string(540,32)
I/ byte[] = { 0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
// string = "abcd ZEEB"
profinet_write_output(540,var_data,8)
var_s = profinet_read_output_string(540,32)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "abcd ZE@"
profinet_write_output(540,var_data,4,15)
var_s = profinet_read_output_string(540,15)
I/ byte[] = {OXE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}
Il string = "iZRAPH&ER A"

Syntax 4
bool profinet_write_output(
string,
int,
?
int,
int
)
Parameters
string Item name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
int The amount of the address to write
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 471

e

Note
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5
bool profinet_write_output(
string,
int,
?
int
)
Parameters
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
Return

bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note
Same as syntax 4. Write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6
bool profinet_write_output(
string,
int,
?
)
Parameters
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note
Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the
data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.
Syntax 7
bool profinet_write_output(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 472

e

string,
?
)
Parameters
string ltem name
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correcily.
Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write
as well as write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768}
profinet_write_output("Register_Int",0,var_data,0,12)
int[] var_ia = profinet_read_output_int(556,12)
/1 byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1'int[] = {0x00007FFF,0x0001869F ,0xFFFF8000} (Little Endian)
/1'int[] = {32767,99999,-32768}
profinet_write_output("Register_Int",4,var_data,4,4)
var_ia = profinet_read_output_int(556,12)
/I byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int[]
/' int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)
I int[] = {0,99999,0}
profinet_write_output("Register_Int",4,var_data)
var_ia = profinet_read_output_int(556,20)
I/ byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF,
0x00,0x00,0x00,0x00} (Little Endian) to int]]
/int[] = {0x00000000,0x00007FFF,0x0001869F,0xFFFF8000,0x00000000} (Little Endian)
/l'int[] = {0,32767,99999,-32768,0}

float[] var_data = {-10.0,3.3,123.45}
profinet_write_output("Register_Float",0,var_data,0,12)
float[] var_fa = profinet_read_output_float(676,12)
/I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0XxE6,0xF6,0x42} (Little Endian)
to float(]
/I float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {-10,3.3,123.45}
profinet_write_output("Register_Float",4,var_data,4,8)
var_fa = profinet_read_output_float(676,12)
/I byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0XxE6,0xF6,0x42} (Little Endian)
to float(]
I/ float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 473

e

I/ float] = {0,3.3,123.45}
profinet_write_output("Register_Float",8,var_data)
var_fa = profinet_read_output_float(676,20)
I/ byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,
0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
/1 float[] = {0x00000000,0x00000000,0xC1200000,0x40533333,0x42F6E666} (Little Endian)
/I float[] = {0,0,-10,3.3,123.45}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 474

e

18.12 profinet_write_output_bit()

Write content to the n'" bit value of the data byte in the output table.

Syntax 1
bool profinet_write_output_bit(
int,
int,
int
)
Parameters
int Starting address
int The nt" bit value in the data byte
int The data to write
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

byte var_data = 240
profinet_write_output(540,var_data)
byte var_b = profinet_read_output(540)

/1 OXFO
profinet_write_output_bit(540,1,1)
var_b = profinet_read_output_bit(540,1)

/I OxF2 get bit: "1"

1
profinet_write_output_bit(540,7,0)
var_b = profinet_read_output_bit(540,7)

/1 0x72 get bit: "7"

110

Syntax 2
bool profient_write_output_bit(
string,
int,
int
)
Parameter
int ltem name
int The nt" bit value
int The data to write
*Data in bit will write in int.
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

byte var_data = 240

profinet _write_output(540,var_data)

byte var_b = profinet _read_output(540)
/I OXFO

Omron TM Collaborative Robot: TMScript Language Manual (1664) 475

e

profinet _write_output_bit("Register_Bit",1,1)
var_b = profinet _read_output_bit(540,1)
/I OxF2 get bit: "1"
N1
profinet _write_output_bit("Register_Bit",7,0)
var_b = profinet _read_output_bit(540,7)
Il Ox72 get bit: "7"
110
Syntax 3
bool profinet_write_output_bit(
int,
int,
byte[],
int,
int
)
Parameters
int Starting address
int Starting bit
byte[] Data to write.

*Data in bit will write in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int Starting bit to write data
int The amount of bit to write data
Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note
Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 4

bool profinet_write_output_bit(
int,
int,
byte[],
int

)

Parameters
int Starting address
int The nt" bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write
Return
bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 3. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Omron TM Collaborative Robot: TMScript Language Manual (1664)

476

e

Bit value = O for byte value ==

Syntax 5

bool profinet_write_output_bit(
int,
int,
byte[]

)

Parameters
int Starting address
int The nt" bit value

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = O for byte value ==

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
profinet_write_output_bit(540,0,var_data,0,20)
byte[] var_ba = profinet_read_output (540,0,3)

/I byte[] = {0x39,0xB8,0x0C}
var_ba = profinet_read_output_bit(540,0,20)

I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
profinet_write_output_bit(540,3,var_data,5,10)
var_ba = profinet_read_output (540,0,3)

I byte[] = {0x08,0x0E,0x00}
var_ba = profinet_read_output_bit(540,0,20)

1 byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool profinet_write_output_bit(
string,
int,
byte(],
int,
int

)

Parameters
string ltem name
int Starting bit
byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data
int The bit amount of the data to write
Return

bool True Write successfully.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 477

e,

False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

Bit value = 1 for byte value >=1
Bit value = O for byte value ==0

Syntax 7

bool profinet_write_output_bit(
string,
int,
bytef],
int

)

Parameters
string ltem name
int Starting bit

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 6. Write with the full length of the rest data to write.
Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 8

bool profinet_write_output_bit(
string,
int,
byte(]

)

Parameters
string Item name
int Starting bit

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 6. Fill O as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==

bytel[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
profinet_write_output_bit("Register_Bit",0,var_data,0,20)
byte[] var_ba = profinet_read_output (540,3)

/I byte[] = {0x39,0xB8,0x0C}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 478

e

var_ba = profinet_read_output_bit(540,0,20)

I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
profinet_write_output_bit("Register_Bit",3,var_data,5,10)
var_ba = profinet_read_output (540,3)

I byte[] = {0x08,0x0E,0x00}
var_ba = profinet_read_output_bit(540,0,20)

I/ byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 479

e

19.EtherNet/IP Functions

The robot communicates with external controllers via the EtherNet/IP communication
protocol. In the mechanism of the EtherNet/IP communication protocol, the robot works as an
EtherNet/IP 10 device for external devices to read and write the robot data. Meanwhile, TMflow
monitors the table of data receiving from external devices and the table of data sending to
external devices with EtherNet/IP functions as well as changes the custom definition section in the
table of data sending to external devices.

Communication Data Table
The data table is composed of the input data and the output data. Input Data Table is for
external devices posting on the robot, and Output Data Table is for the robot sending to
external devices. Both of the data tables come with System Definition Section and
Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data
contents are updated by the robot or external devices. The defined items are robot status
relevant such as robot bases, project status, control box status, or input/output status
relevant such as digital I/Os and analog I/Os. Users can use EtherNet/IP functions to
read the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data
contents are updated by users or external devices. In the meantime of the project editing,
users can use EtherNet/IP functions to read and write the output data table in the custom
definition section or read input data table in the custom definition section as well as use
the custom definition section as a data exchange register between the project and
external devices.

Communication
Data Table Data TMflow EtherNet/IP External Device
(at the robot’s | Section Function Permissions | Permissions
viewpoint)
System
Definition Read Write
Input Data Section
Table Custom
Definition Read Write
Section
System
Definition Read Read
Output Data Section
Table Custom
Definition Read/Write Read
Section

Omron TM Collaborative Robot: TMScript Language Manual (1664) 480

e

19.1 eip_read_input()

Read the input table content.

Syntax 1
byte[] eip_read_input(
int,
int
)
Parameters
int Starting address
int The address amount to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = eip_read_input(104,8)
/1 {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32}

Syntax 2
byte eip_read_input(
int,
)
Parameters
int Starting address
Return
byte Return data in byte.
Note
byte var_b = eip_read_input(104)
/1 0x30
Syntax 3
? eip_read_input(
string,
int,
int
)
Parameters
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Syntax 4
? eip_read_input(
string,
int,
)
Parameters

Omron TM Collaborative Robot: TMScript Language Manual (1664) 481

e

string ltem name

int The starting shifted address of the item
Return
? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string
Note
* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5
? eip_read_input(
string
)
Parameters
string ltem name
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end
of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = eip_read_input("O2T_StickStatus",0,1)
/1 0x02

var_b = eip_read_input("O2T_StickStatus",0)
/1 0x02

var_b = eip_read_input("O2T_StickStatus")
/1 0x02

byte[] var_ba = eip_read_input("O2T_CtriIBox_DQO",0,2)
/1 {0x00,0x04}
var_ba = eip_read_input("O2T_CtrIBox_DQ")
/1 {0x00,0x04}
int[] var_ia = eip_read_input("O2T_Register_Int",0,12)
/I byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian) to int[]
I/ int[] = {0x00000001,0x00000002,0x00000003} (Little Endian)
/int]] = {1,2,3}

var_ia = eip_read_input("O2T_Register_Int",12)

/' byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,
0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,
0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little

Endian)
to int[]

//'int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,
0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000} (Little Endian)

/l'int[] = {4,5,6,7,8,9,10,11,12,0,0,0}

var_ia = eip_read_input("O2T_Register_Int")

Omron TM Collaborative Robot: TMScript Language Manual (1664) 482

e, }

I byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,
0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,
0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int]

/'int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,
0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,
0x00000000,0x00000000,0x00000000} (Little Endian)

/lint]] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0}

float[] var_fa = eip_read_input("O2T_Register_Float",4,12)

I byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

I/ float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

Il float]] = {1.2,1.3,2.1}

var_fa = eip_read_input("O2T_Register_Float",12)

I byte[] = {0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

(Big Endian) to float[]

/1 float[] = {0x40066666,0x400CCCCD,0x40133333,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Big Endian)

Il float[] = {2.1,2.2,2.3,0,0,0,0,0,0,0,0,0}

var_fa = eip_read_input("O2T_Register_Float")

Il byte[] = {Ox3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,
0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float(]

/I float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333,
0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,
0x00000000,0x00000000,0x00000000} (Big Endian)

Il float[] ={ 1.1,1.2,1.3,2.1,2.2,2.3,0,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 483

e

19.2 eip_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1
int[] eip_read_input_int(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] eip_read_input_int(
int,
int
)
Parameters
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian.

int[] var_ia = eip_read_input_int(112,12,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
I1'int[] = {32767,99999,-32768}
var_ia = eip_read_input_int(112,11,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]
/1'int]] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)
I'int[] = {32767,99999,16744448}
var_ia = eip_read_input_int(112,10,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian)to int[]
/1 int]] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)
I1'int[] = {32767,99999,32768}

var_ia = eip_read_input_int(112,12,1)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Big Endian) to int[]
I int[] = {OXFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 484

e

/1'int]] = {-8454144,-1618607872,8454143}

var_ia = eip_read_input_int(112,12,2)

/1 byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]

I'int[] = {Ox00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

/'int]] = {32767,99999,-32768}

var_ia = eip_read_input_int(112,12)

I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]

I'int[] = {Ox00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

/'int]] = {32767,99999,-32768}

Syntax 3
int eip_read_input_int(
int
)
Parameter
int Starting address
*Convert the read data to an integer based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = eip_read_input_int(112)

I/ byte[] = {OxE4,0x07,0x00,0x00} (Little Endian) to int
[/l int = 0x0O00007E4 (Little Endian)
/l'int = 2020

var_i = eip_read_input_int(112)

I/ byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int
/I int = 0x000007E4 (Big Endian)
/I int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (1664)

485

e

19.3 eip_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] eip_read_input_float(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
float[] Return data in a floating-point number array.
Syntax 2
float[] eip_read_input_float(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = eip_read_input_float(172,12,0)

/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]

I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

/l float[] = {1.0,2.0,3.0}

var_fa = eip_read_input_float(172,11,0)

/1 byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]
/1 float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)
/I float[] = {1.0,2.0,5.877472E-39}

var_fa = eip_read_input_float(172,10,0)

/1 byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float]]
/1 float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)
/1 float[] = {1.0,2.0,0.0}

var_fa = eip_read_input_float(172,12,1)

I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

486

e

to float]]
Il float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)
/I float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = eip_read_input_float(172,12,2)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
Il float[] = {1.0,2.0,3.0}

var_fa = eip_read_input_float(172,12)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
// float[] = {1.0,2.0,3.0}

Syntax 3
float eip_read_input_float(
int
)
Parameter
int Starting address
*Convert the read data to a floating-point number based on Little Endian
(DCBA) or Big Endian (ABCD).
Return
Float Return data in a floating-point number.
Note

float var_f = eip_read_input_float(172)
I/ byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float
/I float = Ox3F800000 (Little Endian)
/I float = 1.0

var_f = eip_read_input_float(172)
I byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float
/I float = Ox3F800000 (Big Endian)
/I float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (1664) 487

e

19.4 eip_read_input_string()

Read the input table content and convert the data to the string encoded in UTFS8.

Syntax 1
string eip_read_input_string(
int,
int
)
Parameter
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note

string var_s = eip_read_input_string(104,16)
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"

var_s = eip_read_input_string(104,32)
/I byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
// string ="01060112"

var_s = eip_read_input_string(104,32)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0%x99,0x A8,
0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
Il string = "abcd ZERA#=3 A 1234"
var_s = eip_read_input_string(104,10)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}
// string = "abcd ZEEB"
var_s = eip_read_input_string(104,8)
I byte[] = {0x61,0x62,0x63,0x64,0XxE9,0x81,0x94,0xE6}
/I string = "abcd "

Omron TM Collaborative Robot: TMScript Language Manual (1664) 488

e

19.5 eip_read_input_bit()
Read the input table content and retrieve the nt" bit value of the data byte.

Syntax 1
byte eip_read_input_bit(
int,
int
)
Parameter
int Starting address
int The nt" bit value in the data byte
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = eip_read_input_bit(104,0)
/I 0x30 get bit: "0"
110
var_b = eip_read_input_bit(104,5)
// 0x30 get bit: "5"
1

Syntax 2
byte eip_read_input_bit(
string,
int
)
Parameter
string Item name
int The nt" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = eip_read_input_bit("O2T_Register_Bit",0)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/I'1 get bit: "0"
var_b = eip_read_input_bit("O2T_Register_Bit",17)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/10 get bit: "17"

Syntax 3
byte[] eip_read_input_bit(
int,
int,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 489

e

int
)
Parameter
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte][].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_ba = eip_read_input_bit(104,0,20)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = eip_read_input_bit(104,12,8)
/I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
// byte[] = {1,1,0,1,0,0,1,1}
Syntax 4
byte[] eip_read_input_bit(
string,
int,
int
)
Parameter
string ltem name
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte][].
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_ba = eip_read_input_bit("O2T_Register_Bit",0,20)
/ byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/ byte[] ={1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = eip_read_input_bit("O2T_Register_Bit",12,8)
I byte[] ={1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,...} // total
/I byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 490

e

19.6 eip_read_output()

Read the output table content.

Syntax 1
byte[] eip_read_output(
int,
int
)
Parameter
int Starting address
int The address length to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = eip_read_output(300,8)
/1 {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32}

Syntax 2
byte eip_read_output(
int
)
Parameter
int Starting address
Return
Byte Return data in byte.
Note
byte var_b = eip_read_output(300)
/1 0x30
Syntax 3
? eip_read_output(
string,
int,
int
)
Parameter
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Syntax 4
? eip_read_output(
string,
int,
)
Parameter

Omron TM Collaborative Robot: TMScript Language Manual (1664) 491

e

string ltem name

int The starting shifted address of the item
Return
? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string
Note
* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5
? eip_read_output(
string
)
Parameter
string ltem name
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end
of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = eip_read_output("ManualAuto",0,1)
/1 0x02

var_b = eip_read_output("ManualAuto",0)
/1 0x02

var_b = eip_read_output("ManualAuto")
/1 0x02

byte[] var_ba = eip_read_output("Error_Code",0,4)
/1 {0x00,0x04,0x80,0x0C}

var_ba = eip_read_output("Error_Code",0,2)
/1 {0x00,0x04}

var_ba = eip_read_output("Error_Code")
/1 {0x00,0x04,0x80,0x0C}

int var_i = eip_read_output("Current_Time_Year")
I/ byte[] = {0x00,0x00,0x07,0xE4} (Little Endian) to int
[/l int = 0x000007E4 (Little Endian)
/l'int = 2020

int[] var_ia = eip_read_output("T20_Register_Int",0,12)
/I byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int[]
/1 int[] = { 0x00000001,0x00000002,0x00000003} (Little Endian)
I1int]] = {1,2,3}

var_ia = eip_read_output("T20_Register_Int",12)
I/ byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,
0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 492

e

0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
(Little Endian) to int[]

/int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,
0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000} (Little Endian)

/l'int[] = {4,5,6,7,8,9,10,11,12,0,0,0}

var_ia = eip_read_output("T20_Register_Int")

/' byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,
0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,
0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int]

/'int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,
0x00000007,0x00000008,0x00000009,0x0000000A,0x00000008,0x0000000C,
0x00000000,0x00000000,0x00000000} (Little Endian)

/lint[] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0}

float var_f = eip_read_output("Current. TCP_Mass")
I byte[] = {0x40,0x40,0x00,0x00} (Big Endian) to float
/I float = 0x40400000 (Big Endian)
/I float = 3.0

float[] var_fa = eip_read_output("Current_ TCP_Value",4,12)
I byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]
/I float[] = {Ox3F99999A,0x3FA66666,0x40066666} (Big Endian)
Il float[] = {1.2,1.3,2.1}

var_fa = eip_read_output("Current_TCP_Value",12)
I byte[] = { 0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian)
to float(]
I/ float[] = {0x40066666,0x400CCCCD,0x40133333} (Big Endian)
/I float[] = {2.1,2.2,2.3}
var_fa = eip_read_output("Current_TCP_Value")
I/ byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,
0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian) to float[]
I/ float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333}
(Big Endian)
Il float[] = { 1.1,1.2,1.3,2.1,2.2,2.3}

string var_s = eip_read_output ("ControlBoxID",0,16)
I/ byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
I/ string = "01060112"

var_s = eip_read_output ("ControlBoxID",4,3)
Il byte[] = {0x30,0x31,0x31}
/I string ="011"

var_s = eip_read_output ("ControlBoxID")
I/ byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
I/ string = "01060112"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 493

e

19.7 eip_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1
int[] eip_read_output_int(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] eip_read_output_int(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = eip_read_output_int(308,12,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/1 int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
/1'int[] = {32767,99999,-32768}
var_ia = eip_read_output_int(308,11,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]
/1 int[] = {0X00007FFF,0x0001869F,0x00FF8000} (Little Endian)
/'int[] = {32767,99999,16744448}
var_ia = eip_read_output_int(308,10,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian)to int[]
/1 int[] = {0X00007FFF,0x0001869F,0x00008000} (Little Endian)
/'int[] = {32767,99999,32768}

var_ia = eip_read_output_int(308,12,1)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 494

e

I/ int[] = {OXxFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)
/l'int[] = {-8454144,-1618607872,8454143}

var_ia = eip_read_output_int(308,12,2)

I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int]

[int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

I1'int]] = {32767,99999,-32768}

var_ia = eip_read_output_int(308,12)

I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int]

[/ int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

I1'int]] = {32767,99999,-32768}

Syntax 3
int eip_read_output_int(
int
)
Parameter
int Starting address
* Convert the read data to an integer based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = eip_read_output_int(308)

/I byte[] = {OxE4,0x07,0x00,0x00} (Little Endian) to int
/l int = 0Xx0O00007E4 (Little Endian)
/l int = 2020

var_i = eip_read_output_int(308)

/I byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int
/l int = 0Xx0O00007E4 (Big Endian)
/l int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (1664)

495

e

19.8 eip_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] eip_read_output_float(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
float[] Return data in a floating-point number array.
Syntax 2
float[] eip_read_output_float(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = eip_read_output_float(368,12,0)

/I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float(]

I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

/l float[] = {1.0,2.0,3.0}

var_fa = eip_read_output_float(368,11,0)

/1 byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]
/1 float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)
/I float[] = {1.0,2.0,5.877472E-39}

var_fa = eip_read_output_float(368,10,0)

/1 byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float]]
/1 float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)
/1 float[] = {1.0,2.0,0.0}

var_fa = eip_read_output_float(368,12,1)

Il byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (1664)

496

e

to float]]
Il float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)
/I float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = eip_read_output_float(368,12,2)
I byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
Il float[] = {1.0,2.0,3.0}

var_fa = eip_read_output_float(368,12)
/1 byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)
to float]]
I/ float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)
// float[] = {1.0,2.0,3.0}

Syntax 3

float eip_read_output_float(

int
)
Parameter

int Starting address

*Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big
Return

floatReturn data in a floating-point number
Note

float var_f = eip_read_output_float(368)
I/ byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float
/I float = Ox3F800000 (Little Endian)
/I float = 1.0

var_f = eip_read_output_float(368)
I byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float
/I float = Ox3F800000 (Big Endian)
/I float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (1664) 497

e

19.9 eip_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1
string eip_read_output_string(
int,
int
)
Parameter
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note

string var_s = eip_read_output_string(300,16)
I byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = "TM5-700"

var_s = eip_read_output_string(300,32)
/I byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
// string ="01060112"

var_s = eip_read_output_string(300,32)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0XE5,0x99,0xA8,
0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
Il string = "abcd ZERA#=3 A 1234"
var_s = eip_read_output_string(300,10)
/I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}
// string = "abcd ZEEB"
var_s = eip_read_output_string(300,8)
I byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}
/I string = "abcd "

Omron TM Collaborative Robot: TMScript Language Manual (1664) 498

e

19.10 eip_read_output_bit()
Read the output table content and retrieve the n" bit value of the data byte.

