
I664-E-04

R O B O T

Omron TM Collaborative
Robot: TMSript Language
Manual

Original Instruction

The information contained herein is the property of Techman Robot Inc. (hereinafter referred to as the
Corporation). No part of this publication may be reproduced or copied in any way, shape or form without
prior authorization from the Corporation. No information contained herein shall be considered an offer or
commitment. It may be subject to change without notice. This Manual will be reviewed periodically. The
Corporation will not be liable for any error or omission.

 and logos are registered trademarks of TECHMAN ROBOT INC. and the company reserves
the ownership of this manual and its copy and its copyrights.

The textual descriptions and images contained in this Manual may differ from the actual product; in the

event of any discrepancies, the actual product shall prevail.

Terms and Conditions Agreement

 Warranty Limitations of Liability

Warranties

⚫ Exclusive Warranty

Omron’s exclusive warranty is that the Products will be free from defects in materials and

workmanship for a period of twelve months from the date of sale by Omron (or such other period

expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

⚫ Limitations

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF

THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE

PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based

on infringement by the Products or otherwise of any intellectual property right.

⚫ Buyer Remedy

Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form originally

shipped with Buyer responsible for labor charges for removal or replacement thereof) the

non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an

amount equal to the purchase price of the non-complying Product; provided that in no event shall

Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the

Products unless Omron’s analysis confirms that the Products were properly handled, stored,

installed and maintained and not subject to contamination, abuse, misuse or inappropriate

modification. Return of any Products by Buyer must be approved in writing by Omron before

shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from

the use of Products in combination with any electrical or electronic components, circuits, system

assemblies or any other materials or substances or environments. Any advice, recommendations or

information given orally or in writing, are not to be construed as an amendment or addition to the

above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published information.

http://www.omron.com/global/

Omron TM Collaborative Robot: TMScript Language Manual (I664) 0

Limitations of Liability: Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL
LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS
BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.

Further, in no event shall liability of Omron Companies exceed the individual price of the
Product on which liability is asserted.

 Application Considerations

Suitability of Use
Omron Companies shall not be responsible for conformity with any standards, codes or
regulations which apply to the combination of the Product in the Buyer’s application or use of the
Product. At Buyer’s request, Omron will provide applicable third party certification documents
identifying ratings and limitations of use which apply to the Product. This information by itself is
not sufficient for a complete determination of the suitability of the Product in combination with the
end product, machine, system, or other application or use. Buyer shall be solely responsible for
determining appropriateness of the particular Product with respect to Buyer’s application, product
or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED
TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED
AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR
SYSTEM.

Programmable Products

Omron Companies shall not be responsible for the user’s programming of a programmable
Product, or any consequence thereof.

Disclaimers

Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a
guide for the user in determining suitability and does not constitute a warranty. It may
represent the result of Omron’s test conditions and the user must correlate it to actual
application requirements. Actual performance is subject to the Omron’s Warranty and
Limitations of Liability.

⚫ Change in Specifications

Product specifications and accessories may be changed at any time based on improvements
and other reasons. It is our practice to change part numbers when published ratings or
features are changed, or when significant construction changes are made. However, some
specifications of the Product may be changed without any notice. When in doubt, special part
numbers may be assigned to fix or establish key specifications for your application. Please
consult with your Omron representative at any time to confirm actual specifications of
purchased Product.

Errors and Omissions

Information presented by Omron Companies has been checked and is believed to be
accurate; however, no responsibility is assumed for clerical, typographical or proofreading
errors or omissions.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 1

Statement of Responsibilities for Cybersecurity Threats

To maintain the security and reliability of the system, a robust cybersecurity defense program

should be implemented, which may include some or all of the following:

Anti-virus protection

• Install the latest commercial-quality anti-virus software on the computer connected to the

control system and keep the software and virus definitions up-to-date.

• Scan USB drives or other external storage devices before connecting them to control

systems and equipment.

Security measures to prevent unauthorized network access

• Install physical controls so that only authorized personnel can access control systems and

equipment.

• Reduce connections to control systems and equipment via networks to prevent access from

untrusted devices.

• Install firewalls to block unused communications ports and limit communication between

systems. Limit access between control systems and systems from the IT network.

• Control remote access and adopt multifactor authentication to devices with remote access to

control systems and equipment.

• Set strong password policies and monitor for compliance frequently.

Data input and output protection

• Backup data and keep the data up-to-date periodically to prepare for data loss.

• Validate backups and retention policies to cope with unintentional modification of

input/output data to control systems and equipment.

• Validate the scope of data protection regularly to accommodate changes.

• Check validity of backups by scheduling test restores to ensure successful recovery from

incidents.

• Safety design, such as emergency shutdown and fail-soft operations in case of data

tampering and incidents.

Additional recommendations

• When using an external network environment to connect to an unauthorized terminal such

as a SCADA, HMI or to an unauthorized server may result in network security issues such as

spoofing and tampering.

• You must take sufficient measures such as restricting access to the terminal, using a

terminal equipped with a secure function, and locking the installation area by yourself.

• When constructing network infrastructure, communication failure may occur due to cable

disconnection or the influence of unauthorized network equipment.

• Take adequate measures, such as restricting physical access to network devices, by means

such as locking the installation area.

When using devices equipped with an SD Memory Card, there is a security risk that a third party may

acquire, alter, or replace the files and data in the removable media by removing or unmounting the media.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 2

REVISION HISTORY TABLE .. 11

1. OVERVIEW ... 12

2. EXPRESSION ... 13

2.1 Types ... 13
2.2 Variables and Constants ... 14
2.3 Array .. 17
2.4 Operator Symbols .. 18
2.5 Data Type Conversion ... 21
2.6 Endianness and Conversion ... 24

2.7 Warning ... 26

3. SCRIPT PROJECT PROGRAMMING ... 28

3.1 define ... 28
3.2 main ... 28
3.3 closestop .. 29
3.4 errorstop ... 30
3.5 Customized Function ... 31
3.6 Comment ... 32
3.7 Variable ... 33
3.8 Multi-Line Input ... 36

3.9 Conditional Statements ... 37
3.9.1 if .. 37
3.9.2 switch .. 38

3.10 Loop Statements .. 41
3.10.1 for.. 41
3.10.2 while .. 42
3.10.3 do while ... 43

3.11 Branching Statements ... 44
3.11.1 break ... 44
3.11.2 continue .. 45
3.11.3 return .. 45

3.12 Thread ... 46

3.12.1 ThreadRun() .. 46
3.12.2 ThreadID() ... 47
3.12.3 ThreadState() .. 48
3.12.4 ThreadExit() .. 48

4. GENERAL FUNCTIONS ... 51

4.1 Byte_ToInt16() .. 51
4.2 Byte_ToInt32() .. 53
4.3 Byte_ToFloat() .. 54
4.4 Byte_ToDouble() ... 55
4.5 Byte_ToInt16Array() ... 56