Syntax 1
byte eip_read_output_bit(
int,
int
)
Parameter
int Starting address
int The nt" bit value in the data byte
Return
Byte Return data in byte.
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = eip_read_output_bit(300,0)
/I 0x30 get bit: "0"
110
var_b = eip_read_output_bit(300,5)
// 0x30 get bit: "5"
1

Syntax 2
byte eip_read_output_bit(
string,
int
)
Parameter
string Item name
int The nt" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note
byte[] var_data = {57,184,12}
eip_write_output(300,var_data,3)
//{00111001,10111000,00001100} (binary)
byte var_b = eip_read_output_bit("T20_Register_Bit",0)
N1
var_b = eip_read_output_bit("T20_Register_Bit",17)
110

Syntax 3
byte[] eip_read_output_bit(
int,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 499

e

int,
int
)
Parameter
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_data = {57,184,12}
eip_write_output(300,var_data,3)
//{00111001,10111000,00001100} (binary)
byte[] var_ba = eip_read_output_bit(300,0,20)
I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
var_ba = eip_read_output_bit(300,12,8)
I byte[] = {1,1,0,1,0,0,1,1}
Syntax 4
byte[] eip_read_output_bit(
string,
int,
int
)
Parameter
string ltem name
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte][].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_data = {57,184,12}

eip_write_output(300,var_data,3)
//{00111001,10111000,00001100} (binary)

byte[] var_ba = eip_read_output_bit("T20_Register_Bit",0,20)
/I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = eip_read_output_bit("T20_Register_Bit",12,8)
I byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 500

e

19.11 eip_write_output()

Write data to the output table.

Syntax 1
bool eip_write_output(
int,
?,
int
)
Parameter
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int The maximum amount of the address to write
>0 Valid data length. Write by the amount of the address.
<=0 Invalid data length. Write by the complete length of the data to write.
Return

bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 2
bool eip_write_output(
int,
?
)
Parameter
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note
Same as syntax 1. Write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 3
bool eip_write_output(
int,
?,

int,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 501

e

int
)
Parameter
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
int The amount of the address to write
Return
bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

eip_write_output(300,var_data,1)

byte var_b = eip_read_output(300)
Il OXFF

byte[] var_data = {1,127,255}
eip_write_output(300,var_data,3)
byte[] var_ba = eip_read_output(300,3)

/1 {0x01,0x7F,0xFF}
eip_write_output(300,var_data,2)
var_ba = eip_read_output(300,3)

/1 {0x01,0x7F,0x00}
eip_write_output(300,var_data,-1)
var_ba = eip_read_output(300,3)

/1 {0x00,0x7F,0xFF}

int var_data = 32767
eip_write_output(308,var_data,4)
int var_i = eip_read_output_int(308)
I byte[] = {OxFF,0x7F,0x00,0x00} (Little Endian) to int
[/l int = 0x00007FFF (Little Endian)
/l'int = 32767
eip_write_output(308,var_data,1)
var_i = eip_read_output_int(308)
/I byte[] = {OxFF,0x00,0x00,0x00} (Little Endian) to int
/I int = 0XOO0000FF (Little Endian)
Il int = 255

int[] var_data = {32767,99999,-32768}

eip_write_output(308,var_data,12)

int[] var_ia = eip_read_output_int(308,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 502

e

/' int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
I1'int[] = {32767,99999,-32768}
eip_write_output(308,var_data,3)
var_ia = eip_read_output_int(308,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int]
/1 int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)
/int]] = {32767,0,0}
eip_write_output(308,var_data,11)
var_ia = eip_read_output_int(308,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0x00} (Little Endian)
to int]
[/ int[]] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)
I1'int[] = {32767,99999,16744448}
eip_write_output(308,var_data,4,4)
var_ia = eip_read_output_int(308,12)
I byte[] = {0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int[]
I/ int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)
/int]] = {99999,0,0}

float var_data =-10.0
eip_write_output(368,var_data,4)
float var_f = eip_read_output_float(368)
/I byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float
/I float = 0xC1200000 (Little Endian)
/I float = -10.0
eip_write_output(368,var_data,1)
var_f = eip_read_output_float(368)
/I byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float
/I float = 0x00000000 (Little Endian)
/l float =0

float[] var_data = {-10.0,3.3,123.45}
eip_write_output(368,var_data,12)
float[] var_fa = eip_read_output_float(368,12)
I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)
to float(]
I/ float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
Il float[] = {-10,3.3,123.45}
eip_write_output(368,var_data,3)
var_fa = eip_read_output_float(368,12)
I/ byte[] = {0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to float(]
I/ float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)
I/ float[] = {2.938736E-39,0,0}
eip_write_output(368,var_data,11)
var_fa = eip_read_output_float(368,12)
/I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x00} (Little Endian)
to float]]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 503

e

Il float[] = {0xC1200000,0x40533333,0x00F6E666} (Little Endian)
Il float]] = {-10,3.3,2.267418E-38}
eip_write_output(368,var_data,4,4)
var_fa = eip_read_output_float(368,12)
I byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to float(]
I/ float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)
Il float[] = {3.3,0,0}

string var_data = "abcd #ZERB 1422 A 1234"
eip_write_output(300,var_data,32)
string var_s = eip_read_output_string(300,32)
I/ byte[] = {0x61,0x62,0x63,0x64,0XxE9,0x81,0x94,0XE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,
OXE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
Il string = "abcd ZEFA# =3 A 1234"
eip_write_output(300,var_data,10)
var_s = eip_read_output_string(300,32)
I byte[] = { 0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
Il string = "abcd #ZRB"
eip_write_output(300,var_data,8)
var_s = eip_read_output_string(300,32)
Il byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/ string = "abcd Z@"
eip_write_output(300,var_data,4,15)
var_s = eip_read_output_string(300,15)
I byte[] = {OXE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F ,0XE5,0x99,0xA8,0xE4,0xBA,0xBA}
Il string = "3ZRAHEEI A"

Syntax 4
bool eip_write_output(
string,
int,
?
int,
int
)
Parameter
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
int The amount of the address to write
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array

Omron TM Collaborative Robot: TMScript Language Manual (1664) 504

e,

2. Unable to send and receive correctly.

Note
** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5
bool eip_write_output(
string,
int,
?
int
)
Parameter
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
Return

bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note
Same as syntax 4. Write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6
bool eip_write_output(
string,
int,
?
)
Parameter
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return

bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the

data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (1664) 505

e

bool eip_write_output(

string,
?
)
Parameter
string ltem name
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write
as well as write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768}
eip_write_output("T20_Register_Int",0,var_data,0,12)
int[] var_ia = eip_read_output_int(308,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)
to int[]
/l'int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
I1'int[] = {32767,99999,-32768}
eip_write_output("T20_Register_Int",4,var_data,4,4)
var_ia = eip_read_output_int(308,12)
I byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian)
to int[]
/' int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)
/int[] = {0,99999,0}
eip_write_output("T20_Register_Int",4,var_data)
var_ia = eip_read_output_int(308,20)
I/ byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF,
0x00,0x00,0x00,0x00} (Little Endian) to int[]
/' int[] = {0x00000000,0x00007FFF,0x0001869F,0xFFFF8000,0x00000000} (Little Endian)
I'int[] = {0,32767,99999,-32768,0}

float[] var_data = {-10.0,3.3,123.45}
eip_write_output("T20_Register_Float",0,var_data,0,12)
float[] var_fa = eip_read_output_float(368,12)
/1 byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)
to float(]
I/ float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
Il float[] = {-10,3.3,123.45}
eip_write_output("T20_Register_Float",4,var_data,4,8)
var_fa = eip_read_output_float(368,12)
I byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)
to float]]

Omron TM Collaborative Robot: TMScript Language Manual (1664) 506

e

I/ float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {0,3.3,123.45}
eip_write_output("T20_Register_Float",8,var_data)
var_fa = eip_read_output_float(368,20)
I/ byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,
0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
/1 float[] = {0x00000000,0x00000000,0xC1200000,0x40533333,0x42F6E666} (Little Endian)
I/ float[] = {0,0,-10,3.3,123.45}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 507

e

19.12 eip_write_output_bit()

Write content to the n'" bit value of the data byte in the output table.

Syntax 1
bool eip_write_output_bit(
int,
int,
int
)
Parameter
int Starting address
int The nt" bit value
int The data to write
*Data in bit will write in int.
Return
Bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

byte var_data = 240
eip_write_output(300,var_data)
byte var_b = eip_read_output(300)

/I OXFO
eip_write_output_bit(300,1,1)
var_b = eip_read_output_bit(300,1)

/I OxF2 get bit: "1"

N1
eip_write_output_bit(300,7,0)
var_b = eip_read_output_bit(300,7)

11 0x72 get bit: "7"

/10

Syntax 2
bool eip_write_output_bit(
string,
int,
int
)
Parameter
string ltem name
int The nt" bit value
int The data to write
*Data in bit will write in int.
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

byte var_data = 240
eip_write_output(300,var_data)
byte var_b = eip_read_output(300)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 508

e

/I OXFO
eip_write_output_bit("T20_Register_Bit",1,1)
var_b = eip_read_output_bit(300,1)

/I OxF2 get bit: "1"

N1
eip_write_output_bit("T20_Register_Bit",7,0)
var_b = eip_read_output_bit(300,7)

1l 0x72 get bit: "7"

110

Syntax 3

bool eip_write_output_bit(
int,
int,
byte(],
int,
int

)

Parameter
int Starting address
int The nt" bit value
byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write
int The bit amount of the data to write
Return
bool True Write successfully.
False = Write unsuccessfully. 1. Unable to send correctly and receive .
Note

Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 4

bool eip_write_output_bit(
int,
int,
bytef],
int

)

Parameter
int Starting address
int The nt" bit value

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 3. Write with the full length of the rest data to write.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 509

e

Bit value = 1 for byte value >=1
Bit value = 0 for byte value ==

Syntax 5

bool eip_write_output_bit(
int,
int,
byte[]

)

Parameter
int Starting address
int The nt" bit value

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = O for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
eip_write_output_bit(300,0,var_data,0,20)
byte[] var_ba = eip_read_output (300,0,3)

I byte[] = {0x39,0xB8,0x0C}
var_ba = eip_read_output_bit(300,0,20)

I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
eip_write_output_bit(300,3,var_data,5,10)
var_ba = eip_read_output (300,0,3)

/I byte[] = {0x08,0x0E,0x00}
var_ba = eip_read_output_bit(300,0,20)

I byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool eip_write_output_bit(
string,
int,
byte(],
int,
int

)

Parameter
string ltem name
int Starting bit
byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data
int The bit amount of the data to write

Omron TM Collaborative Robot: TMScript Language Manual (1664) 510

e,

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 7

bool eip_write_output_bit(
string,
int,
bytef],
int

)

Parameter
string Item name
int Starting bit
byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 6. Write with the full length of the rest data to write.
Bit value = 1 for byte value >=1
Bit value = 0 for byte value ==

Syntax 8

bool eip_write_output_bit(
string,
int,
byte(]

)

Parameter
string Item name
int Starting bit

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

*Same as syntax 6. Fill O as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
eip_write_output_bit("T20_Register_Bit",0,var_data,0,20)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 511

e

byte[] var_ba = eip_read_output (300,3)

I byte[] = {0x39,0xB8,0x0C}
var_ba = eip_read_output_bit(300,0,20)

I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
eip_write_output_bit("T20_Register_Bit",3,var_data,5,10)
var_ba = eip_read_output (300,3)

I byte[] = {0x08,0x0E,0x00}
var_ba = eip_read_output_bit(300,0,20)

I byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 512

e

20.EtherCAT Functions

The robot communicates with external controllers via the EtherCAT communication protocol.
In the mechanism of the EtherCAT communication protocol, the robot works as an EtherCAT IO
device for external devices to read and write the robot data. At the same time, TMflow can monitor
the robot's "data table received from external devices" and "data table sent to external devices"
via EtherCAT functions. Additionally, TMflow can modify the user-defined areas within the "data
table sent to external devices."

Communication Data Table
The data table is composed of input data and output data. The Input Data Table is for
external devices posting on the robot, and the Output Data Table is for the robot sending
to external devices. Both data tables come with the System Definition Section and the
Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data
contents are updated by the robot or external devices. The defined items are robot status
relevant such as robot bases, project status, control box status, or input/output status
relevant such as digital I/Os and analog I/Os. Users can use EtherCAT functions to read
the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data
contents are updated by users or external devices. While the project editing, users can
use EtherCAT functions to read and write the output data table in the custom definition
section or read input data table in the custom definition section. They can also use the
custom definition section as a data exchange register between the project and external

devices.
Communication
Data Table Data TMflow EtherCAT External Device
(at the robot’s | Section Function Permissions | Permissions
viewpoint)
System
Definition Read Write
Input Data Section
Table Custom
Definition Read Write
Section
System
Definition Read Read
Output Data Section
Table Custom
Definition Read/Write Read
Section

Omron TM Collaborative Robot: TMScript Language Manual (1664) 513

e

20.1 ethercat_read_input()

Read the input table content.

Syntax 1
byte[] ethercat_read_input(
int,
int
)
Parameter
int Starting address
int The address amount to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = ethercat_read_input(4,20)
/I {Ox45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}

Syntax 2
byte ethercat_read_input(
int
)
Parameter
int Starting address
Return
byte Return data in byte.
Note
byte var_b = ethercat_read_input(4)

I/ 0x45

Omron TM Collaborative Robot: TMScript Language Manual (1664) 514

e

Syntax 3
? ethercat_read_input(
string,
int,
int
)
Parameter
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Syntax 4
? ethercat_read_input(
string,
int
)
Parameter
string ltem name
int The starting shifted address of the item
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 515

e

Syntax 5
? ethercat_read_input(
string
)
Parameter
string ltem name
Return
? The data type returned by the item definition in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end
of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = ethercat_read_input("CameraLightMask")
/1 0x01

byte[] var_ba = ethercat_read_input("CtriBox_D0",0,2)
/1 {0x99,0x66}

var_ba = ethercat_read_input("CtrlBox_DO",1,1)
/1 {Ox66}

var_ba = ethercat_read_input("CtrIBox_DO")
/1 {0x99,0x66}

float var_f = ethercat_read_input("CtriBox_AQO")
/I byte[] = {0xA4,0x70,0x9D,0x3F} (Little Endian) to float
/I float = 0x3F9D70A4 (Little Endian)
/I float = 1.23

string var_s = ethercat_read_input("AutoRun_ProjectName",0,10)
I byte[] = {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54}
Il string = EtherCAT_T

var_s = ethercat_read_input("AutoRun_ProjectName",3,3)
/I byte[] = {0x65,0x72,0x43}
/I string = erC

var_s = ethercat_read_input("AutoRun_ProjectName")
I byte[] =
0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}
/I string = EtherCAT_Test_1

Omron TM Collaborative Robot: TMScript Language Manual (1664) 516

e

20.2 ethercat_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1
int[] ethercat_read_input_int(
int,
int,
int
)
Parameters
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] ethercat_read_input_int(
int,
int
)
Parameters
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 517

e

int[] var_ia = ethercat_read_input_int(72,4,0)
I/ byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian)to int[]
I1'int[] = {OxX3BADE68B1} (Little Endian)
/1'int[] = {987654321}
var_ia = ethercat_read_input_int(72,1,0)
/I byte[] = {0xB1} (Little Endian) to int[]
I/ int[] = {0x000000B1} (Little Endian)
Iint[] = {177}
var_ia = ethercat_read_input_int(72,4)
I/ byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian)to int[]
[/ int[] = {Ox3ADEG68B1} (Little Endian)
/'int[] = {987654321}

Syntax 3
int ethercat_read_input_int(
int
)
Parameter
int Starting address
*Convert the read data to an integer based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = ethercat_read_input_int(72)
Il byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian)to int
/I int = 0X3ADEG68BL1 (Little Endian)
Il'int = 987654321

Omron TM Collaborative Robot: TMScript Language Manual (1664) 518

e

20.3 ethercat_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] ethercat_read_input_float(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return

float[] Return data in a floating-point number array.

Syntax 2
float[] ethercat_read_input_float(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.
*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = ethercat_read_input_float(56,8,0)
/I byte[] = {0xA4,0x70,0x9D,0x3F,0x85,0xEB,0x91,0xCO0} (Little Endian) to float[]
/I float[] = {Ox3F9D70A4,0xC091EB85} (Little Endian)
/I float[] = {1.23,-4.56}
var_fa = ethercat_read_input_float(56,4,0)
I byte[] = {0xA4,0x70,0x9D,0x3F} (Little Endian) to float]]
/I float[] = {0x3F9D70A4} (Little Endian)
Il float[] = {1.23}
var_fa = ethercat_read_input_float(56,2,0)
/I byte[] = {0xA4,0x70} (Little Endian) to float[]
/I float[] = {Ox000070A4} (Little Endian)
/1 float[] = {0}
var_fa = ethercat_read_input_float(56,8)
I/ byte[] = {0xA4,0x70,0x9D,0x3F,0x85,0xEB,0x91,0xC0} (Little Endian) to float[]
/I float[] = {Ox3F9D70A4,0xC091EB85} (Little Endian)
Il float[] = {1.23,-4.56}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 519

e

Syntax 3
float ethercat_read_input_float(
int
)
Parameter
int Starting address
*Convert the read data to a floating-point number based on Little Endian
(DCBA) or Big Endian (ABCD).
Return
Float Return data in a floating-point number.
Note

int var_f = ethercat_read_input_float(132)
I byte[] = {OXE1,0x7A,0xFC,0x40} (Little Endian) to float
/I float = OX40FC7AEL (Little Endian)
/I float = 7.89

Omron TM Collaborative Robot: TMScript Language Manual (1664) 520

e

20.4 ethercat_read_input_string()

Read the input table content and convert the data to the string encoded in UTFS8.

Syntax 1
string eip_read_input_string(
int,
int
)
Parameter
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note
string var_s = ethercat_read_input_string(4,20)

Il byte(] =
{0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}
/I string = EtherCAT_Test_1

var_s = ethercat_read_input_string (4,10)
I byte[] = {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54}
/I string = EtherCAT_T

Omron TM Collaborative Robot: TMScript Language Manual (1664) 521

e

20.5 ethercat_read_input_bit()

Read the input table content and retrieve the nt" bit value of the data byte.

Syntax 1
byte ethercat_read_input_bit(
int,
int
)
Parameter
int Starting address
int The nt" bit value in the data byte
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = ethercat_read_input_bit(50,0)
I byte[] = {0x99}
N1
var_b = ethercat_read_input_bit(50,7)
/I byte[] = {0x99}
N1

Syntax 2
byte ethercat_read_input_bit(
string,
int
)
Parameter
string Item name
int The nt" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = ethercat_read_input_bit("Register_Bit",0)
I byte[] = {0x99}
1
var_b = ethercat_read_input_bit("Register_Bit",7)
/I byte[] = {0x99}
1

Syntax 3

byte[] ethercat_read_input_bit(
int,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 522

e

int,
int
)
Parameter
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_ba = ethercat_read_input_bit(50,0,16)
Il byte[] = {0x99,0x66}
I byte[] = {1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0}
var_ba = ethercat_read_input_bit (50,8,4)
I byte[] = {0x66}
Il byte[] ={0,1,1,0}
var_ba = ethercat_read_input_bit (50,6,4)
I byte[] = {0x99,0x66}
Il byte[] ={0,1,0,1}
Syntax 4
byte[] ethercat_read_input_bit(
string,
int,
int
)
Parameter
string ltem name
int Starting bit
int he amount of bit to read
Return
byte[] Return data in byte][].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_ba = ethercat_read_input_bit("Register_Bit",0,16)
/I byte[] = {OXEE,0x66}
I/ byte[] = {0,1,1,1,0,1,1,1,0,1,1,0,0,1,1,0}
var_ba = ethercat_read_input_bit ("Register_Bit",8,4)
/I byte[] = {0x66}
/ byte[] = {0,1,1,0}
var_ba = ethercat_read_input_bit ("Register_Bit",6,4)
/I byte[] = {OXEE,0x66}
I/ byte[] = {1,1,0,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 523

e

20.6 ethercat_read_output()

Read the output table content.

Syntax 1
byte[] ethercat_read_output(
int,
int
)
Parameter
int Starting address
int The address length to read
Return
byte[] Return data in a byte array.
Note

byte[] var_ba = ethercat_read_output(40,12)

/1 {Ox45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x 73}

Syntax 2
byte ethercat_read_output(
int
)
Parameter
int Starting address
Return
byte Return data in byte.
Note

Same as syntax 1. Fill 1 as the last parameter int by default.

byte var_b = ethercat_read_output(40)
/1 0x45

Omron TM Collaborative Robot: TMScript Language Manual (1664)

524

e

Syntax 3

? ethercat_read_output(
string,
int,
int

)

Parameter
string ltem name
int The starting shifted address of the item
int The amount of the addresses to read
Return
? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4
? ethercat_read_output(
string,
int
)
Parameter
string ltem name
int The starting shifted address of the item
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Read to the end of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 525

e

Syntax 5
? ethercat_read_output(
string
)
Parameter
string ltem name
Return
? The data type returned by the item defined in the communication data table.
* Data type includes byte,byte[],int,int[],float,float[],string
Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end
of the item by default.
* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = ethercat_read_output("ManualAuto",0,1)
// 0x01

var_b = ethercat_read_output("ManualAuto",0)
/1 0x01

var_b = ethercat_read_output("ManualAuto")
/1 0x01

byte[] var_ba = ethercat_read_output("Error_Code",0,4)
/1 {0x04,0x44,0x04,0x00}

var_ba = ethercat_read_output("Error_Code",0,2)
/] {0x04,0x44}

var_ba = ethercat_read_output("Error_Code")
/1 {0x04,0x44,0x04,0x00}

int var_i = ethercat_read_output("Current_Time_Year")
I/ byte[] = {OxE8,0x07,0x00,0x00} (Little Endian) to int
[/l int = 0x000007E8 (Little Endian)
/l'int = 2024

Omron TM Collaborative Robot: TMScript Language Manual (1664) 526

e

int[] var_ia = ethercat_read_output("Current_Time_Year")
I/ byte[] = {OxE8,0x07,0x00,0x00} (Little Endian) to int[]
/1 int16[] = {0x000007E8} (Little Endian)
Ilint]] = {2024}

float var_f = ethercat_read_output("CtriBox_AQO")
I/ byte[] = {0x9D,0x67,0x9D,0x3F} (Little Endian) to float]]
/I float = 0x3F9D679D (Little Endian)
/I float = 1.23

float[] var_fa = ethercat_read_output("Coord_CurrBase_Tool",4,12)
I byte[] = {0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42} (Little Endian) to
float(]
I/ float[] = {0xC37C999A,0x445EECCD,0x42B40000} (Little Endian)
Il float[] = {-252.6,891.7,90}

var_fa = ethercat_read_output("Coord_CurrBase_Tool",4)
I byte[] =
{OX9A,0%99,0x7C,0xC3,0xCD,0XEC,0x5E,0x44,0x00,0x00,0xB4,0x42,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0%0
0} (Little Endian) to float]]
/I float[] = {0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little Endian)
I/ float[] = {-252.6,891.7,90,0,0}

var_fa = ethercat_read_output("Coord_CurrBase_Tool")
/I byte[] = {0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]
/I float[]] = {Ox3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little
Endian)
// float[] = {0.01,-252.6,891.7,90,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 527

e

20.7 ethercat_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1
int[] ethercat_read_output_int(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to an int array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return
int[] Return data in an integer array.
Syntax 2
int[] ethercat_read_output_int(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as syntax 1. Fill 2 as the last parameter int by default.
* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 528

e

int[] var_ia = ethercat_read_output_int(216,12,0)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to
int[]
/l'int]] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
Il'int]] = {32767,99999,-32768}
var_ia = ethercat_read_output_int(216,6,0)
/I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86} (Little Endian) to int[]
[/ int[] = {0x00007FFF,0x0000869F} (Little Endian)
/int[] = {32767,34463}
var_ia = ethercat_read_output_int(216,1,0)
Il byte[] = {OxFF} (Little Endian) to int[]
/1 int[] = {OX000000FF} (Little Endian)
I int[] = {255}
var_ia = ethercat_read_output_int(216,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to
int[]
/1'int]] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
Iint[] = {32767,99999,-32768}

Syntax 3
int ethercat_read_output_int(
int
)
Parameter
int Starting address
* Convert the read data to an integer based on Little Endian (DCBA) or Big
Endian (ABCD).
Return
int Return data in an integer
Note

int var_i = ethercat_read_output_int(216)
I byte[] = {OXFF,0x7F,0x00,0x00} (Little Endian) to int[]
/I int[] = 0x00007FFF (Little Endian)
Il int = 32767

Omron TM Collaborative Robot: TMScript Language Manual (1664) 529

e

20.8 ethercat_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1
float[] ethercat_read_output_float(
int,
int,
int
)
Parameter
int Starting address
int The address amount to read
int The conversion of the read data to a float array based on Little Endian (DCBA)
or Big Endian (ABCD).
0 Little-Endian
1 Big-Endian
2 Based on the configuration file.
Return

float[] Return data in a floating-point number array.

Syntax 2
float[] ethercat_read_output_float(
int,
int
)
Parameter
int Starting address
int The address amount to read
Note

Same as syntax 1. Fill 2 as the last parameter int by default.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian
(ABCD).

float[] var_fa = ethercat_read_output_float(120,24,0)
Il byte[] =
{0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
/I float[]] = {0x3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little
Endian)
Il float[] = {0.01,-252.6,891.7,90,0,0}

var_fa = ethercat_read_output_float(120,12,0)
I/ byte[] = {Ox0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0XxEC,0x5E,0x44} (Little Endian) to
float(]
/1 float[] = {0x3C23D70A,0xC37C999A,0x445EECCD} (Little Endian)
/1 float[] = {0.01,-252.6,891.7}

var_fa = ethercat_read_output_float(120,2,0)
/I byte[] = {0x0A,0xD7} (Little Endian) to float[]
/I float[] = {Ox0000D70A} (Little Endian)
/I float] = {0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 530

e

var_fa = ethercat_read_output_float(120,24)
Il byte[] =
{0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
Il float[]] = {Ox3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little
Endian)
/1 float]] = {0.01,-252.6,891.7,90,0,0}

Syntax 3
float ethercat_read_output_float(
int
)
Parameter
int Starting address
*Convert the read data to a floating-point number based on Little Endian
(DCBA) or Big
Return
float Return data in a floating-point number
Note

float var_f = ethercat_read_output_float(120)
I byte[] = {Ox0A,0xD7,0x23,0x3C} (Little Endian)to float[]
/I float[] = 0x3C23D70A (Little Endian)
/I float = 0.01

Omron TM Collaborative Robot: TMScript Language Manual (1664) 531

e

20.9 ethercat_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1
string ethercat_read_output_string(
int,
int
)
Parameter
int Starting address
int The address amount to read
Return
string Return data in a UTF8 string (ending with 0x00 encountered).
Note
string var_s = ethercat_read_output_string(40,20)

I byte[] =
{0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}
/I string = "EtherCAT_Test_1"

var_s = ethercat_read_output_string(40,3)
I byte[] = {0x45,0x74,0x68}
/I string = "Eth"

Omron TM Collaborative Robot: TMScript Language Manual (1664) 532

e

20.10 ethercat_read_output_bit()

Read the output table content and retrieve the n" bit value of the data byte.

Syntax 1
byte ethercat_read_output_bit(
int,
int
)
Parameter
int Starting address
int The nt" bit value in the data byte
Return
Byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note

byte var_b = ethercat_read_output_bit(186,0)
I byte[] = {0x99}
N1
var_b = ethercat_read_output_bit(186,7)
/I byte[] = {0x99}
N1

Syntax 2
byte ethercat_read_output_bit(
string,
int
)
Parameter
string Item name
int The nt" bit value
Return
byte Return data in byte.
Return 1 for bit value == 1.
Return 0O for bit value == 0.
*Data in bit will return in byte.
Note
byte var_b = ethercat_read_output_bit("Register_Bit",0)
I byte[] = {Ox84}
110
var_b = ethercat_read_output_bit("Register_Bit",7)
/I byte[] = {0x84}
1

Syntax 3

byte[] ethercat_read_output_bit(
int,
int,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 533

e

int
)
Parameter
int Starting address
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return O for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note
byte[] var_ba = ethercat_read_output_bit(186,0,16)
Il byte[] = {0x99,0x66}
I byte[] = {1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0}
var_ba = ethercat_read_output_bit (186,8,4)
/1 byte[] = {0x66}
I/ byte[] ={0,1,1,0}
var_ba = ethercat_read_output_bit (186,6,4)
I/ byte[] = {0x99,0x66}
/Il byte[] ={0,1,0,1}
Syntax 4
byte[] ethercat_read_output_bit(
string,
int,
int
)
Parameter
string Item name
int Starting bit
int The amount of bit to read
Return
byte[] Return data in byte[].
Return 1 for bit value == 1.
Return 0 for bit value == 0.
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Note

byte[] var_ba = ethercat_read_output_bit("Register_Bit",0,16)

/1 byte[] = {0x84,0xB7}
/I byte[] = {0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,1}

var_ba = ethercat_read_output_bit ("Register_Bit",8,4)

/I byte[] = {0xB7}
Il byte[] ={1,1,1,0}

var_ba = ethercat_read_output_bit ("Register_Bit",6,4)

Il byte[] = {0x84,0xB7}
Il byte[] ={0,1,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (1664)

534

e

20.11 ethercat_write_output()

Write data to the output table.

Syntax 1
bool ethercat_write_output(
int,
?,
int
)
Parameter
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int The maximum amount of the address to write
>0 Valid data length. Write by the amount of the address.
<=0 Invalid data length. Write by the complete length of the data to write.
Return
Bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 2
bool ethercat_write_output(
int,
?
)
Parameter
int Starting address
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
Bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 1. Write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 3
bool ethercat_write_output(
int,
I)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 535

e

int,
int
)

Parameter
int
?

int

int
Return

bool

Note

Starting address
The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Starting address of the data to write
The amount of the address to write

True
False

Write successfully.
Write unsuccessfully.
1.

2.

If the data to write is an empty string or an empty
array
Unable to send and receive correctly.

** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

ethercat_write_output(208,var_data,1)

byte var_b = ethercat_read_output(208)
Il OXFF

byte[] var_data = {1,127,255}
ethercat_write_output(208,var_data,?2)
byte[] var_ba = ethercat_read_output(208,3)
/1 {0x01,0x7F,0x00}
ethercat_write_output(208,var_data,3)
var_ba = ethercat_read_output(208,3)
/1 {0x01,0x7F,0xFF}
ethercat_write_output(208,var_data,-1)
var_ba = ethercat_read_output(208,3)
/1 {O0x01,0x7F,0xFF}

int var_data = 32767
ethercat_write_output(216,var_data,4)
var_i = ethercat_read_output_int(216)

I byte[] = {OxFF,0x7F,0x00,0x00} (Little Endian) to int
/l int = 0X00007FFF (Little Endian)

Il int = 32767

ethercat_write_output(216,var_data,1)
var_i = ethercat_read_output_int(216)

/I byte[] = {0xFF,0x00,0x00,0x00} (Little Endian) to int
/I int = 0XOO0000FF (Little Endian)
Il int = 255

int[] var_data = {32767,99999,-32768}
ethercat_write_output(216,var_data,12)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 536

e

int[] var_ia = ethercat_read_output_int(216,12)

I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to int[]
/1'int]] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
/'int]] = {32767,99999,-32768}

ethercat_write_output(216,var_data,3)
var_ia = ethercat_read_output_int(216,12)

I byte[] = {OxFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
/1 int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)
Il'int]] = {32767,0,0}

ethercat_write_output(216,var_data,4,4)
var_ia = ethercat_read_output_int(216,12)

1 byte[] = {Ox9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
/1'int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)
/1'int[] = {99999,0,0 }

float var_data =-10.0
ethercat_write_output(232,var_data,4)

float var_f = ethercat_read_output_float(232)

I/ byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float
/I float = 0xC1200000 (Little Endian)
/I float = -10.0

ethercat_write_output(232,var_data,1)
var_f = ethercat_read_output_int(232)

Il byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float
/I float = 0x00000000 (Little Endian)
Il float =0

float[] var_data = {-10.0,3.3,123.45}
ethercat_write_output(232,var_data,12)

float[] var_fa = ethercat_read output_float(232,12)

/I byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float]]
/I float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
/I float[] = {-10.0,3.3,123.45}

ethercat_write_output(232,var_data,3)
var_fa = ethercat_read_output_float(232,12)

I/ byte[] = {Ox00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
/1 float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)
/I float[] = {0,0,0}

ethercat_write_output(232,var_data,4,4)
var_fa = ethercat_read_output_float(232,12)

/I byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
/I float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)
I/ float[] = {3.3,0,0}

string var_data = "abcdefg1234567"
ethercat_write_output(208,var_data,16)

string var_s = ethercat_read_output_string(208,20)

I byte[] =
{0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = abcdefg1234567

ethercat_write_output(208,var_data,8)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 537

e

var_s = ethercat_read_output_string(208,20)

I byte[] =
{0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x31,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = abcdefgl

ethercat_write_output(208,var_data,3,3)
var_s = ethercat_read_output_string(208,20)

I byte[] =
{0x64,0x65,0x66,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
/I string = def

Syntax 4
bool ethercat_write_output(
string,
int,
?,
int,
int
)
Parameter
string Item name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
int The amount of the address to write
Return
bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5
bool ethercat_write_output(
string,
int,
?,
int
)
Parameter
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
int Starting address of the data to write
Return
bool True Write successfully.

False Write unsuccessfully.
1. If the data to write is an empty string or an empty

Omron TM Collaborative Robot: TMScript Language Manual (1664) 538

e

array
2. Unable to send and receive correctly.
Note

Same as syntax 4. Write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6
bool ethercat_write_output(
string,
int,
?
)
Parameter
string ltem name
int The starting shifted address of the item
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
bool True Write successfully.
False = Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the
data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 7
bool ethercat_write_output(
string,
?
)
Parameter
string ltem name
? The data to write
* Available data types include byte,byte[],int,int[],float,float[],string
Return
bool True Write successfully.
False Write unsuccessfully.
1. If the data to write is an empty string or an empty
array
2. Unable to send and receive correctly.
Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write
as well as write with the full length of the data to write by default.
* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 539

e

ethercat_write_output("Register_Int",0,var_data,0,12)
int[] var_ia = ethercat_read_output_int(216,12)
I byte[] = {OxFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to int[]

/1 int[] = {0x00007FFF,0x0001869F, 0xXFFFF8000} (Little Endian)
/1'int[] = {32767,99999,-32768}

ethercat_write_output("Register_Int",4,var_data,4,4)
var_ia = ethercat_read_output_int(216,12)

I byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
/1 int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)
I1'int]] = {0,99999,0}

ethercat_write_output("Register_Int",4,var_data)
var_ia = ethercat_read_output_int(216,12)

/1 byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00} (Little Endian) to int[]
/1 int[] = {0x00000000,0x00007FFF,0x0001869F} (Little Endian)
/1'int[] = {0,32767,99999}

float[] var_data = {-10.0,3.3,123.45}
ethercat_write_output("Register_Float",0,var_data,0,12)

float[] var_fa = ethercat_read_output_float(232,12)

/1 byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float]]
/1 float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
/I float[] = {-10.0,3.3,123.45}

ethercat_write_output("Register_Float",4,var_data,4,8)
var_fa = ethercat_read_output_float(232,12)

I byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
/1 float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)
/1 float[] = {0,3.3,123.45}

ethercat_write_output("Register_Float",4,var_data)

var_fa = ethercat_read_output_float(232,12)

/I byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40} (Little Endian) to float[]
Il float[] = {0x00000000,0xC1200000,0x40533333} (Little Endian)
Il float[] = {0,-10,3.3}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 540

e

20.12 ethercat_write_output_bit()

Write content to the nth bit value of the data byte in the output table.

Syntax 1
bool ethercat_write_output_bit(
int,
int,
int
)
Parameter
int Starting address
int The nt" bit value
int The data to write
*Data in bit will write in int.
Return
Bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive .
Note

byte var_data = 240
ethercat_write_output(208,var_data)
byte var_b = ethercat_read_output(208)
/I OXFO
ethercat_write_output_bit(208,1,1)
var_b = ethercat_read_output_bit(208,1)
/I OxF2 get bit: "1"
1

ethercat_write_output_bit(208,7,0)
var_b = ethercat_read_output_bit(208,7)
/1 0x72 get bit: "7"
110

Omron TM Collaborative Robot: TMScript Language Manual (1664) 541

e

Syntax 2
bool ethercat_write_output_bit(

string,
int,
int
)
Parameter
string ltem name
int The nt" bit value
int The data to write
*Data in bit will write in int.
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

byte var_data = 240
ethercat_write_output(208,var_data)
byte var_b = ethercat_read_output(208)

/Il OXFO
ethercat_write_output_bit("Register_Bit",1,1)
var_b = ethercat_read_output_bit(208,1)

/I OxF2 get bit: "1"

1

ethercat_write_output_bit("Register_Bit",7,0)
var_b = ethercat_read_output_bit(208,7)

11 0x72 get bit: "7"

110

Omron TM Collaborative Robot: TMScript Language Manual (1664)

542

e

Syntax 3

bool ethercat_write_output_bit(
int,
int,
bytef],
int,
int

)

Parameter
int Starting address
int The nt" bit value
byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write
int The bit amount of the data to write
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 4

bool ethercat_write_output_bit(
int,
int,
byte[],
int

)

Parameter
int Starting address
int The nt" bit value

byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write
Return
Bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

*Same as syntax 3. Write with the full length of the rest data to write.
Bit value = 1 for byte value >=1
Bit value = 0 for byte value ==

Syntax 5
bool ethercat_write_output_bit(
int,
int,
byte(]
)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (1664) 543

e

int Starting address
int The nt" bit value
byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = O for byte value ==

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
ethercat_write_output_bit(208,0,var_data,0,20)
byte[] var_ba = ethercat_read_output(208,3)
/I byte[] = {0x39,0xB8,0x0C}
var_ba = ethercat_read_output_bit (208,0,20)
I/ byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
ethercat_write_output_bit(208,3,var_data,5,10)
var_ba = ethercat_read_output (208,3)
I byte[] = {0x08,0x0E,0x00}
var_ba = ethercat_read_output_bit (208,0,20)
I/ byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool ethercat_write_output_bit(
string,
int,
bytef],
int,
int

)

Parameter
string ltem name
int Starting bit
byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data
int The bit amount of the data to write
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

Bit value = 1 for byte value >=1
Bit value = O for byte value ==

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (1664) 544

e

bool ethercat_write_output_bit(

string,
int,
byte(],
int
)
Parameter
string ltem name
int Starting bit
byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
int The starting bit to write data
Return
bool True Write successfully.
False = Write unsuccessfully. 1. Unable to send correctly and receive.
Note
*Same as syntax 6. Write with the full length of the rest data to write.
Bit value = 1 for byte value >=1
Bit value = O for byte value ==
Syntax 8
bool ethercat_write_output_bit(
string,
int,
byte(]
)
Parameter
string ltem name
int Starting bit
byte[] The data to write
*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].
Return
bool True Write successfully.
False Write unsuccessfully. 1. Unable to send correctly and receive.
Note

*Same as syntax 6. Fill 0 as the starting bit to write as well as write with the full length of
the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
ethercat_write_output_bit("Register_Bit",0,var_data,0,20)
byte[] var_ba = ethercat_read_output(208,3)

Il byte[] = {0x39,0xB8,0x0C}
var_ba = ethercat_read_output_bit (208,0,20)

I byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}
ethercat_write_output_bit("Register_Bit ",3,var_data,5,10)
var_ba = ethercat_read_output (208,3)

/I byte[] = {0x08,0x0E,0x00}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 545

e

var_ba = ethercat_read_output_bit (208,0,20)
I byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (1664) 546

e

21.Real-Time Remote Server

Real-Time Remote Server (RTRS) comes with functions established with Socket TCP based
on the framework of client/server connections. Once enabled, the robot establishes a Real-Time
Socket TCP Listening Server to send the robot status and data to all of the connected clients or
receive the contents from the clients to execute the respective instructions and update the
respective information periodically.

When the TMflow program starts, the Real-Time Remote Server either launches automatically
or stays inactive, depending on the configured settings. It shuts down only when the TMflow
program is closed or when explicitly configured to stop. The server's IP address and port number
appear in the Notice Window.

IP TMflow - Configuration - Remote Control Settings -

Command Interface > RTRS - Static IP

Port 5895 (TMRTS) , 5896 (TMRTC)

21.1 GUI Setting

Status Enable

Motion Command

Static IP

1P Address
Subnet Mask

Default Gateway

Enable/Disable Enable or disable Real-Time Remote Server. Once enabled, a system restart
is required for the changes to take effect.

Motion Control Motion control commands become available once enabled, and the robot will

Instructions switch to external control mode.

TMRTS Packet header for data communication manages data communication. The system
activates without requiring the selection of the Motion Command option in the interface.
The connection becomes available after a system restart. For detailed packet
specifications, refer to the TMRTS documentation.

TMRTC Packet Header for Data Communication manages data communication. The system
activates by requiring the selection of the Motion Command option in the interface.
The connection becomes available after a system restart. This packet format is used
solely for motion control. To obtain robot status for coordinated control, use it together
with TMRTS packets. For motion control packet details, refer to the TMRTC
documentation.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 547

e

21.2 Communication Protocol

Length
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ Header , Length , Data , * Checksum \r \n

Checksum (XOR of these Bytes)

Name Size | ASCII | HEX Description

Start Byte 1 $ 0x24 Start Byte for Communication

Header X Header for Communication

Separator 1 , 0x2C Separator between Header and Length
Length Y Length of Data

Separator 1 , 0x2C Separator between Length and Data
Data Z Communication Data

Separator 1 , 0x2C Separator between Data and Checksum
Sign 1 * 0x2A Begin Sign of Checksum

Checksum 2 Checksum of Communication

End Byte 1 1 \r 0x0D

End Byte 2 1 \n 0x0A End Byte of Communication

*Using the same communication protocol with external commands.

1. Header

Defines the purpose of communication packets. Different headers come with different definitions

of communication packets and data.

® TMRTS Defines the data transmission functions of TM Real-Time Remote Server
® TMRTC Defines the motion control functions of TM Real-Time Remote Server

® CPERR Defines the errors of the communication packets such as packer errors, checksum

errors, header errors, and so on.
*Using the same content definitions with CPERR in external commands.

Omron TM Collaborative Robot: TMScript Language Manual (1664)

548

e

2. Length

The length indicates the length in the UTF8 bytes occupied by Data. Users can use decimal,

hexadecimal, or binary format. The maximum length is 32 bits.

For example,
$TMRTS,100,Data,*CS\r\n // 100 in decimal indicates the data length is 100 bytes
$TMRTS,0x100,Data,*CS\r\n // 0x100 in hexadecimal indicates the data length is 256 bytes
$TMRTS,0b100,Data,*CS\r\n // 0b100 in binary indicates the data length is 4 bytes
$TMRTS,8,1,:£ F* ,*CS\r\n /l indicates the length of Data, 1,:Zp, is 8 bytes (UTF8)

3. Data

The content of the communication packet can support any character (including 0x00 .. OxFF and
uses UTF8 encoding), and the data length is determined by Length. The purpose and description
defined in Data must be defined by the header.

4. Checksum

The checksum of the communication packet. The calculation method is XOR (exclusive OR).

The calculation range is all Bytes between $ and * (excluding $ and *) as shown below.
$TMRTS,100,Data *CS\r\n

Checksum = Byte[1] A Byte[2] ... * Byte[N-6]

The checksum format is set to 2 bytes in hexadecimal (but not 0x), such as
$TMRTS,5,10,0KJ7C

CS = 0x54 * 0x4D * 0x52 » 0x54 * 0x53 0x2C ” 0x35 ” 0x2C * 0x31 » 0x30 » 0x2C » Ox4F ~ Ox4B »

0x2C = 0x7C

CS = 7C (0x37 0x43)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 549

e

21.3 TMRTS
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ TMRTS s Length Data Checksum \r \n
ID Mode Content
Transaction ID s 7%1//9 s Iltem or Value

TMRTS is defined as the communication protocol used on port 5895 in the Real-Time Remote
Server (RTRS). The Data section of the packet is further divided into three segments, ID
(Transaction ID), Mode (Content Mode), and Content (Item and Value), separated with commas
and described below.