Contents

Omron TM Collaborative Robot: TMScript Language Manual (I664) 3

4.6 Byte_ToInt32Array() ... 58
4.7 Byte_ToFloatArray() ... 59

4.8 Byte_ToDoubleArray() ... 60
4.9 Byte_ToString() .. 61
4.10 Byte_Concat() ... 62
4.11 String_ToInteger() .. 65
4.12 String_ToFloat() .. 67
4.13 String_ToDouble() .. 69
4.14 String_ToByte() .. 71
4.15 String_IndexOf() ... 72
4.16 String_LastIndexOf() .. 74
4.17 String_DiffIndexOf() ... 76
4.18 String_Substring() .. 77
4.19 String_Split() ... 80

4.20 String_Replace() ... 81
4.21 String_Trim() ... 82
4.22 String_ToLower() .. 84
4.23 String_ToUpper() .. 85
4.24 Array_Append() .. 86
4.25 Array_Insert() .. 87
4.26 Array_Remove().. 88
4.27 Array_Equals() .. 89
4.28 Array_IndexOf() .. 91
4.29 Array_LastIndexOf() ... 93
4.30 Array_Reverse().. 95

4.31 Array_Sort() .. 97
4.32 Array_SubElements() ... 98
4.33 ValueReverse() ... 100
4.34 GetBytes() ... 103
4.35 GetString() .. 107
4.36 GetToken() .. 114
4.37 GetAllTokens() .. 122
4.38 GetNow() ... 124
4.39 GetNowStamp() .. 126
4.40 GetVarValue().. 129
4.41 SetVarValue() .. 130
4.42 Length() ... 131

4.43 Ctrl() ... 133
4.44 XOR8() ... 135
4.45 SUM8() ... 137
4.46 SUM16() ... 139
4.47 SUM32() ... 141
4.48 CRC16() ... 143
4.49 CRC32() ... 145
4.50 ListenPacket() ... 147
4.51 ListenSend() ... 148
4.52 VarSync() .. 150

5. GENERAL FUNCTIONS (SCRIPT) ... 152

Omron TM Collaborative Robot: TMScript Language Manual (I664) 4

5.1 Exit() .. 152
5.2 Pause() .. 154

5.3 Resume() ... 155
5.4 WaitFor() ... 156
5.5 Sleep() ... 157
5.6 Display() .. 158

6. MATH FUNCTIONS .. 160

6.1 abs() ... 160
6.2 pow() .. 161
6.3 sqrt() .. 163
6.4 ceil() ... 164
6.5 floor() ... 165

6.6 round() ... 166
6.7 random() .. 168
6.8 sum() ... 169
6.9 average() ... 170
6.10 stdevp() ... 171
6.11 stdevs() ... 172
6.12 min() .. 173
6.13 max() .. 174
6.14 d2r() ... 175
6.15 r2d() ... 176
6.16 sin() .. 177
6.17 cos() ... 178

6.18 tan() ... 179
6.19 asin() .. 180
6.20 acos() ... 181
6.21 atan() ... 182

6.22 atan2() ... 183
6.23 log() ... 184
6.24 log10() ... 186
6.25 norm2() .. 187
6.26 dist() .. 188
6.27 trans() .. 189
6.28 inversetrans().. 191

6.29 applytrans() ... 192
6.30 interpoint() .. 194
6.31 changeref() .. 195
6.32 points2coord() .. 197
6.33 intercoord() ... 199
6.34 coorshift() ... 200

7. FILE FUNCTIONS ... 201

7.1 File_ReadBytes() .. 202
7.2 File_ReadText()... 203
7.3 File_ReadLines() ... 204

7.4 File_NextLine().. 206

Omron TM Collaborative Robot: TMScript Language Manual (I664) 5

7.5 File_NextEOF().. 209
7.6 File_WriteBytes() .. 210

7.7 File_WriteText() .. 214
7.8 File_WriteLine() .. 217
7.9 File_WriteLines() .. 220
7.10 File_Exists() .. 223
7.11 File_Length() ... 224
7.12 File_Delete() .. 225
7.13 File_Copy() .. 226
7.14 File_CopyImage() ... 227
7.15 File_GetImage() .. 229
7.16 File_Replace() ... 231
7.17 File_GetToken() .. 232
7.18 File_GetAllTokens() .. 236

7.19 File_GetFiles()... 238
7.20 File_LogWrite() ... 240

8. SERIAL PORT FUNCTIONS ... 242

8.1 SerialPort Class .. 242
8.2 com_open() ... 243
8.3 com_close() .. 244
8.4 com_read() .. 245
8.5 com_read_string() .. 251
8.6 com_write() ... 256
8.7 com_writeline() ... 258

9. SOCKET FUNCTIONS .. 260

9.1 Socket Class ... 260
9.2 socket_open() ... 261
9.3 socket_close() .. 262
9.4 socket_read() .. 263
9.5 socket_read_string() .. 269
9.6 socket_send() ... 274
9.7 socket_sendline() ... 276

10. MANUAL DECISION FUNCTIONS ... 278

10.1 MDecision Class ... 278
10.1.1 Reset() .. 279
10.1.2 Title() ... 279
10.1.3 Description() .. 279
10.1.4 Timeout() ... 279
10.1.5 TimeoutDefaultCase() ... 280
10.1.6 Case() ... 280
10.1.7 Show() .. 282

11. PARAMETERIZED OBJECTS .. 284

Omron TM Collaborative Robot: TMScript Language Manual (I664) 6

11.1 Point .. 285
11.2 Base ... 286

11.3 TCP .. 287
11.4 VPoint .. 288
11.5 IO ... 289
11.6 Robot ... 292
11.7 FT ... 294

12. ROBOT TEACH CLASS ... 296

12.1 TPoint Class ... 296
12.2 TBase Class .. 300

12.2.1 GetValue() ... 301
12.2.2 SetValue() ... 301

12.2.3 ConvShift() .. 302
12.3 TTCP Class ... 304

13. ROBOT MOTION & VISION JOB FUNCTION .. 307

13.1 QueueTag() ... 307
13.2 WaitQueueTag() .. 308
13.3 CheckQueueTag() ... 309
13.4 StopAndClearBuffer() .. 311
13.5 ChangeBase() ... 312
13.6 ChangeTCP()... 314
13.7 ChangeLoad() ... 317

13.8 PTP() .. 319
13.9 Move_PTP() ... 324
13.10 Line() ... 325
13.11 Move_Line() .. 328
13.12 Circle() ... 331
13.13 PLine() ... 334
13.14 Move_PLine() .. 335
13.15 LineSingularity() ... 336
13.16 CollisionCheck() ... 337
13.17 PVTEnter() ... 339
13.18 PVTExit() ... 340
13.19 PVTPoint() ... 341

13.20 PVTPause() ... 343
13.21 PVTResume() .. 344
13.22 PathOffset_Set() ... 345
13.23 PathOffset_Get() ... 348
13.24 PathOffset_IsEnabled() .. 349
13.25 PathOffset_AlphaFilter() .. 350
13.26 PathOffset_MaxOffset() ... 351
13.27 Velocity() ... 354
13.28 Position() ... 358
13.29 SetTCPSpeedLimit() ... 362
13.30 SetAccTable() ... 364

13.31 GetAccTable() ... 367

Omron TM Collaborative Robot: TMScript Language Manual (I664) 7

13.32 Vision_DoJob() ... 368
13.33 Vision_DoJob_PTP() .. 369

13.34 Vision_DoJob_Line() .. 370

14. VISION FUNCTIONS ... 372

14.1 Vision_IsJobAvailable() ... 372
14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks 373

14.2.1 Vision_GetOutputArraySize() .. 373
14.2.2 Vision_GetOutputArrayValue() .. 375

14.3 Vision_GetTriggerJobOutputCount() ... 383
14.4 Vision_GetTriggerJobOutputValue() .. 384

15. EXTERNAL SCRIPT ... 386

15.1 Listen Node ... 386
15.2 Communication Protocol ... 387
15.3 TMSCT ... 389

15.4 TMSTA ... 391
15.5 CPERR ... 394
15.6 ScriptListen() .. 396
15.7 ScriptExit() .. 398
15.8 Priority Commands .. 399

16. MODBUS FUNCTIONS ... 402

16.1 ModbusTCP Class .. 402
16.1.1 Preset() ... 402
16.1.2 IODDPreset() .. 404

16.2 ModbusRTU Class .. 405
16.2.1 Preset() ... 405
16.2.2 IODDPreset() .. 407

16.3 modbus_open() .. 408
16.4 modbus_close() .. 409
16.5 modbus_read() ... 410
16.6 modbus_read_int16() ... 413
16.7 modbus_read_int32() ... 415
16.8 modbus_read_float() .. 417

16.9 modbus_read_double() .. 419
16.10 modbus_read_string() ... 421
16.11 modbus_write()... 423

17. TM ETHERNET SLAVE .. 427

17.1 GUI Setting .. 427
17.2 Data Table ... 428
17.3 Communication Protocol ... 430
17.4 TMSVR ... 432

17.4.1 Mode = 0 (the status the server responds to the client command processing)............... 433
17.4.2 Mode = 1 BINARY ... 435

Omron TM Collaborative Robot: TMScript Language Manual (I664) 8

17.4.3 Mode = 2 STRING... 437
17.4.4 Mode = 3 JSON .. 438

17.4.5 Mode = 11 BINARY (Request read) .. 439
17.4.6 Mode = 12 STRING (Request read) .. 441
17.4.7 Mode = 13 JSON (Request read) .. 442

17.5 svr_read() .. 443
17.6 svr_write() ... 444

18. PROFINET FUNCTIONS ... 445

18.1 profinet_read_input() ... 446
18.2 profinet_read_input_int() ... 450
18.3 profinet_read_input_float() .. 452
18.4 profinet_read_input_string() ... 454

18.5 profinet_read_input_bit() ... 455
18.6 profinet_read_output() ... 457
18.7 profinet_read_output_int() .. 461
18.8 profinet_read_output_float() ... 463
18.9 profinet_read_output_string() ... 465
18.10 profinet_read_output_bit() .. 466
18.11 profinet_write_output() .. 468
18.12 profinet_write_output_bit() .. 475

19. ETHERNET/IP FUNCTIONS ... 480

19.1 eip_read_input() ... 481

19.2 eip_read_input_int() ... 484
19.3 eip_read_input_float() .. 486
19.4 eip_read_input_string() ... 488
19.5 eip_read_input_bit() ... 489
19.6 eip_read_output() ... 491
19.7 eip_read_output_int() ... 494
19.8 eip_read_output_float() ... 496
19.9 eip_read_output_string() ... 498
19.10 eip_read_output_bit() ... 499
19.11 eip_write_output() .. 501
19.12 eip_write_output_bit() .. 508

20. ETHERCAT FUNCTIONS ... 513

20.1 ethercat_read_input() ... 514
20.2 ethercat_read_input_int() .. 517
20.3 ethercat_read_input_float() ... 519
20.4 ethercat_read_input_string() ... 521
20.5 ethercat_read_input_bit() .. 522
20.6 ethercat_read_output() .. 524
20.7 ethercat_read_output_int() .. 528
20.8 ethercat_read_output_float() ... 530
20.9 ethercat_read_output_string() .. 532
20.10 ethercat_read_output_bit() .. 533

Omron TM Collaborative Robot: TMScript Language Manual (I664) 9

20.11 ethercat_write_output() ... 535
20.12 ethercat_write_output_bit() ... 541

21. REAL-TIME REMOTE SERVER ... 547

21.1 GUI Setting .. 547
21.2 Communication Protocol ... 548
21.3 TMRTS ... 550

22.3.1 Mode = 0 (the server status response to the client command processing) 552
22.3.2 Mode = 1 BINARY ... 556
22.3.3 Mode = 7 START/STOP Data Streaming .. 558
22.3.4 Mode = 8 SET Streaming Frequency .. 559
22.3.5 Mode = 9 SET Streaming Data.. 560

21.4 TMRTC ... 561

22.4.1 Mode = 0 (the server status response to the client command processing) 563
22.4.2 Mode = 1 BINARY ... 567
22.4.3 Mode = 7 START/STOP Motion Control .. 568
22.4.4 Mode = 8 SET Motion Control Settings ... 569

22. COMPLIANCE FUNCTIONS ... 571

22.1 Compliance Class .. 571
23.1.1 Reset() .. 571
23.1.2 Frame() ... 571
23.1.3 HighResistance() ... 572
23.1.4 Single() ... 572

23.1.5 Teach() ... 572
23.1.6 Multiple() ... 573
23.1.7 Impedance() .. 574
23.1.8 Timeout() ... 574
23.1.9 DInput() ... 575
23.1.10 AInput() ... 575
23.1.11 Condition() .. 576
23.1.12 Start() .. 577
23.1.13 Stop() .. 577

23. TOUCHSTOP FUNCTIONS .. 580

23.1 TouchStop class ... 580
24.1.1 Reset() .. 581
24.1.2 Frame() ... 581
24.1.3 HighResistance() ... 581
24.1.4 BrakeDistance() .. 582
24.1.5 RecordPosPoint() .. 582
24.1.6 Single() ... 583
24.1.7 Teach() ... 584
24.1.8 AdvSet() .. 585
24.1.9 Timeout() ... 586
24.1.10 DInput() ... 586
24.1.11 AInput() ... 587