ID The transaction number expressed in any alphanumeric characters. (Reports the
CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a
communication packet response, it is a transaction number that identifies which
group of commands to respond.

, The symbol to separate

Mode The data format and structure define the type of content transmitted.

4 Indicates the server responds to a client command; data format is string.
5 Indicates either that the server sends data to the client at fixed intervals or
the client sends a command to the server; data format is binary.
7 Initiates or stops data transmission from the server to the client.
8 Sets the transmission frequency (in Hz) for data sent from the server to the
client.
9 Configures the data content transmitted from the server to the client
, The symbol to separate
Content The data content. Formatted by the mode definition.

Note

TMRTS command is for the client and the server to communicate in both directions.
Under normal circumstances, the server periodically sends data to the client based on the
item list configured by the client using Mode 9. When the server sends to the client, the data
is sent to the client to read from the server with no response to the server required. When the
client sends to the server, the data is received by the server from the client to write with
response to the client required.

® |D Transaction Number

When the server sends data, it cycles from 0 to 9 with each iteration. When the client sends
data to the server, the transaction number can be in any alphanumeric characters customized
at the client side. If the communication packet format is checked and correct, the server will
reply to the client with the command processing status by the transaction number in the packet.

® Mode Formatand Mode for the Data Content
When Mode = 1, the client writes data to the server. The client can write multiple items in
a single transmission, it is not limited to one. The server will send the command processing

Omron TM Collaborative Robot: TMScript Language Manual (1664) 550

e

status according to the format of Mode 0, described in the section below.

When Mode = 8 or 9, the client configures the data transmission frequency and content.
When Mode =7, the client starts or stops data transmission. The typical usage flow is as follows:

3.
4.

1. Enable the RTRS service.
2.

Configure the transmission frequency and data content using the TMRTS protocol,
Mode 8 and Mode 9, respectively.

Start data transmission using TMRTS Mode 7.

To write data, send a command using TMRTS Mode 1.

® \Writing or Reading Confirmation

When the client sends data writing to the server, the servers check whether all the criteria
are correct before performing the request. If there is any error with the write command, no
request will be performed. The criteria to write to the server are:

1.

N

No ook

Data format being transmitted (Mode)

Whether the connected IP address has write permission (IP address with Write
Permission)

Whether the data content conforms to the data format (Mode and Content)
The item to write exists.

The attribute of the item to write is not read only.

The written data matches the data type of each item.

Data transmission settings (Mode 9) are successfully configured.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 551

e

22.3.1 Mode =0 (the server status response to the client command processing)
After the server receives and processes a write command from a client, it will respond with

another command with Mode 0. The details for Mode O are as follows.

Data

ID

Mode Error Code Error Description

Transaction ID

0 00..08

Transaction ID

Defined while the client sends the command for the server to reply

with.

Mode 0 for the server to respond to the client

Error Code Error code definitions. Fixed as 2 hexadecimal bytes, but without Ox.
00 Correct writing. No error.
01 The communication format or mode is not supported. (Ex. Mode = 99)
02 The connected client is not permitted to write. (IP address without write
permission)
03 The communication format and the data content format are mismatched.

(Ex. Not in binary format)

04 Item to write does not exist.
05 Unable to write to read-only items.
07 Values to write does not match the configured type or the size.
08 Incomplete data transmission configuration.

Error Description

00
01
02
03
04
05
07
08

Error description, following the error code

OK

NotSupport; XXX

WritePermission

InvalidData

NotExist; XXX Il ;XXX denotes which the incorrect data item
ReadOnly; XXX

ValueError; XXX

Settinglncomplete

Omron TM Collaborative Robot: TMScript Language Manual (1664) 552

e

When input is correct and the server responds
< 24544D 525453 2C /I $TMRTS, /I Header

352C 5, Il Length
322C 37 2C 12,7, /l transaction ID 2, mode 7
30 /10 /I Close data transmission
2C 2A 36 30 0D OA /1 ,*60\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
39 2C 19, /I Length
322C 302C /12,0, /I server responds to ID 2, mode 0
3030 2C /1 00, /I Error Code 00
4F 4B /I OK /I Correct writing
2C 2A 37 33 0D OA /1 *73\r\n /I Checksum

When using a non-existent Mode
< 24544D 525453 2C //$TMRTS, /I Header

352C 1I'5, /I Length
332C 352C /13,5, /l transaction 1D 3, mode 5
30 110
2C 2A 36 33 0D OA /1 *63\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
3230 2C 11 20, /I Length
33 2C 302C /1 3,0, /I server responds to ID 30, mode 0
3031 2C /101, /I Error Code 01
4E 6F 74537570 70 6F 72 74 3B 20 35 // NotSupport; 5 // mode 5 not supported
2C 2A 37 38 OD OA 11 *78\r\n /I Checksum

When multiple clients write to the same item simultaneously, all writes will occur on the first
client if a client without write permission issues a write command.
< 24544D 525453 2C /I $TMRTS, /I Header

3137 2C 117, Il Length
312C 312C 11,1, /I transaction 1D 1, mode 1
08004374726C 5F 44 4F 31 010001 // Ctrl_DO1=1 // The name occupied 8 bytes, the value, 1
byte

2C 2A 32 320D 0A I *22\r\n /I Checksum

> 24544D 525453 2C /I $TMRTS, I/l Header
32322C 1122, /I Length
312C 302C /11,0, /I server responds to ID 1, mode 0
3032 2C 1102, /I Error Code 02
57 7269 74 655065 726D 69 73 73 69 6F 6E // WritePermission // No writing permission
2C 2A 33 39 0D OA /1 *39\r\n /I Checksum

When the data content is invalid

< 24544D 5254532C //$TMRTS, /I Header
3137 2C 117, /I Length
33322C 392C 1132,9, /I transaction 1D 32, mode 9

0B 00 4A 6F 69 6E 74 41 6E 67 6C 65 /I JointAngle
/I The name occupied 11 bytes, and 10 bytes, actually

Omron TM Collaborative Robot: TMScript Language Manual (1664) 553

e

2C 2A 34 32 0D OA Il *42\r\n /I Checksum
> 24544D 5254 53 2C // $TMRTS, Il Header
3139 2C 1119, Il Length
33322C 302C 11'32,0, /I server responds to ID 32, mode 0
3033 2C 11 03, /I Error Code 03
49 6E 76 61 6C 69 64 44 61 74 61 /' InvalidData // Incorrect number of bytes used for
the item name.
2C 2A 31 37 0D OA Il *17\r\n /I Checksum

When attempting to configure a non-existent item as a data exchange target
< 24544D 525453 2C /I $TMRTS, I/l Header

37 2C 17, /I Length
30 2C 39 2C /10,9, /I transaction ID 0, mode 9
01 00 30 /10 /I The name occupied 1 byte

2C 2A 36 46 0D OA /I *6F\r\n /I Checksum
> 24544D 5254532C /I $TMRTS, // Header

3137 2C 1117, /I Length

30 2C 302C /10,0, /I server responds to ID 0, mode 0
3034 2C 11 04, Il Error Code 04

4E6F 74457869 73 74 3B 30 /I NotExist;0 // Item 0 does not exist.
2C 2A 34 33 0D OA /1, *43\r\n /I Checksum

When the client writes a value to a read-only item
< 24544D 525453 2C //$TMRTS, /I Header

3137 2C 1117, /I Length
3237 2C 312C 1127,1, // transaction 1D 27, mode 1
07 00 45 6E 64 5F 44 49 30 01 00 01 /I End_DIO=1 /I The name occupied 7 bytes, the value, 1
byte
2C 2A 37 38 0D OA /1, *78\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
3234 2C 1124, Il Length
3237 2C 302C 11 27,0, /I server responds to ID 27, mode 0
3035 2C /1 05, /I Error Code 05
52 65 61 64 4F 6E 6C 79 3B 45 6E 64 5F 44 49 30 // ReadOnly;End_DIO

/IRead-only access only.
2C 2A 36 41 0D OA 11 *6A\r\n /I Checksum

When the value in the client’'s command exceeds the allowable range
< 24544D 525453 2C /I $TMRTS, /I Header

39 2C 119, /I Length
33302C 382C /1 30,8, // transaction 1D 30, mode 8
000016 44 /1 600 /I Floating-point number
2C 2A 33 30 0D OA /1 *30\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
34 34 2C 11 44, Il Length
33302C 302C /1 30,0, /I server responds to ID 30, mode 0
30 37 2C 1107, /I Error Code 07

Omron TM Collaborative Robot: TMScript Language Manual (1664) 554

e

56 61 6C 75654572 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6F 75 74 20 6F
66 20 72 61 6E 67 65
2C 2A 34 30 0D OA

/I ValueError;The value is out of range
Il *40\r\n /I Checksum

/I Value out of range

When the client attempts to start data transmission without completing the data exchange
item configuration

< 24544D 525453 2C /I $TMRTS, /I Header
352C II'5, /I Length
312C 372C 11,7, /l transaction ID 1, mode 7
31 I /I Open data transmission
2C 2A 36 32 0D OA /1 ,*62\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
3234 2C 1124, /I Length
312C 302C /11,0, /I server responds to ID 1, mode 0
3038 2C /1 08, /I Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65// Settingincomplete
/I Configuration incomplete.
2C 2A 3342 0D 0A

/I *3B\r\n /I Checksum

Assume the Client sets the read-only data in the server

< 24544D 525453 2C //$TMRTS, /I Header
3138 2C /18, /I Length
32322C 312C 11221, // transaction ID 22, mode 1, binary

08 004374 72 6C 5F 4449 3001 00 01 // Ctrl_DI0=1

/I The name occupied 8 bytes, the value, 1 byte

2C 2A 3142 0D OA /1 *1B\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
32352C Il 25, /I Length
32322C 302C 1122,0, /I server responds to ID 22, mode 0
3035 2C /1 05, /I error code 05

52 65 61 64 4F 6E 6C 79 3B 43 74 72 6C 5F 44 49 30 /I ReadOnly;Ctrl_DIO

/I Read-only access only
2C 2A 30 38 0D OA

/I ;*08\r\n /I Checksum

Assume the data name length setting is incorrect when configuring the server from the client

< 24544D 525453 2C /I $TMRTS, /I Header
3137 2C 117, /Il Length
322C 312C 12,1, /I transaction ID 2, mode 1, binary
00004374 726C 5F 44 4F 30010001 // Ctrl_DIO=1
/I The name occupied 0 byte (error), the value, 1 byte
2C 2A 32 38 0D OA /11 ,¥28\r\n /I Checksum
> 24544D 525453 2C I $TMRTS, /I Header
3138 2C 1118, Il Length
322C 302C /12,0, /I server responds to ID 2, mode 0
30 332C /1 03, /I error code 03

49 6E 76 61 6C 69 64 44 61 74 61
2C 2A 32 35 0D OA Il *25\r\n

/I InvalidData // Invalid data

/I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664)

555

e

22.3.2 Mode = 1 BINARY
The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown below.
Mode 1 works as the server regularly sends predefined data items to one or more clients, when
a client writes values to writable data items on the server. When multiple clients are connected,
write access is granted to the first client that writes to a data exchange item. Due to the potential
for high-frequency communication, the server does not send a response when a client command

is correct.
Data
ID Mode Content
Transaction ID , 1 , Item and Value
\
Length of Value Value
) é‘y‘;gg tL'I'tt‘/’; gﬁ’;}an L’f%’% 2 gyteg Little Little Endian /
Endian UTF8

Length of ltem 2 bytes in Little Endian, value from 0 to 65535 indicating the length of
the item that follows

ltem item name

Length of Value 2 bytes in Little Endian, value from 0 to 65535 indicating the length of
the data value that follows

Value data value

Assume the communication data includes Joint_Angle (type: float[]) transmitted from the Server

to the Client.
> 2454 4D 5254 532C // $TMRTS, Il Header
34 33 2C 11 43, Il Length
302C 312C /10,1, /I transaction ID 0, mode 1, binary

0B 00 4A 6F 69 6E 74 5F 41 6E 67 6C 6518 00 3C BD 2D 41 3F F7 14 C3 77 ED 36 42 AB
FE OF 43 78 FA 95 41 4F 6F 07 42 /1Joint_Angle={10.8587, -148.9658, 45.7319, 143.9948,

18.7473, 33.8587}
/I The name occupied 11 bytes, the value, 24 bytes

2C 2A 30 42 0D OA /I *OB\r\n /I Checksum

Assume the Client sets the values of Ctrl_DO2 (type: byte) and Ctrl_AOQO (type: float). Note that
in this case, the Server will not respond to the Client.

< 24544D 525453 2C //$TMRTS, /| Header

34 31 2C 1141, Il Length
312C 312C 11,1, /I transaction ID 1, mode 1, binary
08 00 4374 72 6C 5F 44 4F 32 01 00 01 /I Ctrl_DO2=1

/I The name occupied 8 bytes, the value, 1 byte

08 00 43 74 72 6C 5F 41 4F 30 04 00 00 00 80 3F /I Ctrl_AO0=1

/I The name occupied 8 bytes, the value, 4 bytes

2C 2A 44 39 0D OA /I *D9\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 556

e

Assume the Client sets the read-only data in the server

< 24544D 5254 532C //$TMRTS,
3138 2C 1118,
32322C 312C 22,1,

08 00 43 74 72 6C 5F 44 49 30 01 00 01

2C 2A 3142 0D OA /I *1B\r\n
> 2454 4D 5254 53 2C /I $TMRTS,
32352C 11 25,
32322C 302C 11 22,0,
3035 2C /1 05,

52 6561 64 4F 6E 6C 79 3B 43 74 72 6C 5F 44 49 30

2C 2A 30 38 OD OA I1,*08\r\n

/l Header
/I Length
/I transaction ID 22, mode 1, binary

// Ctrl_DI0=1
/I The name occupied 8 bytes, the value, 1 byte
/I Checksum

/I Header

/I Length

/I server responds to ID 22, mode 0

/I error code 05

/I ReadOnly;Ctrl_DIO

/I Read-only access only
/I Checksum

Assume the data name length setting is incorrect when configuring the server from the client

< 24544D5254532C //$TMRTS,
3137 2C 117,
322C 312C 2.1,

0000 43 74 72 6C 5F 44 4F 30 01 00 01

2C 2A 3238 0D OA Il *28\r\n

> 2454 4D 5254 53 2C /I $TMRTS,
3138 2C 1118,
322C 302C 12,0,
30332C 11 03,

49 6E 76 61 6C 69 64 44 61 74 61
2C 2A 32 350D OA Il *25\r\n

/I Header

/I Length

/ transaction ID 2, mode 1, binary
/I Ctrl_DI0=1

/I The name occupied 0 byte (error), the value, 1 byte

/I Checksum

/I Header

/I Length

/I server responds to ID 2, mode O
Il error code 03
I/l InvalidData
/I Checksum

/I Invalid data

Omron TM Collaborative Robot: TMScript Language Manual (1664) 557

e

22.3.3 Mode =7 START/STOP Data Streaming
The system transmits content in UTF-8 format to configure the start or stop of data transmission.

The table below provides a detailed outline of the format.

Data
ID Mode Content
Transaction 1D , 7 , Value
/ UTF8
'0". STOP
1" START
To start data transmission
< 24544D 525453 2C /I $TMRTS, /I Header
352C 1I'5, /I Length
32 2C 37 2C 12,7, // transaction ID 2,7
31 i1 /I Start data transmission
2C 2A 36 31 0D OA /1 ,*61\r\n /I Checksum
> 24544D 525453 2C /I $STMRTS, /I Header
39 2C 19, /I Length
322C 302C 12,0, /I server responds to ID 2, mode 0
3030 2C /1 00, /I Error Code 00
4F 4B /I OK /I Correct writing
2C 2A 37 33 0D OA /1 *73\r\n /I Checksum

To enable the streaming function before completing the data transmission settings (Mode 9)

< 24544D 525453 2C /I $TMRTS, /Il Header

352C II'5, /I Length
312C 37 2C 11,7, /I transaction ID 1, mode 7, binary
31 11 /I Activate data transmission
2C 2A 36 32 0D OA I *62\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header
3234 2C Il 24, /I Length
312C 302C /1,0, /I server responds to ID 1, mode 0
3038 2C /1 08, /I Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65

/I Settinglncomplete

/I Response for incomplete data transmission settings (Mode 9)
2C 2A 3342 0D 0A /1 *3B\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 558

e

22.3.4 Mode = 8 SET Streaming Frequency
The system transmits data in binary format at a default frequency of 50 Hz. The system

converts the frequency and rounds it to the nearest whole millisecond. The server then
transmits the data at the specified frequency. The table below provides a detailed outline of the

format.
Data
ID Mode Content
Transaction ID , 8 Value
float Little Endian
50-500 (Hz)

To configure the streaming transmission frequency

< 24544D 525453 2C

38 2C

322C 382C
000048 42

2C 2A 3538 0D OA
24 54 4D 52 54 53 2C
39 2C

322C 302C

30 30 2C 4F 4B

2C 2A 37 33 0D OA

24 54 4D 52 54 53 2C
38 2C

332C 382C
00007A44

2C 2A 36 44 0D OA
24 54 4D 52 54 53 2C
34332C

332C 302C

3037 2C

I $TMRTS,
/'8,

12,8,

/11’50

/1 *58\r\n

I $TMRTS,
119,

/12,0,

// 00,0K

Il *73\r\n

I $TMRTS,
/'8,

/3,8,

// 1000

/I ,*6D\r\n
I $TMRTS,
I 43,

/3,0,

/107,

/l Header

/I Length

/ transaction ID 2, mode 8

/I Set transmission frequency to 50 Hz.
/I Checksum

/I Header

/I Length

/I server responds to ID 2, mode O

/I Error Code 00 > Correct writing

/I Checksum

/l Header

/I Length

/ transaction 1D 3, mode 8

/I Set transmission frequency to 1000Hz
/I Checksum

/I Header

/I Length

[transaction ID 3mode 0

/I Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6F 75 74 20 6F

66 20 72 61 6E 67 65

2C 2A 37 37 0D OA

Omron TM Collaborative Robot: TMScript Language Manual (1664)

/I *77\r\n

/I ValueError;The value is out of range
/I The configured value exceeds the limit.
/I Checksum

559

e

22.3.5 Mode =9 SET Streaming Data

The system transmits data content using a binary format. Configure the names of the data items
to be transmitted periodically using the format shown in the table below.

Data (client to server)

ID Mode Content
Transaction 1D , 9 , Item
Length of Item Item Configure the data item without
2 bytes Little Endian UTFS8 requiring a Value field, unlike Mode = 1.

Length of ltem

Present the item name length using 2 bytes in Little Endian format. The

value ranges from 0 to 65535 and indicates the length of the following

item name.

Item The name of the item.

To configure Joint_Angle as the data content that the server periodically sends to the client,

< 24544D 525453 2C //$TMRTS, /I Header
3137 2C 117, Il Length
312C 392C 11,9,

0B 00 4A 6F 69 6E 74 5F 41 6E 67 6C 65

/I Joint_Angle

/I transaction ID 1, mode 9

/I The name occupied 11 bytes

/ transaction ID 1, mode O
/I Error Code 00 - Correct writing

2C 2A 3244 0D 0A /I *2D\r\n /I Checksum
> 24544D 525453 2C /I $TMRTS, /I Header

39 2C 19, /I Length

312C302C 11,0,

30 30 2C 4F 4B /1 00,0K

2C 2A 37 30 0D OA /1, *70\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664)

560

e

21.4 TMRTC
Start Byte Hdr Len Data Checksum | End Byte1 End Byte2
$ TMRTC , Length , Data , * Checksum \r \n

ID Mode Content
0/1/
7/8

Transaction ID , , Iltem and Value

TMRTC is defined as the communication protocol used on port 5896 in the Real-Time Remote
Server (RTRS). The Data section of the packet is further divided into three segments, ID
(Transaction ID), Mode (Content Mode), and Content (Item and Value), separated with commas
and described below.

ID The transaction number expressed in any alphanumeric characters. (Reports the
CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a
communication packet response, it is a transaction number that identifies which
group of commands to respond.

, The symbol to separate

Mode The data format and structure define the type of content transmitted.

0 Indicates that the server responds to a command from the client as a string
format
1 Indicates that the client sends a motion control command to the server as a
binary format
7 Indicates to set the start or stop of the server's motion control mode
8 Indicates to configure the type and parameters of motion control
, The symbol to separate
Content The data content. Formatted by the mode definition.

Note

TMRTC command is for the client and the server to communicate in both directions.
When the client sends a motion control setting (Mode 8) to the server, the server responds
with Mode 0. However, when the client sends a motion control command (Mode 1), the server
does not respond to the client.

TMRTC only allows a single client connection at a time. During motion execution, the
server continuously receives motion commands from the client. If an unexpected
disconnection occurs during this process, the server may remain in a state of waiting for
further commands. In such cases, rebooting the robot arm is required.

® ID Transaction Number

TMRTC, unlike TMRTS, does not perform periodic data transmission. It only responds to
the client when receiving a motion control setting command (Mode 8). Therefore, all
transmission IDs are user-defined alphanumeric strings assigned by the client. After verifying
that the packet format is correct, the server uses the transmission ID in the packet to reply with
the command processing status.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 561

e

® Mode Format and Mode for the Data Content

When Mode = 8, the client configures the server’s motion control settings, and the server
must respond using Mode 0 to acknowledge the configuration. When Mode = 1, the client sends
motion control values to the server, and the server does not respond using Mode 0.

When Mode = 7, the client sets the server to start or stop motion control mode. The typical
usage flow is as follows:

4.
5. Update the motion control target values using Mode 1.

1. Enable the RTRS service and check motion control instructions.
2.
3. Connect to port 5896 (TMRTC) and configure the motion control settings using Mode

Connect to port 5895 (TMRTS) and retrieve the robot status.