Omron TM Collaborative Robot: TMScript Language Manual (I664) 10

24.1.12 Condition() .. 588
24.1.13 Resisted() .. 588

24.1.14 FTReached() ... 589
24.1.15 Start() .. 590
24.1.16 Stop() .. 590
24.1.17 GetStoppedPos() .. 591
24.1.18 GetTriggeredPos() .. 591
24.1.19 GetMovingDistance()... 592

24. FORCE CONTROL FUNCTIONS .. 597

24.1 FTSensor Class .. 597
25.1.1 Open() ... 599
25.1.2 Close() .. 599

24.2 Force Class ... 599
25.2.1 Reset() .. 600
25.2.2 Frame() ... 600
25.2.3 Distance() .. 602
25.2.4 ProtectionSpeed() ... 602
25.2.5 FTSet() .. 602
25.2.6 Trajectory() .. 604
25.2.7 Timeout() ... 605
25.2.8 AllowPosTol() .. 605
25.2.9 DInput() ... 606
25.2.10 AInput() ... 606
25.2.11 FTReached() ... 607

25.2.12 Condition() .. 608
25.2.13 Start() .. 609
25.2.14 Stop() .. 610

Omron TM Collaborative Robot: TMScript Language Manual (I664) 11

REVISION HISTORY TABLE

Revision Date Description

A June, 2023 Original release

B March, 2024 Minor revision

C August, 2024 Minor revision

D August, 2025 Minor revision

Omron TM Collaborative Robot: TMScript Language Manual (I664) 12

1. Overview
TMscript is the programming language of Techman Robot applicable to Flow projects and

Script projects. Refer to the table below for the main scope of applications.

⚫ Scope of Applications

Application

Flow Projects
Script
Projects

Set Node
(& other
nodes)

Listen Node
(external
scripts)

Script Node

Expression ✓ ✓ ✓ ✓

define/main/closestop/errorstop ✓

Customized Function ✓

Comment ✓ ✓ ✓

Global variables in the Project ✓ ✓ ✓ ✓

Local variables in the Function ✓ ✓ ✓

Multiline Input ✓ ✓ ✓

Conditional Statement ✓ ✓ ✓

Loop Statement ✓ ✓ ✓

Branching Statement ✓ ✓ ✓

Thread Function ✓

General Function ✓ ✓ ✓ ✓

General Function (Script) ✓ ✓ ✓

Math Function ✓ ✓ ✓ ✓

File Function ✓ ✓ ✓ ✓

Serial Port Class ✓ ✓ ✓

Serial Port Function ✓ ✓ ✓ ✓

Socket Class

Socket Function ✓ ✓ ✓ ✓

MDecision Class ✓ ✓ ✓

Parameterized Object ✓ ✓ ✓ ✓

Robot Teach Class ✓ ✓ ✓

Robot Motion & Vision Job Function ✓ ✓ ✓

Vision Function ✓ ✓ ✓ ✓

ScriptListen Function ✓ ✓ ✓

External Script/Priority Command ✓

Modbus TCP/RTU Class ✓ ✓ ✓

Modbus Function ✓ ✓ ✓ ✓

TM Ethernet Slave Function ✓ ✓ ✓ ✓

Profinet Function ✓ ✓ ✓ ✓

EtherNet/IP Function ✓ ✓ ✓ ✓

EtherCAT Function ✓ ✓ ✓ ✓

CC-Link Function ✓ ✓ ✓ ✓

Real-Time Remote Server Function

Compliance Class ✓ ✓ ✓

TouchStop Class ✓ ✓ ✓

FTSensor Class ✓ ✓ ✓

Force Class ✓ ✓ ✓

Omron TM Collaborative Robot: TMScript Language Manual (I664) 13

2. Expression
2.1 Types

Different data types of variables can be declared in Variable Manager.

byte 8bit integer unsigned 0 to 255 significant digit 3

int 32bit integer signed -2147483648 to 2147483647 significant digit 10

float 32bit floating-

point

signed -3.4028235E+38 to

3.4028235E+38

significant digit 7

double 64bit floating-

point

signed -1.7976931348623157E+308

to 1.7976931348623157E+308

significant digit 15

bool Boolean true or false

string string

 In function terms, the integer type further goes by int16 and int32. The default is int32.

int16 16bit integer signed -32768 to 32767 significant digit 5

int32 32bit integer signed -2147483648 to 2147483647 significant digit 10

Omron TM Collaborative Robot: TMScript Language Manual (I664) 14

2.2 Variables and Constants

1. Variables

Users can only use numeric or English character combinations without special characters

or other characters, and the name after the combination cannot be a numeric value, a

string, or a Boolean value.

Numbers 0123456789

Characters a-z, A-Z, _

Example

Int i = 0

string s = "ABC"

string s1 = "DEF"

string s2 = "123"

Without double quotation marks, strings will be taken as variables.

s = s1 + " and " + s2 // s = "DEF and 123"

// s, s1, s2 are variable, and " and " is a string.

In addition to variables, the naming rule also applies to constants, numbers, strings, and

Booleans except that string constants need to be enclosed in double quotes.

When a variable is generated in TMflow, a prefix is added based on the source. To use the

variable for writing or reading, users must enter the full name including the prefix word such

as var_s1 or g_s2. For the rules of adding prefixes, refer to the respective description in

variable setting pages.

2. Numbers

⚫ Decimal integer, decimal floating-point, binary, hexadecimal integer and scientific

notation are supported.

Decimal integer 123

 -123

 +456

Decimal float 34.567

 -8.9

Binary 0b0000111

 0B1110000

Hexadecimal integer 0x123abc

 0X00456DEF

Scientific notation 3.4e5

 2.3E-4

⚫ For binary and hexadecimal notation, there is no floating-point.

⚫ The notation of number is not case sensitive.

For example:

 0b0011 equals 0B0011

 0xabcD equals 0XABCD, 0xABCd, 0Xabcd etc.

 3.4e5 equals 3.4E5

⚫ The system determines the data types of numbers automatically when using numbers

as constants. The rule is to conclude bit types from the smaller to the greater such as

100 // data type: byte // 100 is in the value range of data type: byte.

1000 // data type: int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 15

1.11 // data type: float //1.11 is in the value range of data type: float.

To assign the data type, use variable declaration or conversion to do so such as

byte b = 100 // variable b = 100 as data type: byte

int i = 100 // variable i = 100 as data type: int

(int)100 // constant 100 as data type: int

(float)100 // constant 100 as data type: float

For function calls, the system determines the data types of arguments and selects

the respective syntax. If there is no respective syntax, the system determines the

compatible syntax with the rule concluding bit types from the smaller to the greater

such as

GetBytes(100, 0, 0) // {0x64,0x00,0x00,0x00} // 100 and the 0s come with the data type:

byte, but the syntax goes with GetBytes(int, int, int). The system, therefore,

converts 100 and the 0s into the data type: int to proceed with the call syntax.

GetBytes(100) // {0x64} // 100 comes with the data type: byte. in the syntax GetBytes(?) to go

with any data types. Therefore, the system takes 100 as a constant in data type:

byte to proceed the call syntax.

⚫ Byte can only present unsigned numbers in 8 bits ranging from 0 to 255. As a result,

if a negative sign is assigned to the byte type or through calculation, it will still save

the 8-bit unsigned value only.

For example:

byte b = -100 // Error // -100 mismatches with the value range of byte.

byte b = 0 - 100 // b = 156

// 0-100=-100 (0xFFFFFF9C). Saved 8 bits as 0x9C. The value equals 156.

b = 0 - 1 // b = 255 // 0-1=-1 (0xFFFFFFFF) Saved 8 bits as 0xFF The value equals 255.

b = 255 + 1 // b = 0 // 255+1=256 (0x100) Saved 8 bits as 0x00 The value equals 0.

⚫ Int can present signed numbers in 32 bits ranging from -2147483648 to 2147483647.

If the calculation exceeds the value range, it will still save the 32-bit signed integer

value only.

For example:

int i = -2147483648 - 1 // i = 2147483647 // -2147483648 - 1 = -2147483649 (0xFFFFFFFF

7FFFFFFF) Saved 32 bits as 0x7FFFFFFF. The value equals 2147483647.

i = 2147483647 + 1 // i = -2147483648 // 2147483647 + 1 = 2147483648 (0x80000000)

Save 32 bits in the method of signed integer value. The value equals -2147483648

3. String

When inputting string constant, double quotation marks shall be placed in pairs around the

string to avoid the recognition error of variable and string.。

For example

"Hello World! "

"Hello TM""5" (If " is one of the character in the string, use two ("") instead of one

(").

⚫ Control character in double quotation mark are not supported.

For example:

"Hello World!\r\n" (the output would be Hello World!\r\n string)

⚫ Without double quotation marks, the compiling will follows the rules below

1. Numbers will be viewed as numbers

2. The combination of numbers and characters will be viewed as variable as long as

the variable does exist.

3. If the variable does not exist, it will be compiled as string with a warning message.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 16

⚫ The combination of string and variable

1. Inside double quotation marks, variables will not be combined as variables

For example:

s = "TM5" // s = "TM5"

s1 = "Hi, s Robot" // s1 = "Hi, s Robot"

2. Standard syntax. Double quotation marks need to be placed around the string, and

plus sign (+) shall be used to link variables and numbers

Example:

s1 = "Hi, " + s + " Robot" // s1 = "Hi, TM5 Robot"

3. Compatible syntax (not recommended). The single quotation marks can be placed

around the variables, but a warning message will be sent out

For example:

single quotation marks "Hi, ’s’ Robot" // s1 = "Hi, TM5 Robot"

"Hi, ’x’ Robot" // s1 = "Hi, ‘x’ Robot" // Because variable x does not exist, ‘x’ is

viewed as string

4. Single quotation marks do not support element value retrieval with array indexes.

The standard format with double quotation marks should be used.

For example

string[] ss = {"Techman", "Robot"}

"Hi, ‘s’ ‘ss[0]’ Robot" // s1 = "Hi, TM5 ‘ss[0]’ Robot"

// ‘ss[0]’ is invalid

"Hi, " + s + " " + ss[0] + " Robot" // s1 = "Hi, TM5 Techman Robot"

5. Single quotation marks cannot be presented by "’ If users would like to

input ’(variable name)’, The standard format with double quotation marks should

be used.

For example

"Hi, ‘s’ Robot" // s1 = "Hi, TM5 Robot"

// If s1 = "Hi, ‘s’ Robot" is what you want, please use the following syntax.

"Hi, ‘" + "s" + "’ Robot" // s1 = "Hi, ‘s’ Robot"

⚫ For control character, e.g. new line, please use Ctrl() command.

For example

s1 = "Hi, " + Ctrl("\r\n") + s + " Robot" or "Hi, " + NewLine + s + " Robot"

Hi,

TM5 Robot

⚫ Reserved characters is similar to variables, no double quotation marks is needed. (But

single quotation mark is not supported)

1. empty empty string, equals ""

2. newline or NewLine new line, equals Ctrl("\r\n") or Ctrl(0x0D0A)

4. Boolean

True or false value of logic.

Denote true value
true

True

Denote false value

false

False

The Boolean value is case sensitive. Misuses of capital letters such as TRue will be taken

as a variable or a string.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 17

2.3 Array

⚫ Array is a set of data with the same data type. The initial value is assigned with {}, and

every element remains the characteristic of its data type.

For example

int[] i = {0,1,2,3} // elements in number data type

string[] s = {"ABC", "DEF", "GHI"} // elements in string data type

bool[] bb = {true, false, true} // elements in boolean data type

⚫ By utilizing index, the value of specified element can be get, the index is start from 0

For example

index 0 1 2 3 4 5 6 7

array eight elements in total

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

 Valid index values [0] .. [7].

An error will occur if accessing beyond the range, such as A[8].

⚫ Only one degree array is supported. The maximum index number is 2048.

⚫ The array size may alter according to the return value of functions or assigned values. The

maximum element number is 2048. This feature makes array meet the needs of different

functions and applications in Network Node.

For Example:

string[] ss = {empty, empty, empty} // The initial size of string array is 3 elements

ss = String_Split("A_B_C_D_F_G_H", "_") // After splitting string, the string array has 7

elements

len = Length(ss) // len = 7

ss = String_Split("A,B", ",") // After splitting string, the string array has 2 elements

len = Length(ss) // len = 2

Omron TM Collaborative Robot: TMScript Language Manual (I664) 18

2.4 Operator Symbols

⚫ The operator table is listed below.

⚫ The calculation follows the precedence of operator first then the associativity.

For example

left-to-right associativity

 A = A * B / C % D ➔ (A = (((A * B) / C) % D))

right-to-left associativity

 A -= B += 10 && ! !D ➔ (A -= (B += (10 && (! (!D)))))

⚫ The calculation will proceed by the type of the operand.