8.
Enable motion control Mode 7.

® \Writing or Reading Confirmation

When the client sends data writing to the server, the servers checks whether all the criteria
are correct before performing the request. If there is any error with the write command, no
request will be performed. The criteria to write for inspection are:

1.

N

No ook

Data format being transmitted (Mode)

Whether the connected IP address has write permission (IP address with Write
Permission)

Whether the data content conforms to the data format (Mode and Content)
The written data matches the data type of each item.

Motion control settings (Mode 8) successfully configured.

Whether the system is in a motion-controllable state.

Whether motion control (Mode 7) has started.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 562

e

22.4.1 Mode =0 (the server status response to the client command processing)
After the server receives and processes a write command from a client, it will respond with

another command with Mode 0. The details for Mode O are as follows.

Data
ID Mode Error Code Error Description
Transaction 0 , 00, 01, 02, 03, ,
ID 07,08, 09, 10
Transaction ID Defined while the client sends the command for the server to reply
with
Mode 0 for the server to respond to the client
Error Code Error code definitions. Fixed as 2 hexadecimal bytes, but without Ox.
00 Correct writing. No error.
01 The communication format or mode is not supported. (Ex. Mode = 99)
02 The connected client is not permitted to write. (IP address without write
permission)
03 The communication format and the data content format are mismatched
07 Values to write does not match with the configured type or the size.
08 Incomplete motion control configuration.
09 Motion command is not permitted.
10 Motion has already started

Error Description

00
01
02
03
07
08
09
10

Error description, following the error code.

OK
NotSupport; XXX
WritePermission
InvalidData
ValueError; XXX
Settinglncomplete
MotionNotAllowed
MotionStarted

Omron TM Collaborative Robot: TMScript Language Manual (1664)

563

e

When the setting command is correct

< 24544D 525443 2C /I $TMRTC, /I Header
352C 5, Il Length
312C 37 2C 11,7, /l transaction ID 1, mode 7
30 110 // Stop motion control
2C 2A 37 33 0D OA /1, *73\r\n /I Checksum

> 24544D 525443 2C /I $TMRTC, /I Header
39 2C 19, /I Length
312C 30 2C /11,0, /I server responds to ID 1, mode 0
3030 2C /1 00, /I Error Code 00
4F 4B /I OK /I Correct writing
2C 2A 36 30 0D OA /1 ,*60\r\n /I Checksum

When using a non-existent Mode

< 24544D 525443 2C /I $TMRTC, /I Header
352C 1I'5, /I Length
302C 352C 11,7, /l transaction 1D 0, mode 5
30 /10 1l
2C 2A 37 30 0D OA 11,*70\\n /I Checksum

> 24544D 525443 2C /I $TMRTC, /I Header
3230 2C 11 20, /I Length
30 2C 30 2C /10,0, /I server responds to ID 0, mode 0
3031 2C /101, /I Error Code 01

4E 6F 7453 7570 70 6F 72 74 3B 20 35 // NotSupport; 5
2C 2A 36 42 0D OA /I *6B\r\n /I Checksum

/I mode 5 not supported

When Mode 7 is activated and a Mode 8 command is subsequently issued
< 24544D 525443 2C /I STMRTC, /I Header
3139 2C 1119, /I Length
31312C 382C /1111,8, /I transaction ID 11, mode 8
53 4A F4 01 00 00 00 00 80 3F F4 01 00 00 // S J 500 1 500
/I Position mode, Joint angle mode, Acceleration-to-max-speed time:
500 ms, Gain: 1, Expected command interval: 500 ms

2C 2A 45 36 0D OA /I *E6\r\n /I Checksum
> 2454 4D 5254 43 2C /I STMRTC, /I Header
32332C 1123, /Il Length
31312C 302C /11,0, /I server responds to ID 11, mode 0
3032 2C 1102, /I Error Code 02

577269 74 655065 726D 69 73 73 69 6F 6E // WritePermission
/I When Mode 7 is active, it is not possible to write Mode 8 settings.
2C 2A 31 39 0D OA /1 *19\r\n /I Checksum

When the Mode is not specified
< 24544D 5254 432C //$TMRTC, /I Header
34 2C 4, Il Length
312C__2C I,
31 11

/I transaction ID 1, no mode

Omron TM Collaborative Robot: TMScript Language Manual (1664) 564

e

2C 2A 34 34 0D OA I *44\r\n /I Checksum

> 24544D 525443 2C /I $TMRTC, /I Header
3138 2C 1118, Il Length
312C 302C /11,0, /I server responds to ID 1, mode 0
3033 2C /1 03, /I Error Code 03
49 6E 76 61 6C 69 64 44 61 74 61 /l InvalidData // Invalid content
2C 2A 33 36 OD OA /1 *36\r\n /I Checksum

If the value in the command is invalid (blank)
< 24544D 525443 2C /I $TMRTC, /I Header
34 2C 14, /I Length
30 2C 38 2C /10,8, // transaction 1D 0, mode 8
1l
2C 2A 34 43 0D OA /I *4C\r\n /I Checksum
> 24544D 525443 2C /I $TMRTC, /I Header

34 32 2C 1142, /I Length

30 2C 302C /10,0, /I server responds to ID 0, mode 0

3037 2C 1107, /I Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 7565 2069 73 20 6E 6F 74 20 73
7570706F 7274 // ValueError;The value is not support // Invalid value

2C 2A 34 37 0D OA I *47\r\n /I Checksum

If the value in the command is invalid (incorrect value)
< 24544D 5254 432C /I $TMRTC, /l Header
3138 2C /18, /I Length
302C 382C 10,8, // transaction 1D 0, mode 8
53 56 96 00 00 00 00 00 80 3F E8 03 00 00 // SV 150 1 1000
/I Position mode, V mode (not supported), Acceleration-to-max-speed

time: 150 ms, Gain: 1, Expected command interval: 1000 ms
2C 2A 42 36 0D OA /' *B6\r\n /I Checksum

> 2454 4D 525443 2C // $TMRTC, /I Header

34 32 2C 1142, /I Length

302C 302C /10,0, // transaction 1D 0, mode 0

3037 2C 1107, /I Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 7565 20 69 73 20 6E 6F 74 20 73
7570 706F 7274 /I ValueError;The value is not support I/l Unsupported value error

2C 2A 34 37 OD OA I *47\r\n /I Checksum

If the motion setting is incomplete and the client issues a start motion command (Mode 7)
< 24544D 525443 2C /I $TMRTC, /I Header

352C 15, Il Length
332C 372C 13,7, // transaction 1D 3, mode 7
31 /1 /I Start motion control
2C 2A 37 30 0D OA /I *70\\n /I Checksum
> 24544D 525443 2C /I $TMRTC, /I Header
3234 2C 1124, Il Length
332C 302C /13,0, /I server responds to ID 3, mode 0

Omron TM Collaborative Robot: TMScript Language Manual (1664) 565

e

30 38 2C /1 08, /I Error Code 08
53 6574 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65// Settingincomplete

/I Motion control configuration incomplete
2C 2A 32 39 0D OA /1 ,*29\r\n /I Checksum

If a motion control command is issued before motion control is enabled

<

24 54 4D 5254 43 2C /I $TMRTC, /I Header

3238 2C I 28, /I Length

302C 312C /10,1, /I transaction 1D 0, mode 1
CDcccca3bcbcccc3bCcbcccc3bChbcccc3bCbCcccc3bCbccccc3b
//{0.1.0.1,0.1,0.1,0.1,0.1}

2C 2A 37 42 0D OA /I *7B\r\n /I Checksum

24 54 4D 5254 43 2C /I $STMRTC, /I Header

3233 2C 1123, Il Length
30 2C 30 2C /10,0, /I server responds to ID 0, mode 0
3039 2C /1 09, /I Error Code 09
4D 6F 74 69 6F 6E 4E 6F 74 41 6C 6C 6F 77 65 64 /I MotionNotAllowed
/I Motion command not permitted
2C 2A 36 37 0D OA 11 *67\r\n /I Checksum

If motion control has already started and the client issues a start motion command (Mode 7)

<

24 54 4D 52 54 43 2C /| $TMRTC, /I Header

352C 5, Il Length

322C 372C 1277, /l transaction 1D 2, mode 7

31 11 /I Start motion control

2C 2A 37 30 0D OA /1 *71\r\n /I Checksum

24 54 4D 5254 43 2C // $TMRTC, I/l Header

3230 2C /1 20, Il Length

322C 30 2C /12,0, /I server responds to ID 2, mode 0

3130 2C /1 10, /I Error Code 10

4D 6F 74 69 6F 6E 53 74 61 7274 6564 // MotionStarted // Motion control already started
2C 2A 32 32 0D 0A I *22\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 566

e

22.4.2 Mode = 1 BINARY
The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

Data

ID Mode Content

Transaction ID 1 Value

))

/

| 6 * float Little Endian

Configure motion control command values

<

24 54 4D 5254 43 2C /I $TMRTC, /I Header

3238 2C I 28, /I Length

302C 312C /10,1, /I transaction 1D 0, mode 1

3CBD 2D 41 3F F7 14 C377 ED 36 42 AB FE OF 43 78 FA 95 41 4F 6F 07 42
//{10.8587,-148.9658,45.7319,143.9948,18.7473,33.8587}

2C 2A 34 44 0D OA /I *AD\r\n /I Checksum

If the command value format is incorrect-

24 54 4D 52 54 43 2C /I $TMRTC, /I Header

32352C Il 25, /I Length

31322C 312C 1112,1, /l transaction ID 12, mode 1

0000 C8420000C8420000C8420000C8420000C842
// {100,100,100,100,100} five values only

2C 2A 43 46 0D OA /I *CF\r\n /I Checksum

24 54 4D 5254 43 2C /| $STMRTC, /I Header

34 30 2C Il 40, /I Length
31322C 302C /1 12,0, /I transaction ID 12, mode 0
3037 2C /107, /I Error Code 07

56 61 6C 75654572 72 6F 72 3B 43 6F 6E 74 65 6E 74 4C 65 6E 67 74 68 20 69 6C 6C 65
67 61 6C

/I ValueError;ContentLength illegal // Invalid content length
2C 2A 37 37 0D OA I *77\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 567

e

22.4.3 Mode =7 START/STOP Motion Control
The system transmits content in UTF-8 format to configure the start or stop of motion control.

The table below provides a detailed outline of the format.

Data
ID Mode Content
Transaction 1D , 7 y Value \
UTF8
‘0" STOP
‘1" START

To activate motion control, use the example below.

< 24544D 525443 2C //$TMRTC, /| Header

352C 1I'5, /I Length
38 2C 37 2C 18,7, /I transaction ID 2, mode 7, binary
31 i1 /I Start motion control

2C 2A 37 42 0D OA /I *7B\r\n /I Checksum
> 24544D 525443 2C // $TMRTC, /I Header

39 2C 19, /I Length

382C 302C /18,0, /l transaction 1D 8, mode 0
3030 2C /1 00, / Error Code 0

4F 4B /I OK /I Correct writing

2C 2A 36 39 0D OA /1 ,*69\r\n /I Checksum

< 24544D 525443 2C //$TMRTC, /I Header

352C Il'5, /I Length
322C 372C 12,7, /l transaction ID 2, mode 7, binary
31 11 /I Start motion control
2C 2A 37 31 0D OA /1 *71\r\n /I Checksum
> 24544D 525443 2C /I $TMRTC, I/l Header
3234 2C 1124, Il Length
322C 302C /12,0, /I transaction 1D 2, mode 0
30 38 2C /108 /I Error Code 08

53 6574 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65// Settingincomplete
/I Configuration incomplete.
2C 2A 32 38 OD OA I *28\r\n /I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 568

e

22.4.4 Mode = 8 SET Motion Control Settings
The system transmits data in binary format to define the motion control type and its parameters.

For parameter definitions, refer to the Position() and Velocity() functions in the chapter on Robot

Motion and Vision Tasks.

The table below provides a detailed outline of the format.

Data
ID Mode Content
Transaction ID , 8 , Item and Value
Position Control Mode | Acceleration Time Gain Control Interval
Position(S) »> 1 byte string 1 byte string 4 bytes int 4 bytes float 4 bytes int
'S’ '‘Cor'Tor'J 150-2000 1-100 >=2
Velocity Control Mode | Acceleration Time | Control Interval
Velocity(V) > 1 byte string 1 byte string 4 bytes int 4 bytes int
V' '‘C'or'T'or'J 150-2000 >=2

To set the motion control to Position mode and Joint angle mode, acceleration time to max-
speed time: 150 ms, gain value of 1, and the expected command interval of 1000 ms, use the

following example:

< 24544D5254432C //$TMRTC,
31382C 118,
352C 382C 15,8,

/I Header
/I Length
/[transaction ID 5, mode 8

53 4A 96 00 00 00 00 00 80 3F E8 03 00 00// S J 150 1 1000

/I Position mode, Joint angle mode, Acceleration-to-max-speed time:
150 ms, Gain: 1, Expected command interval: 1000 ms

2C 2A 41 46 0D OA I *AF\r\n
> 24544D5254432C //$TMRTC,

392C 9,

352C 302C 11'5,0,

3030 2C 1100,

4F 4B I OK

2C 2A 36 34 0D OA Il *64\r\n

If the command contains invalid values

< 24544D5254432C //$TMRTC,
31382C 1118,
302C 382C 10,8,

/I Checksum

/l Header

/I Length

/ transaction ID 5, mode O
/I Error Code 00

/I Correct writing

/I Checksum

/I Header
/I Length
/I transaction ID 0, mode 8

53 56 96 00 00 00 00 00 80 3F E8 03 00 00 // SV 150 1 1000

/I Position mode, V mode (not supported), Acceleration-to-max-speed time:
150 ms, Gain: 1, Expected command interval: 1000 ms

2C 2A 42 36 0D OA Il *B6\r\n

> 24544D5254432C //$TMRTC,
3432 2C 1142,
302C 302C /10,0,
3037 2C 1107,

/I Checksum

/I Header

/I Length

/ transaction ID 0, mode O
I/l Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

757070 6F 7274

Omron TM Collaborative Robot: TMScript Language Manual (1664)

/I ValueError;The value is not support

/I Unsupported value error

569

e

2C 2A 34 37 0D OA Il *47\r\n

/I Checksum

If the command contains invalid values (e.g., incorrect number of parameters)

< 24544D 5254 43 2C /I $TMRTC,

31382C 11 18,
332C 382C 13,8,

/I Header
/I Length
/I transaction ID 3, mode 8

56 4A 96 00 00 00 02 00 00 00 E8 03 00 00 // vV J 150 2 1000

/I Velocity mode, J mode, acceleration to maximum speed in 150 ms,
expected control command interval: 2 ms, unknown parameter: 1000

2C 2A 31 31 0D OA I ¥11\r\n
> 24544D5254432C //$TMRTC,

3432 2C 1142,
332C 302C 13,0,
3037 2C 1107,

/I Checksum

/l Header

/I Length

/ transaction ID 3, mode 0
/I Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

7570706F 7274

/I ValueError;The value is not support // Unsupported value error
2C 2A 34 34 0D OA Il *44\r\n

/I Checksum

If the command contains invalid values (e.g., value out of range)

< 24544D 5254 43 2C /I $TMRTC,

3134 2C 1114,
302C 382C 10,8,
56 4A 64 00 00 00 02 00 00 00

/I Header

/I Length

/ transaction 1D 0, mode 8
/I'V 31002

/I Velocity mode, J mode, acceleration to maximum speed in 100 ms
(exceeds the range), expected control command interval: 2 ms

2C 2A 30 37 0D OA I *07\r\n
> 24544D 525443 2C //$TMRTC,

3432 2C 1142,
302C 302C 110,0,
3037 2C 1107,

/I Checksum

/l Header

/I Length

/ transaction 1D 0, mode O
Il Error Code 07

56 61 6C 7565457272 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

7570706F 7274

/I ValueError; The value is not support
2C 2A 34 34 OD OA Il *47\r\n

/I Unsupported value error
/I Checksum

Omron TM Collaborative Robot: TMScript Language Manual (1664) 570

e

22.Compliance Functions

22.1

Compliance Class

Use the Compliance class and declare variables to provide users with the robot compliance
control setting and the stop conditions.

Construct 1

Compliance VariableName

Parameters No input parameter
Note
Compliance cp1

/I Declare compliance control variable.

Member Methods

Name Default Description

Reset() Reset all the compliance control motion parameters to the
default.

Frame() . Set .the reference coordinate of the compliance control
motion.

HighResistance() false Resistance on the non-motion direction (X,Y,Z).

Single() The single axis parameter of the compliance control motion

Teach() The teach parameter of the compliance control motion

Multiple() The multiple axes parameter of the compliance control motion

Impedance The impedance parameter of the compliance control motion

Timeout() - The stop condition of timeout

Dinput() - The stop condition of digital input

Alnput() - The stop condition of analog input

Condition() - The stop condition of the conditional expression

Start() true Start the compliance control motion.

Stop() Stop the compliance control motion.

23.1.1 Reset()

Reset all the compliance control motion parameters to the default.

Syntax 1
void Reset(

)

Parameters
void
Return
void

No input value

No return

23.1.2 Frame()

Set the reference base of the compliance control motion.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 571

e

Syntax 1
void Frame(
int
)
Parameters
int The base associated with the control motion
1 Tool
2 The current base
Return
void No return

23.1.3 HighResistance()

Set the resistance on the non-motion direction (X,Y,Z).

Syntax 1
void HighResistance(
bool
)
Parameters
bool The resistance on the non-motion direction (X,Y,Z)
false Default
true High resistance
Return
void No return

23.1.4 Single()

Set the single axis parameters of compliance control motion.

Syntax 1
void Single(
int or string,
int
)
Parameters
int or string
Direction
0O or "X" X 3 or "RX" RX
1 or "Y" Y 4 or "RY" RY
2 or "Z" z 5 or "RZ" RZ
int Distance X,Y,Z (mm) RX,RY,RZ (degree)
Return
void No return

23.1.5 Teach()

Set the teach parameters of compliance control motion.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 572

e

Syntax 1
void Teach(
int or string,
float[] or string,
float[] or string,

int
)
Parameters
int or string
Linear direction or rotating direction
0O or 'Linear" Linear direction
1 or "Rotation" Rotating direction
float[] or string
The 1% point {Xignm) Yiemm) Zigmm) RX1¢) RYiey RZym}or
The name of the 15t point (use the robot TCP coordinate)
float[] or string
The 2" point {Xonm) Yagmm) Zzanm) RX2¢) RYz() RZz()} 3
The name of the 2™ point (use the robot TCP coordinate
int Adjustment range Linear (mm) Rotation (degree)
Return
void No return

23.1.6 Multiple()

Set the Multiple Axes parameters of compliance control motion.

Syntax 1
void Multiple(
int or string,
bool,
int,
int,
)
Parameters
int or string
Direction
0O or "X" X 3 or "RX" RX
1 or "Y" Y 4 or "RY" RY
2 or "Z" Z 5 or "RZ" RZ
bool Enable the control to the assigned direction or not.
false Disable
true Enable
int Distance restriction upper bound X,Y,Z (mm) RX,RY,RZ (degree)
int Distance restriction lower bound X,Y,Z (mm) RX,RY,RZ (degree)
Return
void No return
Syntax 2
void Multiple(
int or string,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 573

e,

bool

)
Note

Same as Syntax 1 parameter definitions for setting whether to enable the control to the
assigned direction.

23.1.7 Impedance()

Set the impedance parameters of compliance control motion.

Syntax 1
void Impedance(
int or string,
int
)
Parameters
int or string
Axes to release
0 or "All"Release all axes
1 or "XYZ" ReleaseX,Y,Z
2 or "RXYZ" Release RX, RY, RZ
int Rigidity level
0 Soft
1 Intermediate
2 Stiff
Return
void No return

23.1.8 Timeout()

Set the stop condition of timeout.

Syntax 1
void Timeout(
int
)
Parameters
int Timeout in milliseconds
<0 Disable
>=0 Timeout duration
Return
void No return
Syntax 2
void Timeout(
)
Parameters
void No parameterfor cancelling the stop condition.
Return
void No return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 574

e

23.1.9 DInput()

Set the stop condition of the digital input.

Syntax 1
void DInput(
string,
int,
int or string
)
Parameters
string Control module name
ControlBox The control box
EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the stop condition to Low/High.
O or "L" Low
1 or "H" High
Return
void No return
Syntax 2
void Dinput(
int
)
Parameters
int The stroke ratio to start receiving digital input (valid when the operation
mode is " Compliance ")
Return
void No return
Syntax 3
void Dinput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

23.1.10AInput()

Set the stop condition of the analog input.
Syntax 1

void Alnput(

string,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 575

e

int,
int or string,
float
)
Parameters
string Control module name
ControlBox The control box
EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the condition to judge
0O or ™" Greater than
1 or ">=" Greater than or equal to
2 or "=="
Equal to (Recommend not to use since it is not easy to
hold the equal condition with analog input.)
3 or "<=" Less than or equal to
4 or "<" Less than
float Condition value
Return
void No return
Syntax 2
void Alnput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

23.1.11Condition()

Set the stop condition of the conditional expression.

Syntax 1
void Condition(
bool or ?
)
Parameters
bool or ? The conditional that can be true/false or a bool return of the statement.
Return
void No return
Syntax 2
void Condition(
)
Parameters
void No parameter for cancelling the stop condition.
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 576

e

void No return
23.1.12 Start()

Start the compliance control motion.

Syntax 1
int Start(
)
Parameters
void No input value
Return
int Return the result value after the force control motion stops.
0 Not Working
1 Working
2 Timeout
3 Distance reached
4 IO triggered
5 Resisted
6 Error
14 Over Speed

201 Digital 10 triggered

202 Analog IO triggered

203 Variable

204 Force is comprehended

205 Allowable Position Tolerances
206 Motion Finish

23.1.13Stop()

Stop the compliance control motion.

Syntax 1
int Stop(
)
Parameters
void No input value
Return
int Return the result value after the compliance control motion stops.