1. When both values come as the integer type, the calculation will proceed by the integer

type such as

int var_a = 10

int var_b = 3

float var_c = var_a / var_b

By the operator priority, the calculation goes / first and then =.

var_a / var_b = 10 / 3 = 3 (both var_a and var_b are integers)

var_c = 3 (The integer 3 assigns to the floating point number var_c)

2. When one of the two values comes as the floating-point type, the calculation will

proceed by the floating-point type such as

int var_a = 10

float var_b = 3

float var_c = var_a / var_b

var_a / var_b = 10 / 3 = 3.333333 (for var_b is a floating-point number)

var_c = 3.333333 (the floating-point 3.333333 assigns to var_c)

var_c = var_a / 3

var_a / 3 = 10 / 3 = 3 (both var_a and 3 are integers)

var_c = 3

var_c = var_a / 3.0

var_a / 3.0 = 10 / 3.0 = 3.333333 (for 3.0 is a floating-point)

var_c = 3.333333

Precedence

High to low
Operator Name Example Requirement associativity

17

++ Postfix increment i++ Integer

variable
left-to-

right

-- Postfix decrement i--

() Function call int x = f()

[] Allocate storage array[4] = 2
Array

variable

16
++ Prefix increment ++i Integer

variable

right-to-

left -- Prefix decrement --i

1
2

3
4

1
2

3
4

5

Omron TM Collaborative Robot: TMScript Language Manual (I664) 19

Precedence

High to low
Operator Name Example Requirement associativity

+ Unary plus int i = +1 Numeric

variable,

Constant
- Unary minus int i = -1

! Logical negation

(NOT)

if (!done) … Boolean

variable

常數
~ Bitwise NOT flag1 = ~flag2 Integer

variable

常數 14

* Multiplication int i = 2 * 4 Numeric

variable,

Constant

left-to-

right

/ Division float f = 10.0 / 3.0

% Modulo (integer

remainder)

int rem = 4 % 3

13

+ Addition int i = 2 + 3 Numeric

variable,

Constant
- Subtraction int i = 5 - 1

12

<< Bitwise left shift int flags = 33 << 1 Integer

variable,

Constant
>> Bitwise right shift int flags = 33 >> 1

11

< Less than if (i < 42) …
Numeric

variable,

Constant

<= Less than or equal to if (i <= 42) ...

> Greater than if (i > 42) …

>= Greater than or equal

to

if (i >= 42) ...

10
== Equal to if (i == 42) ...

!= Not equal to if (I != 42) …

9 & Bitwise AND flag1 = flag2 & 42 Integer

variable,

Constant

8 ^ Bitwise XOR flag1 = flag2 ^ 42

7 | Bitwise OR flag1 = flag2 | 42

6 && Logical AND
if (condition A &&

condition B)

5 || Logical OR
if (condition A ||

condition B)

4 c ? t : f Ternary conditional int i = a > b ? a : b

right-to-

left 3

= Basic assignment int a = b
Left side:

Numeric

variable

Right

side:

Numeric

variable,

Constant

+= Addition assignment a += 3

-= Subtraction

assignment

b -= 4

*= Multiplication

assignment

a *= 5

/= Division assignment a /= 2

%= Modulo assignment a %= 3

<<=
Bitwise left shift

assignment
flags <<= 2

Left side:

Integer

variable

Omron TM Collaborative Robot: TMScript Language Manual (I664) 20

Precedence

High to low
Operator Name Example Requirement associativity

>>=
Bitwise right shift

assignment
flags >>= 2

Right

side:

Integer

variable,

Constant &= Bitwise AND

assignment

flags &=

new_flags ^= Bitwise XOR

assignment

flags ^=

new_flags |= Bitwise OR

assignment

flags |= new_flags

Omron TM Collaborative Robot: TMScript Language Manual (I664) 21

2.5 Data Type Conversion

⚫ Data types can be converted to each other and used in variables/constants or arrays.

⚫ Conversions must be in the same format of the containers such as variable/constant

conversions or array conversions. It is not permitted to convert a variable to an array or an

array to a variable.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 22

Native

type

Conversion

type
Example Result

byte

int int i = (int)100 i = 100

float float f = (float)100 f = 100

double double d = (double)100 d = 100

bool bool flag = (bool)0 flag = false (0 equals false)

string string s = (string)100 s = "100"

int

byte byte b = (byte)1000 b = 232

float float f = (float)1000 f = 1000

double
double d =

(double)1000
d = 1000

bool bool flag = (bool)1000 flag = true (non 0 equals true)

string string s = (string)1000 s = "1000"

float

byte byte b = (byte)1.23 b = 1

int int i = (int)1.23 i = 1

double double d = (double)1.23 d = 1.23

bool bool flag = (bool)1.23 flag = true (non 0 equals true)

string string s = (string)1.23 s = "1.23"

double

byte byte b = (byte)1.23 b = 1

int int i = (int)1.23 i = 1

float float f = (float)1.23 f = 1.23

bool bool flag = (bool)1.23 flag = true

string string s = (string)1.23 s = "1.23"

bool

byte byte b = (byte)True Error

int int i = (int)False Error

float float f = (float)true Error

double
double d =

(double)false
Error

string string s = (string)True s = "true" (shown in lower-case)

string

byte
byte b1 = (byte)"1.23"

byte b2 = (byte)"XYZ"

1

Error (Unable to convert "XYZ" to

value)

int int i = (int)"1.23" 1

float
float f1 = (float)"1.23"

float f2 = (float)"A1"

1.23

Error (Unable to convert "A1" to

value)

double
double d =

(double)"1.23"
1.23

bool

bool flag1 = (bool)"true"

bool flag2 =

(bool)"false"

bool flag3 =

(bool)"1.23"

bool flag4 = (bool)""

flag1 = true (string "true" as true)

flag2= false (string "false" as false)

flag3 = true (non-empty string as

true)

flag4 = false (empty string for false)

⚫ The conversion method of arrays is in accordance with the table above. The conversion is

performed for each element in the array.

string[] ss = {"1.23", "4.56", "0.789"}

int[] i_array = (int[])ss // i_array = {1, 4, 0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 23

float[] f_array = (float[])ss // f_array = {1.23, 4.56, 0.789}

⚫ Error messages will be returned should the conversions below occur.

◼ Fail to convert to numeric correctly such as Booleans (true/false) or non-numeric

strings ("XYZ").

int value = (int)true // Error

int value = (int)"XYZ" // Error

◼ Invalid floating-point numbers to convert to floats or doubles such as NaN or Infinity.

string dvalue = "1.79769e+308"

float f = (float) dvalue // Error 1.79769e+308 is a valid double type and unable to convert to the

float type.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 24

2.6 Endianness and Conversion

Endianness refers to the applications in the memory or the communication networks in which

data comes in multiple bytes for the expressions of the order to sort among multiple bytes because

the minimal unit comes in bytes.

⚫ Little Endian. Place the low bits of the multibyte at smaller addresses and the high bits at

larger ones.

32-bit integer

 Big Endian. Place the high bits of the multibyte at smaller addresses and the

low bits at larger ones.
32-bit integer

It is a factor to consider because different orders to sort may cause different conversion results.

For example, an integer type is 32 bits. Namely, it occupies 4 bytes. If the int value is 300, the

expression in 16-bit is 0x0000012C. If using Little Endian for memory storing or communication

networks, the order is

 [0] [1] [2] [3]

 2C 01 00 00

It fetches 0x0000012C if adopting Little Endian while 0x2C010000 if Big Endian. These are two

completely different values, which may cause different results.

TMscript provides a variety of robot programming functions. Among the functions, the

conversions of the numeric types, such as int, float, and double, also follow the general

endianness rules, which usually apply to file functions, communication-related functions (such as

SerialPort, Socket, Modbus), or value-to-byte conversion-related functions. Unless specified

otherwise, the function defaults to go by Little Endian. For the string types, it goes by the UTF-8

encoding format that features ASCII character compatibility and fixes endianness without the byte

order distinction. For the bool types, it turns the Boolean value true to 1 and false to 0. Refer to

the table organized below.

Type Bit/Byte Conversion Method Example Result

byte 8 bits/1 byte Little Endian byte b = 100 0x64

int 32 bits /4 bytes Little Endian int i = 300 0x2C 0x01 0x00 0x00

float 32 bits /4 bytes IEEE-754, Little Endian float f = 300 0x00 0x00 0x96 0x43

Omron TM Collaborative Robot: TMScript Language Manual (I664) 25

Type Bit/Byte Conversion Method Example Result

double 64 bits /8 bytes IEEE-754, Little Endian double d = 300
0x00 0x00 0x00 0x00

0x00 0xC0 0x72 0x40

bool bool value True:1, False:0 bool bf = true 0x01

string string value UTF-8 "TM Robot" 0x54 0x4D 0x20 0x52

0x6F 0x62 0x6F 0x74

The value conversion method is an essential basis for communication network applications.

Both sides of the applications should recognize the same conversion method to parse the data

content correctly. For example,

⚫ socket_send("ntd_a", 9000)

By the function definition, it sends 0x28,0x23,0x00,0x00 (int, Little Endian) to the device

ntd_a.

It gets various values if the receiving device uses different methods to parse. Such as

int, Big Endian, 0x28 0x23 0x00 0x00 = 673382400

float, Little Endian, 0x00 0x00 0x23 0x28 = 1.2612E-41

string, UTF-8, 0x28 0x23 0x00 0x00 = "(#"

int, Little Endian, 0x00 0x00 0x23 0x28 = 9000

⚫ socket_send("ntd_a", (float)9000)

By the function definition, it sends 0x00,0xA0,0x0C,0x46 (int, Little Endian) to the device

ntd_a.

It gets various values if the receiving device uses different methods to parse. Such as

int, Big Endian, 0x00 0xA0 0x0C 0x46 = 10488902

int, Little Endia, 0x46 0x0C 0xA0 0x00 = 1175232512

float, Big Endian, 0x00 0xA0 0x0C 0x46 = 1.4698082E-38

string, UTF-8, 0x00 0xA0 0x0C 0x46 = "" // The string ends if encountered

0x00.

float, Little Endian, 0x46 0x0C 0xA0 0x00 = 9000

Omron TM Collaborative Robot: TMScript Language Manual (I664) 26

2.7 Warning

A warning message will prompt, under the condition listed below.

⚫ Double quotation marks does not placed around the string constant.

string s = Hello // warning Hello

⚫ There is single quotation mark inside the string constant.

string s0 = "World"

string s1 = "Hello ‘s0’" // warning ‘s0’

⚫ When assigning float value to integer constant, some digits may get lost such as

int i = 0

float f = 1.234

i = f // warning i = 1

⚫ When assigning value to variables with fewer digits, some digits may get lost such as

byte b = 100

int i = 1000

float f = 1.234

double d = 2.345

b = i // warning b = 232 // byte can contain values from 0 to 255

f = d // warning f = 2.345

⚫ When assigning a string value to the numeric variable or a numeric value to the string

variable, the attempts to convert the string to a number or the number to a string take place

automatically. If the conversion is executable, a warning message will prompt, or the project

will be stopped by error such as

int i = "1234" // warning i = 1234

int j = "0x89AB" // warning j = 35243

int k = "0b1010" // warning k = 10

string s1 = 123 // warning s1 = "123" // Number to string

string s2 = "123"

int x = s2 // warning x = 123 // string to number

// The following code can be compiled with warning, but will be stopped by error when executing.

S2 = "XYZ"

x = s2 // warning // Stop executing by error // s = "XYZ" cannot be converted to

number

s2 = ""

x = s2 // warning // Stop executing by error // s = "" cannot be converted to number

⚫ String parameters are used as numeric parameters in functions such as

Ctrl(0x0A0B0C0D0E) // warning // 0x0A0B0C0D0E is not int type (over 32bit)

// Because there is another syntax, Ctrl(string), the parameter would be applied

to Ctrl(string)

Although the project can still be executed with a warning message, correcting all the errors in a

warning message is highly recommended to eliminate unpredictable problems and prevent the

project being stopped by errors.

⚫ How to fix the error messages

1. Use double quotations with the string constants

string s = "Hello"

2. Use + to link the string constant and the string variable

string s0 = "World"

string s1 = "Hello " + s0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 27

3. Specify the type clearly for numerical conversions

float f = 1.234

int i = (int) f // Use (int) for type conversion, i = 1 while processing // It turns the number

in floating-point to an integer.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 28

3. Script Project Programming
3.1 define

This function defines the global variables in the same project. When the project is running, it

prioritizes all the variables in the definition section of the project.

Syntax

define

For example:

define

{

string text = "Hi TM Robot"

}

3.2 main

This function is the first function to call when the project is running, and it is the initial function

of the project.

Syntax

main

For example:

define

{

string text = "Hi TM Robot"

}

main

{

Display("Hello Techman Robot")

Display(text)

}

The project begins by running the main function as the result of

Hello Techman Robot

Hi TM Robot //Since the dashboard shows the last Display content only, the dashboard content

is Hi TM Robot.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 29

3.3 closestop

When the project is in the halt state without any error, it goes to this function. Not until this

function ends will the project stop for sure.

Syntax

closestop

For example:

closestop

{

IO["ControlBox"].DO = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

// Set the control box DO to Low.

}

After the project is running, pressing the STOP button results in the project running the

closestop function.

Important
This function does not go with motion commands and will close mandatory after 12

seconds of execution at most.

When the closestop function is running, if errors occur (including other errors occur in the

system), it will not run the errorstop function but end the project running directly.

For example:

main

{

Exit()

// Stop the project. Suppose errors did not occur; it runs the closestop function consecutively.

}

closestop

{

int zero = 0

int k = 100 / zero // A dividing by zero error occurred in the closestop function. It ends the project

running directly.