® Parameter Settings

Compliance cp1 /I Declare the compliance control variable.
(1)
cp1.Frame(1) Il Set the compliance control base as tool.
cp1.Frame(2) /I Set the compliance control base as the current base (will overwrite the
previous setting).
cp1.Reset() /I Reset all parameters

cp1.Frame(1)
cp1.Single("X", 30) Il Set direction X with distance of 30mm

Omron TM Collaborative Robot: TMScript Language Manual (1664) 577

e

cp1.Single("Z", 40) /I Set direction Z with distance of 40mm (will overwrite the previous Single
setting)
cp1.Reset() /I Reset all parameters

3)
cp1.Frame(1)
cp1.HighResistance(true) // Set the resistance on the non-motion direction to High Resistance

/I Control

cp1.Single("Z", 40) /I Set direction Z with distance of 40mm (use Single mode)

cp1.Teach("Linear", "P1", "P2", 0) /I Set the teach point P1 and P2 (will use Teach
mode instead)

cp1.AdvSet ("X", true, 100, -100) I/ Set direction X with advanced parameters (will use

Multiple mode instread)
cp1.AdvSet ("Z", true, 100, -10030) /I Set direction Z
cp1.AdvSet ("X", true, 10, -10) /I Set direction X with advanced parameters (will overwrite
the previous Multiple X parameter)
cp1.Impedance("All", 1) // Set the impedance parameter (will use Impedance mode instead)
/I Stop Criteria

cp1.Timeout(10000) /I Set timeout to 10000ms
cp1.DInput("ControlBox", 0, "H") /I When ControlBox DIO is High
cp1.Alnput("ControlBox", 0, ">=", 3.3) // When ControlBox AlO is greater than or equal to 3.3V
int count =0

cp1.Condition(count > 1000) // conditional expression

cp1.Reset() /I Reset all parameters

® Compliance Control
Compliance cp1
(1) Single Axis
PTP("JPP",{0,0,90,0,90,0},50,200,0,false)
cp1.Single("Z", 100) /I Set direction Z with distance of 100mm
int re = cp1.Start() /I Start the compliance control motion
/I Setdirection Z with a moving distance of 100mm, so it will move toward direction Z. Once the moving
distance is comprehended, it stops the control motion, exits the function, and returns the result
values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}

TPoint P2 = {617.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971 -

0.043}

PTP("JPP"{0,0,90,0,90,0},50,200,0,false)

cp1.Teach("Linear", "P1", "P2", 0) // Set the teach point P1 and P2 in the linear direction

cp1.Timeout(5000) /I Set timeout to 5000ms

int re = cp1.Start() /I Start the compliance control motion

/I Teach the two points in the linear direction. Once the moving distance and the teach linear direction
are comprehended, it stops the control motion, exits the function, and return the result values. Since
the timeout is set, if it does not comprehend the moving distance in time, it stops the control motion,
exits the function, and returns the result values.

PTP("JPP"{0,0,90,0,90,0},50,200,0,false)

cp1.Teach("Rotation", "P1", "P3", 0)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 578

e

/I Set the teach point P1 and P3 in the rotating direction

re = cp1.Start()

/I Teach the two points in the rotating direction. Once the moving distance and the teach rotating
direction are comprehended, it stops the control motion, exits the function, and return the result
values. Since the timeout is set (without resetting the timeout of CP1), if it does not comprehend the
moving distance in time, it stops the control motion, exits the function, and returns the result values.

(3) Multiple Axis

PTP("JPP"{0,0,90,0,90,0},50,200,0,false)

cp1.Multiple("X", true, 100, -100) // Set direction X with multiple axis parameters

cp1.Multiple("Z", true, 100, -100) // Set direction Z with multiple axis parameters

cp1.Multiple("X", true, 100, -100) // Set direction X with multiple axis parameters (will overwrite the
previous multiple axis parameters).

int re = cp1.Start() /I Start the compliance control motion
1l Set direction X and Z for compliance control. Once the moving distance is comprehended, it stop the
control motion, exits the function, and returns the result values.

(4) Impedance
PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

cp1.Impedance("all", 1) /I Release all axes
cp1.Dinput("ControlBox", 0, "H") /I When ControlBox DIO is High
int re = cp1.Start() I/ Start the compliance control motion

1l Release all axes. The robot stays put in the current position and complies with external forces to
lessen the torque on the joints. When the stop criterion, ControlBox DIO is High, is comprehended, it
stop the control motion, exits the function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 579

e

23.TouchStop Functions
23.1 TouchStop class

Use the TouchStop class and declare variables to provide users with the robot touch stop
setting and the stop conditions to fulfill the touch stop function.

Construct1
TouchStop VariableName = string

TouchStop VariableName = string, string

Parameters
string Operation mode
"Compliance"
“Line"
"Force"
string Device name of the sensor (valid when the operation mode is "Force")
note

TouchStop ts1 = "Compliance”

TouchStop ts2 = "Line"

FTSensor fts3 = "TMFT300"
TouchStop ts3 = "Force", "fts3"

/I Declare a touchstop control variable with the function of
compliance

/I Declare a touchstop control variable with the function of line

// Build a deivce named TMFT300.
/I Declare a touchstop control variable with the function of force
tethered with the sensor device fts3.

Member Methods

Name Default Description

Reset() Reset all the compliance control motion param_eters to the default
except the operation mode and the sensor device.

Frame() 1 Set the reference coordinate of the touchstop control motion.

HighResistance() false Resistfcmce on the non—mo.tion direction (X,Y,Z). (Valid when the
operation mode is “Compliance”).

BrakeDistance() 0 (Valid when the operation mode is “Line”).

RecordPosPoint() - Set the record touchstop coordinate value to the point name.
Single() The single axis parameter of the compliance control motion
Teach() The teach parameter of the compliance control motion
AdvSet() The advance setting parameter of the compliance control motion.
(Valid when the operation mode is “Compliance”).
Timeout() - The stop condition of timeout
Dinput() - The stop condition of digital input
Alnput() - The stop condition of analog input
Condition() - The stop condition of the conditional expression
. Stop condition of the external resistance detection. (Valid when the
Resisted() - . . .
operation mode is “Compliance”).
The stop condition of monitoring the values of force,
FTReached() - torque, or resultant force acquired. (Valid when the operation

mode is “Force”).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 580

e

Name Default Description

Start() true Start the compliance control motion.

Stop() Stop the compliance control motion.

GetStoppedPos() {0,0,0,0,0,0} |Get the stopped position values after the robot touch-stopped.
GetTriggeredPos() {0,0,0,0,0,0} |Get the triggered position values after the robot touch-stopped.
GetMovingDistance() 0 Get the moving distance of the touchstop motion.

24.1.1 Reset()

Reset all the touchstop control motion parameters to the default except the operation mode
and the sensor device

Syntax 1
void Reset(
)
Parameters
void No input value
Return
void No return

24.1.2 Frame()

Set the reference base of the touchtop control motion.

Syntax 1
void Frame(
int
)
Parameters
int The base associated with the control motion
1 Tool
2 The current base
Return
void No return

24.1.3 HighResistance()

Set the resistance on the non-motion direction (X,Y,Z). (Valid Valid when the operation mode
is “Compliance”.)

Syntax 1
void HighResistance(
bool
)
Parameters
bool The resistance on the non-motion direction (X,Y,Z2)
false Default

Omron TM Collaborative Robot: TMScript Language Manual (1664) 581

e

true High resistance
Return
void No return
24.1.4 BrakeDistance()

Set the braking distance. (Valid Valid when the operation mode is “Line”.)

Syntax 1
void BrakeDistance(
int
)
Parameters
int Braking distance in mm
Return
void No return

24.1.5 RecordPosPoint()

Set the record touchstop coordinate value to the point name.

* If in Flow projects, it requires to create the associated point name in the point manager. (Use
the TouchStop node to create.)

* If in Script projects, it requires to specify the associated point name in the define section.
(Define the point as "D" or "JD".)

Syntax 1
void RecordPosPoint(
string,
bool
)
Parameters
string The point name. Denote record canceled if empty string.
boolRecord the touchstop stop point or the trigger point
false The stop point
true The trigger point
Return
void No return

Syntax 2
void RecordPosPoint(
string
)
Note
Same as Syntax 1. Fill false to the parameter of the recording the touchstop stop point or
the trigger point

Syntax 3
void RecordPosPoint(

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (1664) 582

e

void No input value. Use to cancel recording the touchstop stop point or the trigger
point

Return

void No return

24.1.6 Single()

Set the single axis parameters of touchstop control motion.

Syntax 1
void Single(
int or string,
int,
int,
int
)
Parameters
int or string
Direction
0O or "X" X 3 or "RX" RX
1 or "Y" Y 4 or "RY" RY
2 or "Z" z 5 or "RZ" RZ
int Distance X,Y,Z (mm) RX,RY,RZ (degree)
If operation mode is Compliance If operation mode is Line or Force
int Force X,Y,Z (N) RX,RY,RZ (mNm) Speed X,Y,Z (mm/s) RX,RY,RZ
(degreels)
int Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s) Accelerate time in
millisecond
Return
void No return
Syntax 2
void Single(
int or string,
int,
int,
int,
boal,
bool
)
Parameters
int or string
Direction
0O or "X" X 3 or "RX" RX
1 or "Y" Y 4 or "RY" RY
2 or "Z" z 5 or "RZ" RZ
int Distance X,Y,Z (mm) RX,RY,RZ (degree)
int Speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)
int Accelerate time in millisecond
bool Cancel precision positioning

Omron TM Collaborative Robot: TMScript Language Manual (1664) 583

e,

bool

Return
void

24.1.7 Teach()

true Cancel precision positioning
false Precision positioning (default)

Synchronize to the project speed or not

true Synchronize to the project speed (default)
false Synchronize to the project speed not

No return

Set the teach parameters of compliance control motion.

Syntax 1
void Teach(

int or string,

float[] or string,
float[] or string,

int,

int,

int
)

Parameters

int or string

Linear direction or rotating direction
0 or 'Linear" Linear direction
1 or "Rotation" Rotating direction

float[] or string

The 1stpoint {(Xitmm) Yiemm) Zignm) RXi¢y RYiey RZy9)} or
The name of the 15t point (use the robot TCP coordinate)

float[] or string

int
int
int

Return
void

Syntax 2
void Teach(

int or string,

The 2" point (X2onm) Yomm) Zz2emm) RXz2¢) RYy) RZp)} 8K
The name of the 2™ point (use the robot TCP coordinate
Adjustment range Linear (mm) Rotation (degree)

If operation mode is Compliance If operation mode is Line or Force
Force X,Y,Z (N) RX,RY,RZ (mNm) Speed X,Y,Z (mm/s) RX,RY,RZ
(degreels)

Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s) Accelerate time in
millisecond

No return

float[] or string,
float[] or string,

Int,
int,
int,
bool,

Omron TM Collaborative Robot: TMScript Language Manual (1664) 584

e

bool
)
Parameters
int or string
Linear direction or rotating direction
0 or ‘"Linear" Linear direction
1 or "Rotation" Rotating direction
float[] or string
The 1% point {Xignm) Yiemm) Zigmm) RXi¢) RYiey RZycn}or
The name of the 15t point (use the robot TCP coordinate)
float[] or string
The 2" point {X2(nm) Yaemm) Zzamm) RX2¢) RYz() RZz)} 3
The name of the 2" point (use the robot TCP coordinate
int Adjustment range Linear (mm) Rotation (degree)
int Speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)
int Accelerate time in millisecond
bool Cancel precision positioning
true Cancel precision positioning
false Precision positioning (default)
bool Synchronize to the project speed or not
true Synchronize to the project speed (default)
false Synchronize to the project speed not
Return

void No return
24.1.8 AdvSet()

Set the advanced parameters of touchstop control motion. (Valid when the operation mode is
“Compliance”.)

Syntax 1
void AdvSet(
int or string,
bool,
int,
int,
int,
int
)
Parameters
int or string
Direction
0O or "X" X 3 or "RX" RX
1 or "Y" Y 4 or "RY" RY
2 or "Z" Z 5 or "RZ" RZ
bool Enable the control to the assigned direction or not.
false Disable
true Enable
int Distance restriction upper bound X,Y,Z (mm) RX,RY,RZ (degree)
int Distance restriction lower bound X,Y,Z (mm) RX,RY,RZ (degree)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 585

e,

int Force X,Y,Z (N) RX,RY,RZ (mNm)

int Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)
Return

void No return

Syntax 2
void AdvSet(
int or string,
bool

)

note

Same as Syntax 1 parameter definitions for setting whether to enable the control to the
assigned direction.

24.1.9 Timeout()

Set the stop condition of timeout.

Syntax 1
void Timeout(
int
)
Parameters
int Timeout in milliseconds
<0 Disable
>=0 Timeout duration
Return
void No return
Syntax 2
void Timeout(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

24.1.10DInput()

Set the stop condition of the digital input.

Syntax 1
void Dinput(
string,
int,
int or string

)

Parameters
string Control module name
ControlBox The control box

Omron TM Collaborative Robot: TMScript Language Manual (1664) 586

e

EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the stop condition to Low/High.
O or "L" Low
1 or "H" High
Return
void No return
Syntax 2
void DInput(
int
)
Parameters
int The stroke ratio to start receiving digital input (valid when the operation
mode is " Compliance ")
Return
void No return
Syntax 3
void DInput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

24.1.11Alnput()

Set the stop condition of the analog input.

Syntax 1
void Alnput(
string,
int,
int or string,
float
)
Parameters
string Control module name
ControlBox The control box
EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the condition to judge
0O or ™" Greater than
1 or ">="Greater than or equal to
2 or "=="

Omron TM Collaborative Robot: TMScript Language Manual (1664) 587

Equal to (Recommend not to use since it is not easy to
hold the equal condition with analog input.)

3 or '"<=" Less than or equal to
4 or "< Less than
float Condition value
Return
void No return
Syntax 2
void Alnput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

24.1.12Condition()

Set the stop condition of the conditional expression.

Syntax 1
void Condition(
bool or ?
)
Parameters
bool or ? The conditional that can be true/false or a bool return of the statement.

Return
void No return
Syntax 2
void Condition(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

24.1.13Resisted()

Set the stop condition of the external resistance detection. (valid when the operation mode is
" Compliance ")

Syntax 1
void Resisted(
bool
)
Parameters
bool External resistance detection
false Disable

Omron TM Collaborative Robot: TMScript Language Manual (1664) 588

e,

true Enable

Return

void No return

Syntax 2

void Resisted(
)
Parameters

void No parameter for cancelling the stop condition.
Return

void No return

24.1.14FTReached()

Set the stop condition of monitoring the values of force, torque, or resultant force acquired.
(valid when the operation mode is " Force")

Syntax 1
void FTReached(
int or string,
bool,
float
)
Parameters
int The values of force, torque, or resultant force.
6 or "F3D" F3D(N)
7 or "T3D" T3D (Nm)
8 or "Force" Force (N) (default)
Whether to enable monitoring the assigned the values of force, torque, or resultant force.
false Disable

true Enable
float The monitoring value
Return
void No return
Syntax 2
void FTReached(
int or string,
bool
)
Note

Same as syntax 1. Use to whether to enable monitoring the assigned the values of force,
torque, or resultant force.

Syntax 3
void FTReached(
bool

)

Parameters
bool Whether to enable the absolute values monitoring.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 589

false Disable

true Enable
Syntax 4

void FTReached(
)
Parameters

void No parameter for cancelling the stop condition.
Return

void No return

24.1.15Start()

Start the touchstop control motion.

Syntax 1
int Start(
bool
)
Parameters
bool Zero out force sensor before execution. (valid when the operation mode is "
Force")
true Enable (default)
false Disable
Return
int Return the result value after the touchstop control motion stops.
0 Not Working
1 Working
2 Timeout
3 Distance reached
4 IO triggered
5 Resisted
6 Error
14 Over Speed
201 Digital 10 triggered
202 Analog IO triggered
203 Variable
204 Force is Comprehended
205 Allowable Position Tolerances
206 Motion Finish
Syntax 2
int Start(
)
note

Same as syntax 1. Fill true to zero out force sensor before execution.

24.1.16Stop()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 590

e

Stop the touchstop control motion.

Syntax 1
int Stop(
)
Parameters
void No input value
Return
int Return the result value after the touchstop control motion stops.

24.1.17GetStoppedPos()
Get the stopped position values after the robot touch-stopped.

Syntax 1
void GetStoppedPos(
int
)
Parameters
int Get the coordinate value or the angle value of the stop point of the touch-stop
control motion.
the robot flange center coordinate (by the current base)
the robot joint angle
the robot end TCP coordinate (by the current base)
the robot TCP coordinate (by the RobotBase base)
the robot end TCP coordinate (by the RobotBase base)

A WNPEFO

Return
float(] If in coordinates, it is the six elements of the robot coordinates: X(mm),
Y(mm), Z(mm), RX(°), RY(°), and RZ(°); if in angle, the six elements of the
robot joint: Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), and Joint
6(°)

24.1.18GetTriggeredPos()

Get the triggered position values after the robot touch-stopped.

Syntax 1
void GetTriggeredPos(
int
)
Parameters
int Get the coordinate value or the angle value of the stop point of the touch-stop
control motion.
the robot flange center coordinate (by the current base)
the robot joint angle
the robot end TCP coordinate (by the current base)
the robot TCP coordinate (by the RobotBase base)

w NPk O

Omron TM Collaborative Robot: TMScript Language Manual (1664) 591

4 the robot end TCP coordinate (by the RobotBase base)
Return
float[] If in coordinates, it is the six elements of the robot coordinates: X(mm),
Y(mm), Z(mm), RX(°), RY(°), and RZ(°); if in angle, the six elements of the
robot joint: Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), and Joint
6(°)

24.1.19GetMovingDistance()
Get the moving distance of the touchstop motion.

Syntax 1
float GetMovingDistance(
)
Parameters
void No input value
Return
float Return the moving distance of the touchstop motion in mm.

® Parameter Settings

TouchStop ts1 = "Compliance” /I Declare the touchstop control variable functioning as Compliance.
TouchStop ts2 = "Line" /I Declare the touchstop control variable functioning as Line.
FTSensor fts3 = "TMFT300" /I Construct the device TMFT300.

TouchStop ts3 = "Force", "fts3" // Declare the touchstop control variable and tether fts3 as the

sensor name.
TPoint PO ="JD",{0,0,0,0,0,0}

(1)
ts1.Frame(1) I/ Set the touchstop control base as tool.
ts1.Frame(2) /I Set the touchstop control base as the current base (will overwrite the
previous setting).
ts1.Reset() /I Reset all parameters
(2)

ts1.Frame(1)
ts1.Single("X", 30, 30, 30) // Set direction X with distance of 30mm, force of 30N, and target speed of

30 mm/s

ts1.Single("Z", 40, 30, 30) // Set direction Z with distance of 40mm (will overwrite the previous Single
setting)

ts1.Reset() /I Reset all parameters

ts2.Single("Z", 30, 40, 500, false, true) // Set direction Z with distance of 30mm, target of
40mm/s, and accelerate time of 500ms.

(3)
ts1.Frame(1)
ts1.HighResistance(true) /I Set the resistance on the non-motion direction to High Resistance
ts2.BrakeDistance(20) I Set the braking distance to 20mm

ts2.RecordPosPoint("P0", true) // Set the record touchstop coordinate value to PO.

/l Control
ts1.Single("Z", 40, 30, 30) /I Set direction Z with distance of 40mm (use Single

Omron TM Collaborative Robot: TMScript Language Manual (1664) 592

e

mode)

ts1.Teach("Linear", "P1", "P2", 0, 30, 30) Il Set the teach point P1 and P2 (will use Teach

mode instead)

ts1.AdvSet ("X", true, 100, -100, 30, 30) / Set direction X with advanced parameters (will use
Advanced mode instread)

ts1.AdvSet ("Z", true, 100, -100, 30, 30) // Set direction Z with advanced parameters

ts1.AdvSet ("X", true, 10, -10, 30, 30) // Set direction X with advanced parameters (will overwrite
the previous AdvSet X parameter)

/I Stop Criteria

ts1.Timeout(10000) /I Set timeout to 10000ms

ts1.DInput("ControlBox", 0, "H") /I When ControlBox DIO is High

ts1.DInput(100) /I Start receiving digital input with stroke ratio to 100%

ts1.Alnput("ControlBox", 0, ">=", 3.3) // When ControlBox AIO is greater than or equal to 3.3V

int count =0

ts1.Condition(count > 1000) /I conditional expression

ts1.Resisted(true) Il external resistance detection

ts1.Reset() /I Reset all parameters (reserve tethering "fts1" as sensor
name)

ts3.FTReached("Force", true, 10) // Enable monitoring of the resultant force of the control
direction to satisfy 10N.
ts3.FTReached(true) /I Enable monitoring of the absolute values

® Touchstop Compliance

TouchStop ts1 = "Compliance” Il Declare the touchstop control variable functioning as Compliance.
TPoint PO ="JD",{0,0,0,0,0,0}
(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts1.Single("Z", 100, 30, 30) /I Set timeout to 10000ms
ts1.Alnput("ControlBox", 0, ">=", 3.3) // When ControlBox A0 is greater than or equal to 3.3V
ts1.RecordPosPoint("PQ", false) /I Set the record touchstop coordinate value to PO.

int re = ts1.Start() /I Start the touchstop compliance control motion

/Il Setdirection Z with a moving distance of 100mm, a force of 30N, and a target speed of 30 mm/s, so it
will move toward direction Z. When the stop criterion, ControlBox AlO is greater than or equal to 3.3V,
is comprehended, it stops the control motion, exits the function, and returns the result values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912} {0,0,90,0,90,0}

TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971 -

0.043}

PTP("JPP"{0,0,90,0,90,0},50,200,0,false)

ts1.Teach("Linear", "P1", "P2", 0, 40, 40)// Set the teach point P1 and P2 in the linear direction

ts1.Timeout(5000) Il Set timeout to 5000ms

int re = ts1.Start() /I Start the touchstop compliance control motion

1l Teach the two points in the linear direction with a force of 40N and a target speed of 40 mm/s. Once
the moving distance and the teach linear direction are comprehended, it stops the control motion,
exits the function, and return the result values. Since the timeout is set, if it does not comprehend the
moving distance in time, it stops the control motion, exits the function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 593

e

PTP("JPP" {0,0,90,0,90,0},50,200,0,false)

ts1.Teach("Rotation", "P1", "P3", 0, 5000, 40)

/I Set the teach point P1 and P3 in the rotating direction

re = ts1.Start()

/I Teach the two points in the rotating direction with a force of 5000mNm and a target speed of 40
mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the
control motion, exits the function, and return the result values. Since the timeout is set (without
resetting the timeout of tsl), if it does not comprehend the moving distance in time, it stops the control
motion, exits the function, and returns the result values.

(3) Advanced

PTP("JPP" {0,0,90,0,90,0},50,200,0,false)

ts1.AdvSet("X", true, 100, -100, 30, 30) // Set direction X with advanced parameters

ts1.AdvSet("Z", true, 100, -100, 30, 30) // Set direction Z with advanced parameters

ts1.AdvSet("X", true, 100, -100, 40, 40) // Set direction X with advanced parameters (will overwrite
the previous AdvSet X parameter)

int re = ts1.Start() /I Start the touchstop compliance control motion

/Il Setdirection X and Z for compliance control. Once the moving distance is comprehended, it stops the
control motion, exits the function, and returns the result values.

® Touchstop Line

TouchStop ts2 = "Line" /I Declare the touchstop control variable functioning as Line
TPoint PO = "JD",{0,0,0,0,0,0}
(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts2.Single("Z", 100, 30, 500) /I Set direction Z with distance of 100mm
ts2.DInput("ControlBox", 0, "H") /I When ControlBox DIO is High
ts2.RecordPosPoint("PQ", true) /I Set the record touchstop coordinate value to PO.
int re = ts2.Start() /I Start the touchstop control motion

Il Set direction Z for control with a moving distance of 100mm, an accelerate time of 500ms, and a
target speed of 30 mm/s, so it will move toward direction Z. Once the moving distance is
comprehended, it stops the control motion, exits the function, and return the result values. When the
stop criterion, ControlBox DIO is High, is comprehended, it stops the control motion, exits the function,
and returns the result values.

(2) Teach
TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}
TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-
14.896,89.998,0.085}
TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-
0.043}
PTP("JPP",{0,0,90,0,90,0},50,200,0,false)
ts2.Teach("Linear", "P1", "P2", 0, 40, 500) // Set the teach point P1 and P2 in the linear

direction
ts2.Timeout(5000) /I Set timeout to 5000ms
int re = ts2.Start() /I Start the touchstop control motion

/Il Teach the two points in the linear direction with an accelerate time of 500ms and a target speed of 40
mm/s. Once the moving distance and the teach linear direction are comprehended, it stops the
control motion, exits the function, and return the result values. Since the timeout is set, if it does not

Omron TM Collaborative Robot: TMScript Language Manual (1664) 594

e

comprehend the moving distance in time, it stops the control motion, exits the function, and returns
the result values.

PTP("JPP" {0,0,90,0,90,0},50,200,0,false)

ts2.Teach("Rotation”, "P1", "P3", 0, 40, 500) // Set the teach point P1 and P3 in the rotating

direction

re = ts2.Start()

1l Teach the two points in the rotating direction with an accelerate time of 500ms and a target speed of
40 mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the
control motion, exits the function, and return the result values. Since the timeout is set (without
resetting the timeout of tsl), if it does not comprehend the moving distance in time, it stops the control
motion, exits the function, and returns the result values.

® Touchstop Force

FTSensor fts3 = "TMFT300" /I Construct the device TMFT300.
TouchStop ts3 = "Force", "fts3" Il Declare the touchstop control variable and tether fts3 as the
sensor name.
TPoint PO = "JD",{0,0,0,0,0,0}
(1) Single Axis
PTP("JPP"{0,0,90,0,90,0},50,200,0,false)
ts3.Single("Z", 100, 30, 500) /I Set direction Z with distance of 100mm
ts3.Dinput("ControlBox", 0, "H") // When ControlBox DIO is High
ts3.FTReached("Force", true, 2) // Enable monitoring of the resultant force of the control
direction to satisfy 2N.
ts3.RecordPosPoint("PQ", true) /I Set the record touchstop coordinate value to PO.
int re = ts3.Start() /I Start the touchstop control motion
Il Set direction Z for control with a moving distance of 100mm, an accelerate time of 500ms, and a
target speed of 30 mm/s, so it will move toward direction Z. Once the moving distance is
comprehended, it stops the control motion, exits the function, and returns the result values. When the
stop criterion, ControlBox DIO is High, is comprehended, it stop the control motion, exits the function,
and returns the result values. Since the stop criterion on the monitoring of the resultant force is set, if
it does not comprehend the moving distance in time, it stops the control motion, exits the function,
and returns the result values.
(2) Teach
TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}
TPoint P2 = {617.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-
14.896,89.998,0.085}
TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-
0.043}
PTP("JPP"{0,0,90,0,90,0},50,200,0,false)
ts3.Teach("Linear", "P1", "P2", 0, 40, 500) // Set the teach point P1 and P2 in the linear

direction
ts3.Timeout(5000) Il Set timeout to 5000ms
ts3.FTReached("F3D", true, 2) /I Enable monitoring of the force of the control direction to
satisfy 2N.
int re = ts3.Start() /I Start the touchstop control motion

1l Teach the two points in the linear direction with an accelerate time of 500ms and a target speed of 40
mm/s. Once the moving distance and the teach linear direction are comprehended, it stops the

Omron TM Collaborative Robot: TMScript Language Manual (1664) 595

e, }

control motion, exits the function, and return the result values. Since timeout is set, if it does not
comprehend the moving distance in time, it stops the control motion, exits the function, and returns
the result values. Since the stop criterion on the monitoring of the resultant force is set, if it does not
comprehend the moving distance in time, it stops the control motion, exits the function, and returns
the result values.

PTP("JPP" {0,0,90,0,90,0},50,200,0,false)

ts3.Timeout() /I Cancel the timout stop criterion.

ts3.Teach("Rotation", "P1", "P3", 0, 40, 500)

/I Set the teach point P1 and P3 in the rotating direction

re = ts3.Start()

/I Teach the two points in the rotating direction with an accelerate time of 500ms and a target speed of
40 mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the
control motion, exits the function, and return the result values. Since the stop criterion on the
monitoring of the resultant force is set (without resetting the stop criterion on the resultant force of
ts3), if it does not comprehend the moving distance in time, it stops the control motion, exits the
function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 596

e

24.Force Control Functions

24.1 FTSensor Class

Use FTSensor class and declare variables to create a Force Torque Sensor device. The

variable name will be the device name.

Construct 1

FTSensor VariableName = string, string, float[], float[], float
FTSensor VariableName = string, float[], float[], float

FTSensor VariableName = string, string

FTSensor VariableName = string

Parameters
string

string
float(]
float(]
float
Note

Supported models from the sensor suppliers

"TMFT300"

"OnRobot_HEX-E"
"OnRobot HEX-H"
"ROBOTIQ_FT300"
"SCHUNK_Axia80"

"SRI_M4313N3C"

" WACOH_WEF_WKF_115200"
"WEF-6A200-4-RG24_9600"
connection description required when using serial port for communication

Position setting: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

TCP value: X(mm), Y(mm), Z(mm)

Tool Mass: kg

FTSensor fts_1 ="TMFT300","COM2" // Construct the device TMFT300. The connection parameters

FTSensor fts 2 = "TMFT300"

FTSensor fts_4 = "ROBOTIQ_FT300","COM2"{0,0,0,0,0,0},{0.12,0.24,0.36},1

are void for using EtherCAT communication.

/I Construct the device TMFT300
FTSensor fts_3 = "ROBOTIQ_FT300","COM2"

/I Construct the device ROBOTIQ_FT300. Require to assign the connection port for using serial port communication.

/I Construct the device ROBOTIQ_FT300. Require to assign the connection port for using serial port communication

and to configure the settings of the sensor position and tool mass center.

* If not filling position setting, TCP value, or tool mass, it uses the parameters in the force
sensor setting in the project.
* After construction, either in flow projects or script projects, the device will not connect
actively until proceeding to read or write.

Member Attributes

Name Type |Mode |Description Format
X float R The strength value of the X axis

Y float R The strength value of the y axis

Z float |R The strength value of the z axis

X float [R The torque value of the X axis

TY float |R The torque value of the y axis

TZ float [R The torque value of the z axis

Omron TM Collaborative Robot: TMScript Language Manual (1664)

597

e

Name Type |Mode |Description Format

F3D float |R The XYZ force strength value

T3D float [R The XYZ torque value

Value float] |R The XYZ force strength value {>.(' Y, Z, TX, TY, TZ},
and torque value array. Size=6

ForceValue float] |R The XYZ force strength value {X,Y, 2}, Size = 3
array

TorqueValue float] |R The XYZ torque value array {TX, TY, TZ}, Size = 3
The X-axis strength value

RefCoordX float |R measured based on the

reference base set in the node

The Y-axis strength value
RefCoordY float |R measured based on the
reference base set in the node

The Z-axis strength value
RefCoordZz float |R measured based on the
reference base set in the node

The X-axis torque value
RefCoordTX float |R measured based on the
reference base set in the node

The Y-axis torque value
RefCoordTY float |R measured based on the
reference base set in the node

The Z-axis torque value
RefCoordTZ float |R measured based on the
reference base set in the node

The XYZ strength measured
RefCoordF3D float |R based on the reference base set
in the node

The XYZ torque measured
RefCoordT3D float |R based on the reference base set
in the node

The XYZ strength value matrix [{RefCoordX,
RefCoordForceValue |float]] |R measured based on the RefCoordY,
reference base set in the node |RefCoordZz}, Size =3

The XYZ torque value matrix {RefCoordTX,
RefCoordTorqueValue [float]] |R measured based on the RefCoordTY,
reference base set in the node |RefCoordTZ}, Size =3

The Model name of the F/IT
sensor

Model string R

Zero byte R/W |Turn on or off F/T sensor offset |0: Zero OFF, 1: Zero ON

Attributes associated with RefCoord come with values when in Force Control motions.

Member Methods
Name Description
Open() Connect to the sensor device.
Close() Disconnect from the sensor device.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 598

e

25.1.1 Open()
Open the connection to the Force Torque Sensor.

Syntax 1

bool Open(
)
Parameters

void No parameter
Return

bool True open successfully

False open unsuccessfully (the project returns an error)

* After opening the device, it proceeds to the connection to communicate. It may take a while
to get the values due to different sensor models.

25.1.2 Close()
Close the connection from the Force Torque Sensor.

Syntax 1
bool Close(
)
Parameters
void No parameter
Return
bool True close successfully
False close unsuccessfully
Note
FTSensor fts_1 ="ROBOTIQ_FT300","COM2"
fts_1.0pen() // Connect to the device.
fts_1.Close() // Disconnect from the device.

24.2 Force Class

Use Force class and declare variables for users to set the robot target force and torque
parameters to reach a variety of associated force control motions.

Construct 1

Force VariableName = string

Parameters
string sensor name
Note
FTSensor fts1 = "TMFT300" // Construct the device TMFT300.
Force fc1 = "fts1" /| Declare the force control variable and tether fts1 as the sensor name.
Member Methods
Name Defaults Description
Reset() Reset all the force control motion parameters to the

Omron TM Collaborative Robot: TMScript Language Manual (1664) 599

e

25.2.

default except the sensor name.

Frame() 1 Set the reference coordinate of the force control motion.
Dist The moving distance of the force control motion (Available
istance()) only in the SetPoint F/T operation mode.)
ProtectionSpeed() The speed protection of the force control motion
0,false,5,2,-1
1,false,5,2,-1 .
The force and the torque of the force control motion. The
2,false,5,2,-1 . .
FTSet() positive and negative values denote the force control
3,false,0.5,2,-1 | . . .
direction. Users can adjust the PID control parameters.
4 false,0.5,2,-1
5,false,0.5,2,-1
_ The trajectory path of the force control motion. (Trajectory
Trajectory() - .
F/T operation mode.)
_ Stop condition of timeout (Available only in the single F/T
Timeout() - .
operation mode.)
AllowPosTol() - Stop condition of tolerant position error
Dinput() - Stop condition of digital input
Alnput() - Stop condition of analog input
The stop condition of monitoring the values of force,
FTReached() - .
torque, or resultant force acquired.
Condition() - Stop condition of the conditional expression
Start() true,false |Start the force control motion.
Stop() Stop the force control motion.
1 Reset()

Reset all the force control motion parameters to the default except the sensor name.

Syntax 1
void Reset(

)

Parameters

void

Return

25.2.

void

2 Frame()

No parameter

No return

Set the reference base of the force control motion.

Syntax 1
void Frame(

)

Int

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (1664)

Int

The base associated with the control motion
0O The robot base
1 Tool: the base is coupled with the orientation of the tool coordinate.

600

(default)
2 The current base
3 Trajectory: the base changes with the path.
Return
void No return

Syntax 2
void Frame(
string
)
Parameters
string Point name. Use the TCP coordinate of the point as the base associate with the
control motion.
Return
void No return
Syntax 3
void Frame(
float[],
string
)
Parameters
float(] The TCP coordinate of the robot end point: X(mm), Y(mm), Z(mm), RX(°), RY(°),
RZ(%)
string Base name. Use the current base name if empty string.
Return
void No return

Syntax 4
void Frame(
float[]
)
Note
Same as syntax 3. Fill RobotBase in Base name.

Syntax 5
void Frame(
float, float, float, float, float, float,
string
)
Note
Same as syntax 3. Replace the type float[] with the parameters in float .

Syntax 6
void Frame(
float, float, float, float, float, float
)
Note
Same as syntax 4. Replace the type float[] with the parameters in float .

Omron TM Collaborative Robot: TMScript Language Manual (1664) 601

e

25.2.3 Distance()

Set the moving distance of the force control motion. (Available only in the SetPoint F/T
operation mode.)

Syntax 1
void Distance(
int
)
Parameters
int Distance mm
<0 No limit to the moving distance.
>=0
Limited to the moving distance. (Distance calculated from the
starting point where the force control motion begins.)
Return
void No return

25.2.4 ProtectionSpeed()
Set the speed protection of the force control motion.

Syntax 1

void ProtectionSpeed(
int, int, int, int, int, int
)

Parameters
int, int, int, int, int, int
Set the speed protection against the axial force or torque: X(mm/s), Y(mm/s),
Z(mm/s), RX(deg/s), RY(deg/s), RZ(deg/s)
<=0 No limit to the speed.
>0 Limited to the speed
* FTSet() is required to enable speed protection against the respective axial force or torque.
* Speed protection is available to configure in FTSet() as well.
Return
void No return

25.2.5 FTSet()

Set the force and the torque of the force control motion. The positive and negative values
denote the force control direction. Users can adjust the PID control parameters.

Syntax 1

void FTSet(
int or string,
bool,
float,
int
int

)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 602

e

Parameters
int or string
Axis force or axis torque
0 or "FX" FX(N) 3 or "TX" TX (Nm)
1 or "FY" FY(N) 4 or "TY" TY (Nm)
2 or "Fz" FZ(N) 5 or "TZ" TZ (Nm)
bool Whether to enable the control of the assigned axis force or axis torque
false Disable
true Enable
float The control value of force or torque. The positive and negative values denote
the force control direction.
int PID control parameter
(weak) (strong)
0O 1 2 3 4
int Speed protection
<=0 No limit to the speed.
>0 Limited to the speed
Return
void No return
Syntax 2
void FTSet(
int or string,
bool,
float,
int
)
Note

Same as syntax 1. Fill -1 to Speed protection parameter for no speed limit.

Syntax 3

void FTSet(
int or string,
bool,
float

)

Note
Same as syntax 1 parameter definition. Fill 2 to PID control parameter and -1 to Speed
protection parameter for no speed limit.

Syntax 4

void FTSet(
int or string,
bool

)

Note
Same as syntax 1 parameter definition. Use to set whether to enable the control of the
assigned axis force or axis torque only. No change to other parameters (Axis force or axis
torque control value, PID control parameter, and Speed protection parameter).

Omron TM Collaborative Robot: TMScript Language Manual (1664) 603

e

Syntax 5
void FTSet(
int or string,
float

)
Note

Same as syntax 1 parameter definition. Use to set the control value of force or torque. No

change to other parameters (Whether to enable to the control, PID control parameter, and
Speed protection parameter).

Syntax 6
void FTSet(
int or string,
float,
int
)
Note

Same as syntax 1 parameter definition. Use to set Axis force or axis torque control value

and speed control. only. No change to other parameters (Whether to enable to the control
and PID control parameter).

Syntax 7
void FTSet(
int or string,
float([]
)
Parameters
int or string
Axis force or axis torque
0 or "FX" FX(N) 3 or "TX" TX (Nm)
1 or "FY" FY(N) 4 or "TY" TY (Nm)
2 or "Fz" FZ(N) 5 or "TZ" TZ (Nm)
float(] PID control parameter {Kp, Ki, Kd}
Note

Same as syntax 1 parameter definition. Use to set PID control parameter (Kp, Ki, Kd) only.

No change to other parameters (Whether to enable to the control, Axis force or axis torque
control value, and speed control).

25.2.6 Trajectory()

Set the trajectory path of the force control motion. (Trajectory F/T operation mode.)

Syntax 1
void Trajectory(
string

)

Parameters

string Subflow name. Use in flow projects only. Return errors if use in script projects.
Return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 604

e

void No return

Syntax 2
void Trajectory(
?
)
Parameters
? Trajectory path. Be a statement or a customized function
Return
void No return

Syntax 3
void Trajectory(
)
Parameters
void
No parameter for cancelling trajectory F/T operation mode. (Change to the
SetPoint F/T operation mode.)
Return
void No return

25.2.7 Timeout()

Set the stop condition of timeout. (Available only in the SetPoint F/T operation mode.)

Syntax 1
void Timeout(
int
)
Parameters
int Timeout in milliseconds
<0 Disable
>=0 Timeout duration
Return
void No return
Syntax 2
void Timeout(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.8 AllowPosTol()

Set the stop condition of the tolerant position error.

Syntax 1
void AllowPosTol(

Omron TM Collaborative Robot: TMScript Language Manual (1664) 605

e

int
)
Parameters
int Error distance in mm
<0 Disable
>=0 Distance of the tolerant error.
Return
void No return
Syntax 2
void AllowPosTol(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.9 DInput()

Set the stop condition of the digital input.

Syntax 1
void DInput(
string,
int,
int or string
)
Parameters
string Control module name
ControlBox The control box
EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the stop condition to Low/High.
0O or "L" Low
1 or "H" High
Return
void No return
Syntax 2
void DInput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.10Alnput()

Omron TM Collaborative Robot: TMScript Language Manual (1664) 606

e

Set the stop condition of the analog input.

Syntax 1
void Alnput(
string,
int,
int or string,
float
)
Parameters
string Control module name
ControlBox The control box
EndModule The end module
ExtModuleN The external module (N =0 .. n)
int Input channel 0 .. n
int or string
Set the condition to judge
0O or ™" Greater than
1 or ">=" Greater than or equal to
2 or "=="
Equal to (Recommend not to use since it is not easy to
hold the equal condition with analog input.)
3 or '"<=" Less than or equal to
4 or "<" Less than
float Condition value
Return
void No return
Syntax 2
void Alnput(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.11FTReached()

Set the stop condition of monitoring the values of force, torque, or resultant force acquired.

Syntax 1
void FTReached(
int or string,
boal,
float
)
Parameters
int The values of force, torque, or resultant force.
0 or "FX" FX(N) 3 or "TX" TX (Nm)
1 or "FY" FY(N) 4 or "TY" TY (Nm)

Omron TM Collaborative Robot: TMScript Language Manual (1664) 607

2 or "FZ" FZ(N) 5 or "TZ" TZ(Nm)
6 or "F3D" F3D(N) 7 or "T3D" T3D (Nm)

bool Whether to enable monitoring the assigned the values of force, torque, or
resultant force.

false Disable

true Enable
float The monitoring value
Return
void No return
Syntax 2
void FTReached(
int or string,
bool
)
Note

Same as syntax 1. Use to whether to enable monitoring the assigned the values of force,
torque, or resultant force.

Syntax 3
void FTReached(
bool
)
Parameters
bool Whether to enable the absolute values monitoring.
false Disable
true Enable
Syntax 4
void FTReached(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.12Condition()

Set the stop condition of the conditional expression.

Syntax 1
void Condition(
bool or ?

)

Parameters

bool or ? The conditional can be true/false or a bool return of the statement.
Return

void No return

Omron TM Collaborative Robot: TMScript Language Manual (1664) 608

e

Syntax 2
void Condition(
)
Parameters
void No parameter for cancelling the stop condition.
Return
void No return

25.2.13Start()

Start the force control motion.

Syntax 1
int Start(
bool,
bool
)
Parameters
bool Zero out force sensor before execution.
true Enable (default)
false Disable
bool Enable tool gravity compensation
true Enable
false Disable (default)
Return
int Return the result value after the force control motion stops.
0 Not Working
1 Working
2 Timeout
3 Distance reached
4 IO triggered
5 Resisted
6 Error
14 Over Speed
201 Digital 10 triggered
202 Analog IO triggered
203 Variable
204 Force is comprehended
205 Allowable Position Tolerances
206 Motion Finish
Syntax 2
int Start(
bool
)
Note

Same as syntax 1. Enabling the tool gravity compensation parameter will retrieve the
parameter values of the associated device name in the force sensor setting of the project. Fill
false if not retrieving the associated device name.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 609

e

Syntax 3
int Start(
)
Note

Same as syntax 1. Fill true to zero out force sensor before execution. Enabling the tool

gravity compensation parameter will retrieve the parameter values of the associated device
name in the force sensor setting of the project. Fill false if not retrieving the associated device
name.

25.2.14Stop()
Stop the force control motion.

Syntax 1
int Stop(

)

Parameters
void No parameter
Return
int Return the result value after the force control motion stops.

® Parameter Settings

FTSensor fts1 =" TMFT300" // Construct the device TMFT300.
Force fc1 = "fts1" Il Declare the force control variable and tether fts1 as the sensor name.

(1)
fc1.Frame(3) /I Set the force control coordinate as trajectory.
fc1.Frame({517.5,-147.8,442.45,180,0,90}) // Set the force control coordinate as point (will
overwrite the previous setting)

fc1.Frame("P1") /I Set the force control coordinate as point (will overwrite the
previous setting)
fc1.Reset() /I Reset all parameters (reserve tethering "fts1" as sensor name)
(2)
fc1.Frame(3)
fc1.Frame({517.5,-147.8,442.45,180,0,90})
fc1.Frame("P1")
fc1.FTSet(0, true, 5, 0) /I Set axis FX with force control 5N with PID 0.
fc1.FTSet(1, true, 6, 1) /I Set axis FY with force control 6N with PID 1.
fc1.FTSet(2, true, 7, 3) /I Set axis FZ with force control 7N with PID 3.
fc1.FTSet("FZ", true, 8) /I Set axis FZ with force control 8N with PID 2. (will overwrite
the previous FZ setting)
fc1 .Reset() /I Reset all parameters (reserve tethering "fts1" as sensor name)
(3)
fc1.Frame(1) /I Set the force control coordinate as tool.
fc1.StopDuration(300) I/ Set the duration of compliance stop. to 300ms
/I Force and torque control
fc1.Distance(1000) /I Set moving distance to 1000mm

Omron TM Collaborative Robot: TMScript Language Manual (1664) 610

e

fc1.FTSet("FZ", true, 5) Il Set axis FZ with force control 5N

/I Stop conditions

fc1.Timeout(10000) /I Set timeout to 10000ms

fc1.AllowPosTol(100) /I Set the tolerant error to 100mm
fc1.DInput("ControlBox", 0, "H") /I When ControlBox DIO is High
fc1.Alnput("ControlBox", 0, ">=", 3.3) // When ControlBox AIO is greater than or equal to 3.3V
fc1.FTReached(2, true, 1) Il Axis FZ satisfies 1N

fc1.FTReached("FZ", true, 2) /I Axis FZ satisfies 2N (will overwrite the previous FZ setting)
fc1.FTReached(true) /I Enable the absolute value monitoring

int count =0

fc1.Condition(count > 100) // conditional expression

fc1.Reset() /I Reset all parameters (reserve tethering "fts1" as sensor name)

® SetPoint F/T Operation Mode

SetPoint mode applies mainly to the robot touching the target with force control.

FTSensor fts1 =" TMFT300"
Force fc1 = "fts1"

(1)

(2)

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

fc1.Distance(100) /I Set moving distance to 200mm

fc1.FTSet("FZ", true, 5) /I Set axis FZ with force control 5N

fc1.Start() /I Start the force control motion. Zero out force sensor before
execution.

Il Set axis FZ with force control 5N and the moving distance of 100mm, and the robot will move along
with the Z-direction. The robot stops moving once it satisfies the moving distance. However, the
motion is still under the force control, namely in the function.

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

fc1.FTSet("FZ", true, 5) Il Set axis FZ with force control 5N

fc1.AllowPosTol(80) /I The stop condition of the tolerant position error.

int re = fc1.Start() /I Start the force control motion. Zero out force sensor before
execution.

Il Set axis FZ with force control 5N, and the robot will move along with the Z-direction and monitor the
stop conditions concurrently. By satisfying the stop condition, the robot stops moving once it reaches
within the tolerant position error, stops the force control motion, exits the function, and returns the
result value.

PTP("JPP"{0,0,90,0,90,0},50,200,0,false)

fc1.Frame(1) Il Set the force control coordinate as T &
fc1.StopDuration(300) I/ Set the duration of compliance stop.to 300ms
I/l Force and torque control

fc1.Distance(200) /I Set moving distance to 200mm
fc1.FTSet("FZ", true, 5) Il Set axis FZ with force control 5N

/I Stop conditions

fc1.Timeout(10000) /I Set timeout to 10000ms

Omron TM Collaborative Robot: TMScript Language Manual (1664) 611

e

fc1.AllowPosTol(1000) Il Set the tolerant error to 1000mm

fc1.Dinput("ControlBox", 0, "H") /I When ControlBox DIO is High

fc1.Alnput("ControlBox", 0, ">=", 3.3) // When ControlBox Al0 >= 3.3V

int count = 0

fc1.Condition(count > 100) /I conditional expression

int re = fc1.Start() /I Start the force control motion. Zero out force sensor before
execution.

1l The robot stops moving once it satisfies the moving distance. However, the motion is still under the
force control, and the system monitors the stop conditions continuously. Not until any stop conditions
are comprehended will the force control motion be stopped, the function exit, and the result values
after stopping be returned.

® Trajectory F/T Operation Mode

Trajectory mode applies mainly to the robot touching the target with robot base position control and
force control.

FTSensor fts1 =" TMFT300"
Force fc1 = "fts1"

(1)

fc1.FTSet("FZ", true, 2) Il Set axis FZ with force control 2N

fc1.Trajectory("FTSubflowQ") // Set FTSubflow0 as the trajectory path. (Use in flow projects only.)

int re = fc1.Start() /I Start the force control motion. Zero out force sensor before
execution.

1l Suppose FTSubflow0 comes with a few point nodes to finish.

Il Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflow0. The robot
follows the nodes in the subflow to control and with force control concurrently. When the subflow
ends, it stops the force control motion, exits the function, and returns the result value.

(2)

fc1.FTSet("FZ", true, 2) Il Set axis FZ with force control 2N

fc1.Frame(3) /I Set the force control coordinate as trajectory

fc1.Trajectory("FTSubflowQ") // Set FTSubflow0 as the trajectory path. (Use in flow projects only.)

int re = fc1.Start() /I Start the force control motion. Zero out force sensor before
execution.

Il Suppose FTSubflow0 comes with a few point nodes to finish.

Il Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflow0. The robot
follows the nodes in the subflow to control and with force control concurrently. When the subflow
ends, it stops the force control motion, exits the function, and returns the result value.

(3)

fc1.FTSet("FZ", true, 2) Il Set axis FZ with force control 2N

fc1.Frame(1) I Set the force control coordinate as tool

fc1.Trajectory("FTSubflow1") // Set FTSubflowl as the trajectory path. (Use in flow projects only.)
/I Stop conditions

fc1.Timeout(10000) /I Timeout is invalid in the trajectory mod.
fc1.AllowPosTol(1000) Il Set the tolerant error to 1000mm

fc1.Dinput("ControlBox", 0, "H") // When ControlBox DIO is High

fc1.FTReached("FZ", true, 2) // Axis FZ satisfies 2N

fc1.FTReached(true) /I Enable the absolute value monitoring

Omron TM Collaborative Robot: TMScript Language Manual (1664) 612

e

int re = fc1.Start() /I Start the force control motion. Zero out force sensor before

execution.

1l Suppose FTSubflowl comes with a few point nodes to loop the loop.

1l Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflowl. The robot
follows the nodes in the subflow to control and with force control concurrently. Since the subflow is
looping the loop, the robot motion, the force control, and the stop condition monitoring keep on. Not
until any stop conditions are comprehended will the force control motion be stopped, the the function
exit, and the result values after stopping be returned.

(4)

define

{
FTSensor fts1 =" TMFT300"

Force fc1 = "fts1"

int count =0
}
main
{
fc1.FTSet("FZ", true, 1, 0) /I Set axis FZ with force control 8N with PID 0
fc1.Frame(1) Il Set the force control coordinate as tool
fc1.Trajectory(FTMotion())//Set FTMotion() customized function as the trajectory path.
/I Stop conditions
fc1.Timeout(10000) /I Timeout is invalid in the trajectory mode.
fc1.AllowPosTol(1000) Il Set the tolerant error to 1000mm
fc1.DInput("ControlBox", 0, "H") // When ControlBox DIO is High
fc1.FTReached("FZ", true, 2) // Axis FZ satisfies 2N
fc1.FTReached(true) /I Enable the absolute value monitoring
fc1.Condition(count++ > 200000) // conditional expression
int re = fc1.Start()
/I Start the force control motion. Zero out force sensor before
execution.
Display(re)
}
void FTMotion()
{
while (true)
{
PTP("JPP",{15,0,90,0,90,0},50,200,100,false)
PTP("JPP"{15,0,75,0,90,0},50,200,100,false)
PTP("JPP"{-15,0,75,0,90,0},50,200,100,false)
PTP("JPP"{-15,0,90,0,90,0},50,200,100,false)
Sleep(10)
}
}

Il Set axis FZ with force control 1N, PID 0, and the trajectory path as FTMotion() customized function.
The robot follows the contents of FTMotion() to control and with force control concurrently. Since this
function is looping the loop, the robot motion, the force control, and the stop condition monitoring
keep on. Not until any stop conditions are comprehended will the force control motion be stopped, the
function exit, and the result values after stopping be returned.

Omron TM Collaborative Robot: TMScript Language Manual (1664) 613

OMRON Corporation Industrial Automation Company
Kyoto, JAPAN Contact : www.ia.omron.com

Authorized Distributor:

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69, 2132 JD Hoofddorp 2895 Greenspoint Parkway, Suite 200

The Netherlands Hoffman Estates, IL 60169 U.S.A.

Tel: (31) 2356-81-300 Fax: (31) 2356-81-388 Tel: (1) 847-843-7900 Fax: (1) 847-843-7787

OMRON ASIA PACIFIC PTE. LTD. OMRON ROBOTICS AND SAFETY TECHNOLOGIES, INC.

438B Alexandra Road, #08-01/02 Alexandra 4225 Hacienda Drive, Pleasanton, CA 94588 U.S.A. . . .

Technopark, Singapore 119968 Tel: (1) 925-245-3400 Fax: (1) 925-960-0590 ©OMRON Corporation 2023-2025 All Rights Reserved.
Tel: (65) 6835-3011 Fax: (65) 6835-3011 In the interest of product improvement,

OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China

Tel: (86) 21-6023-0333 Fax: (86) 21-5037-2388 Cat. No. 1664-E-04 0825 (1123)

specifications are subject to change without notice.

19888-820 D

	1. Overview
	2. Expression
	2.1 Types
	2.2 Variables and Constants
	2.3 Array
	2.4 Operator Symbols
	2.5 Data Type Conversion
	2.6 Endianness and Conversion
	2.7 Warning

	3. Script Project Programming
	3.1 define
	3.2 main
	3.3 closestop
	3.4 errorstop
	3.5 Customized Function
	3.6 Comment
	3.7 Variable
	3.8 Multi-Line Input
	3.9 Conditional Statements
	3.9.1 if
	3.9.2 switch

	3.10 Loop Statements
	3.10.1 for
	3.10.2 while
	3.10.3 do while

	3.11 Branching Statements
	3.11.1 break
	3.11.2 continue
	3.11.3 return

	3.12 Thread
	3.12.1 ThreadRun()
	3.12.2 ThreadID()
	3.12.3 ThreadState()
	3.12.4 ThreadExit()

	4. General Functions
	4.1 Byte_ToInt16()
	4.2 Byte_ToInt32()
	4.3 Byte_ToFloat()
	4.4 Byte_ToDouble()
	4.5 Byte_ToInt16Array()
	4.6 Byte_ToInt32Array()
	4.7 Byte_ToFloatArray()
	4.8 Byte_ToDoubleArray()
	4.9 Byte_ToString()
	4.10 Byte_Concat()
	4.11 String_ToInteger()
	4.12 String_ToFloat()
	4.13 String_ToDouble()
	4.14 String_ToByte()
	4.15 String_IndexOf()
	4.16 String_LastIndexOf()
	4.17 String_DiffIndexOf()
	4.18 String_Substring()
	4.19 String_Split()
	4.20 String_Replace()
	4.21 String_Trim()
	4.22 String_ToLower()
	4.23 String_ToUpper()
	4.24 Array_Append()
	4.25 Array_Insert()
	4.26 Array_Remove()
	4.27 Array_Equals()
	4.28 Array_IndexOf()
	4.29 Array_LastIndexOf()
	4.30 Array_Reverse()
	4.31 Array_Sort()
	4.32 Array_SubElements()
	4.33 ValueReverse()
	4.34 GetBytes()
	4.35 GetString()
	4.36 GetToken()
	4.37 GetAllTokens()
	4.38 GetNow()
	4.39 GetNowStamp()
	4.40 GetVarValue()
	4.41 SetVarValue()
	4.42 Length()
	4.43 Ctrl()
	4.44 XOR8()
	4.45 SUM8()
	4.46 SUM16()
	4.47 SUM32()
	4.48 CRC16()
	4.49 CRC32()
	4.50 ListenPacket()
	4.51 ListenSend()
	4.52 VarSync()

	5. General Functions (Script)
	5.1 Exit()
	5.2 Pause()
	5.3 Resume()
	5.4 WaitFor()
	5.5 Sleep()
	5.6 Display()

	6. Math Functions
	6.1 abs()
	6.2 pow()
	6.3 sqrt()
	6.4 ceil()
	6.5 floor()
	6.6 round()
	6.7 random()
	6.8 sum()
	6.9 average()
	6.10 stdevp()
	6.11 stdevs()
	6.12 min()
	6.13 max()
	6.14 d2r()
	6.15 r2d()
	6.16 sin()
	6.17 cos()
	6.18 tan()
	6.19 asin()
	6.20 acos()
	6.21 atan()
	6.22 atan2()
	6.23 log()
	6.24 log10()
	6.25 norm2()
	6.26 dist()
	6.27 trans()
	6.28 inversetrans()
	6.29 applytrans()
	6.30 interpoint()
	6.31 changeref()
	6.32 points2coord()
	6.33 intercoord()
	6.34 coorshift()

	7. File Functions
	7.1 File_ReadBytes()
	7.2 File_ReadText()
	7.3 File_ReadLines()
	7.4 File_NextLine()
	7.5 File_NextEOF()
	7.6 File_WriteBytes()
	7.7 File_WriteText()
	7.8 File_WriteLine()
	7.9 File_WriteLines()
	7.10 File_Exists()
	7.11 File_Length()
	7.12 File_Delete()
	7.13 File_Copy()
	7.14 File_CopyImage()
	7.15 File_GetImage()
	7.16 File_Replace()
	7.17 File_GetToken()
	7.18 File_GetAllTokens()
	7.19 File_GetFiles()
	7.20 File_LogWrite()

	8. Serial Port Functions
	8.1 SerialPort Class
	8.2 com_open()
	8.3 com_close()
	8.4 com_read()
	8.5 com_read_string()
	8.6 com_write()
	8.7 com_writeline()

	9. Socket Functions
	9.1 Socket Class
	9.2 socket_open()
	9.3 socket_close()
	9.4 socket_read()
	9.5 socket_read_string()
	9.6 socket_send()
	9.7 socket_sendline()

	10. Manual Decision Functions
	10.1 MDecision Class
	10.1.1 Reset()
	10.1.2 Title()
	10.1.3 Description()
	10.1.4 Timeout()
	10.1.5 TimeoutDefaultCase()
	10.1.6 Case()
	10.1.7 Show()

	11. Parameterized Objects
	11.1 Point
	11.2 Base
	11.3 TCP
	11.4 VPoint
	11.5 IO
	11.6 Robot
	11.7 FT

	12. Robot Teach Class
	12.1 TPoint Class
	12.2 TBase Class
	12.2.1 GetValue()
	12.2.2 SetValue()
	12.2.3 ConvShift()

	12.3 TTCP Class

	13. Robot Motion & Vision Job Function
	13.1 QueueTag()
	13.2 WaitQueueTag()
	13.3 CheckQueueTag()
	13.4 StopAndClearBuffer()
	13.5 ChangeBase()
	13.6 ChangeTCP()
	13.7 ChangeLoad()
	13.8 PTP()
	13.9 Move_PTP()
	13.10 Line()
	13.11 Move_Line()
	13.12 Circle()
	13.13 PLine()
	13.14 Move_PLine()
	13.15 LineSingularity()
	13.16 CollisionCheck()
	13.17 PVTEnter()
	13.18 PVTExit()
	13.19 PVTPoint()
	13.20 PVTPause()
	13.21 PVTResume()
	13.22 PathOffset_Set()
	13.23 PathOffset_Get()
	13.24 PathOffset_IsEnabled()
	13.25 PathOffset_AlphaFilter()
	13.26 PathOffset_MaxOffset()
	13.27 Velocity()
	13.28 Position()
	13.29 SetTCPSpeedLimit()
	13.30 SetAccTable()
	13.31 GetAccTable()
	13.32 Vision_DoJob()
	13.33 Vision_DoJob_PTP()
	13.34 Vision_DoJob_Line()

	14. Vision Functions
	14.1 Vision_IsJobAvailable()
	14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks
	14.2.1 Vision_GetOutputArraySize()
	14.2.2 Vision_GetOutputArrayValue()

	14.3 Vision_GetTriggerJobOutputCount()
	14.4 Vision_GetTriggerJobOutputValue()

	15. External Script
	15.1 Listen Node
	15.2 Communication Protocol
	15.3 TMSCT
	15.4 TMSTA
	15.5 CPERR
	15.6 ScriptListen()
	15.7 ScriptExit()
	15.8 Priority Commands

	16. Modbus Functions
	16.1 ModbusTCP Class
	16.1.1 Preset()
	16.1.2 IODDPreset()

	16.2 ModbusRTU Class
	16.2.1 Preset()
	16.2.2 IODDPreset()

	16.3 modbus_open()
	16.4 modbus_close()
	16.5 modbus_read()
	16.6 modbus_read_int16()
	16.7 modbus_read_int32()
	16.8 modbus_read_float()
	16.9 modbus_read_double()
	16.10 modbus_read_string()
	16.11 modbus_write()

	17. TM Ethernet Slave
	17.1 GUI Setting
	17.2 Data Table
	17.3 Communication Protocol
	17.4 TMSVR
	17.4.1 Mode = 0 (the status the server responds to the client command processing)
	17.4.2 Mode = 1 BINARY
	17.4.3 Mode = 2 STRING
	17.4.4 Mode = 3 JSON
	17.4.5 Mode = 11 BINARY (Request read)
	17.4.6 Mode = 12 STRING (Request read)
	17.4.7 Mode = 13 JSON (Request read)

	17.5 svr_read()
	17.6 svr_write()

	18. Profinet Functions
	18.1 profinet_read_input()
	18.2 profinet_read_input_int()
	18.3 profinet_read_input_float()
	18.4 profinet_read_input_string()
	18.5 profinet_read_input_bit()
	18.6 profinet_read_output()
	18.7 profinet_read_output_int()
	18.8 profinet_read_output_float()
	18.9 profinet_read_output_string()
	18.10 profinet_read_output_bit()
	18.11 profinet_write_output()
	18.12 profinet_write_output_bit()

	19. EtherNet/IP Functions
	19.1 eip_read_input()
	19.2 eip_read_input_int()
	19.3 eip_read_input_float()
	19.4 eip_read_input_string()
	19.5 eip_read_input_bit()
	19.6 eip_read_output()
	19.7 eip_read_output_int()
	19.8 eip_read_output_float()
	19.9 eip_read_output_string()
	19.10 eip_read_output_bit()
	19.11 eip_write_output()
	19.12 eip_write_output_bit()

	20. EtherCAT Functions
	20.1 ethercat_read_input()
	20.2 ethercat_read_input_int()
	20.3 ethercat_read_input_float()
	20.4 ethercat_read_input_string()
	20.5 ethercat_read_input_bit()
	20.6 ethercat_read_output()
	20.7 ethercat_read_output_int()
	20.8 ethercat_read_output_float()
	20.9 ethercat_read_output_string()
	20.10 ethercat_read_output_bit()
	20.11 ethercat_write_output()
	20.12 ethercat_write_output_bit()

	21. Real-Time Remote Server
	21.1 GUI Setting
	21.2 Communication Protocol
	21.3 TMRTS
	22.3.1 Mode = 0 (the server status response to the client command processing)
	22.3.2 Mode = 1 BINARY
	22.3.3 Mode = 7 START/STOP Data Streaming
	22.3.4 Mode = 8 SET Streaming Frequency
	22.3.5 Mode = 9 SET Streaming Data

	21.4 TMRTC
	22.4.1 Mode = 0 (the server status response to the client command processing)
	22.4.2 Mode = 1 BINARY
	22.4.3 Mode = 7 START/STOP Motion Control
	22.4.4 Mode = 8 SET Motion Control Settings

	22. Compliance Functions
	22.1 Compliance Class
	23.1.1 Reset()
	23.1.2 Frame()
	23.1.3 HighResistance()
	23.1.4 Single()
	23.1.5 Teach()
	23.1.6 Multiple()
	23.1.7 Impedance()
	23.1.8 Timeout()
	23.1.9 DInput()
	23.1.10 AInput()
	23.1.11 Condition()
	23.1.12 Start()
	23.1.13 Stop()

	23. TouchStop Functions
	23.1 TouchStop class
	24.1.1 Reset()
	24.1.2 Frame()
	24.1.3 HighResistance()
	24.1.4 BrakeDistance()
	24.1.5 RecordPosPoint()
	24.1.6 Single()
	24.1.7 Teach()
	24.1.8 AdvSet()
	24.1.9 Timeout()
	24.1.10 DInput()
	24.1.11 AInput()
	24.1.12 Condition()
	24.1.13 Resisted()
	24.1.14 FTReached()
	24.1.15 Start()
	24.1.16 Stop()
	24.1.17 GetStoppedPos()
	24.1.18 GetTriggeredPos()
	24.1.19 GetMovingDistance()

	24. Force Control Functions
	24.1 FTSensor Class
	25.1.1 Open()
	25.1.2 Close()

	24.2 Force Class
	25.2.1 Reset()
	25.2.2 Frame()
	25.2.3 Distance()
	25.2.4 ProtectionSpeed()
	25.2.5 FTSet()
	25.2.6 Trajectory()
	25.2.7 Timeout()
	25.2.8 AllowPosTol()
	25.2.9 DInput()
	25.2.10 AInput()
	25.2.11 FTReached()
	25.2.12 Condition()
	25.2.13 Start()
	25.2.14 Stop()