Display("closestop") // This line does not run due to an error occurring.

Note
When the project enters the halt state, the TMflow operation interface will depart from the

running state , but it will still continue to run the function. Not until this function ends does

the project running stop exactly. Before the project stops running, pressing the Play

button to run the project returns errors.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 30

3.4 errorstop

When the project is in the halt state with any error, it goes to this function. Not until this

function ends will the project stop for sure.

Syntax

errorstop

For example:

main

{

int zero = 0

int k = 100 / zero // A divide by zero error occurs.

}

errorstop

{

IO["ControlBox"].DO = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

// Set the control box DO to Low.

}

After the project is running, the project will generate errors by dividing by zero and go to the

errorstop function.

Important
This function does not go with motion commands and will close mandatory after 12

seconds of execution at most.

When the errorstop function is running, if errors occur (including other errors occur in the

system), it will not run the errorstop function but end the project running directly.

For example:

main

{

int k = 100 / (byte)"0.1" // A dividing by zero error occurred.

}

errorstop

{

int k = 100 / (byte)"0.1" // A dividing by zero error occurred in the errorstop function. It ends

the project running directly.

Display("errorstop ") // This line does not run due to an error occurring.

Note
When the project enters the halt state, the TMflow operation interface will depart from the

running state , but it will still continue to run the function. Not until this function ends does

the project running stop exactly. Before the project stops running, pressing the Play

button to run the project returns errors.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 31

3.5 Customized Function

Inadditional to he built-in define, main, closetop, and errorstop functions, Script projects

provide customized functions for users. The customized Show() function below does not take any

parameters nor return any values. (It defines the return type as void.)

For example:

main

{

Show() // Call the customized function Show().

}

void Show()

{

Display("Hello TM AI Cobot")

}

Customized functions support parameter input and output. There are two functions

customized in the example below. The Add() can add up the two values users input and return the

added up result; the Sub() subtracts the two values users input and return the subtraction result.

Note that as long as the return value is not a void type, it requires to return the value of the same

type as the definition. Such as the Add() adopts the float type, and the returned variable must be

the float type as well.

For example:

main

{

string Add_Result = "Add:" + Add(5.9, 3.6)

string Sub_Result = "Sub:" + Sub(5.9, 3.6)

Display("Green", "Yellow", "Result", Add_Result + newline + Sub_Result)

}

float Add(float augend, float addend)

{

float result = augend + addend

return result

}

float Sub(float minuend, float subtrahend)

{

float result = minuend - subtrahend

return result

}

Important
If the function defines the return type, it must return with the same type. If the definition is

void, it is not required to use return.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 32

3.6 Comment

Use part of the code as a comment. The compiler ignores the commented code. Users can

comment a single line or multi-lines on the code not to execute.

⚫ Single Line Comment

Uses can comment at the very beginning of the code with // to complete a single-line

comment, as shown below. The compiler will ignore a = a + 1.

main

{

int a = 0

// a = a + 1

}

⚫ Multi Line Comment

Users can comment with /* as the start of the comment and */ as the end of the comment. As

below, between /* and */, the compiler will ignore int a = 0 and a = a + 1.

main

{

/*

int a = 0

a = a + 1

*/

}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 33

3.7 Variable

By variable declaration, users can proceed with applications such as calculation, reading and

writing, and parameter conveyance. Variables come with the global variables and the local

variables.

Important
Variables are case sensitive such as TMrobot and TMROBOT are two different variables.

⚫ Project Variable

Once declared a variable in the definition section, the variable is a global variable in the

project. This variable can be read and written in functions of the same project. As shown below, if

the define declares the variable b, and the main function runs, it calls Test1() first and sets the

variable as 20. When it displays the variable value next, it gets b as 20 for the last set value.

define

{

int b = 0

}

main

{

Test1()

Display("B Value: " + b)

}

void Test1()

{

b = 20

}

// B Value: 20

Important
The project variables in the project are different from the global variables in the global

variable manager of the robot. The global variables in the project indicate they can operate

across functions in the project. Other than across functions in the project, the global

variables in the global variable manager of the robot operate across functions of different

projects.

Important
Users can create global variables in the global variable manager in the TMflow operation

interface only but not with TMscript syntax.

⚫ Local Variable

If variables are declared outside of the definition section such as main, closestop, errorstop,

and customized functions, the variables are local variables and good in the functions only.

int sum(int s)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 34

{

int a = 0

}

// Defined two variables int s and int a. When sum() ends, the two local variable are gone.

Neither can variable names in the definition section of the same function be duplicated, nor

can they replicate with the global variables in the define section and in the global variable

manager of the robot.

define

{

int b = 0

string g_s1 = "" // Suppose the global variable manager defines g_s1; there will be

variable duplication.

}

void sum(int s)

{

int a = 0

int b = 1 // Duplicated with int b in define.

float a = 0 // Duplicated with int a.

}

Local variables are independent of different function sections. Such declared a variable a in

both Test1() and Test2(). Because of being in disparate functions, the two variables are

independent and valid only in each function section.

void Test1()

{

int a = 0

}

void Test2()

{

int a = 2

}

The scope of the local variables can be valid in a top-down coverage. Users can also declare

variables in the conditional statement or the loop statement, and the variables are present in the

conditional statement or the loop statement. The variables are absent from the outside of the

scope. Therefore, once the variables exit from the scope, the variables will release the variable

data. For variables declared by the class, such as SerialPort, Socket, and Modbus, the variables

will close the devices.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 35

void Test1()

{

int a = 10

if (a > 5)

{

int b = 20

Display("A Value: " + a)

}

Display("B Value: " + b) // Warning. b will be taken as a string instead of a

variable.

}

void Test2()

{

if (true)

{

Socket bbb = "127.0.0.1",12345

socket_open("bbb")

Sleep(5000)

} // After a 5-second waiting, variable bbb will be released for exiting the f conditional

statement scope and close the connection.

Sleep(10000)

}

In the Flow project, if users want to create a global variable in the project, they need to do it in

the variable manager or device manager. Users cannot create a global variable in the flow project

with the Script. Moreover, because each process node is an independent function, including the

Script node, if declaring variables in the node, they are all local variables. When exiting the node,

the variables in the node will no longer exist, and the variable data will be released.

variable a effective scope

variable b effective scope

variable bbb effective scope

Omron TM Collaborative Robot: TMScript Language Manual (I664) 36

3.8 Multi-Line Input

Once an expression to input goes with more contents, it is a disadvantage to maintain or

debug. Users can add \ at the end of the line to fulfill the multi-line input of consecutive contents.

The multi-line input contents will be taken as an expression in the same line until there is no \, and

it goes with a new line character at the end.

While using multi-line input, it is still required to maintain the correctness of wording but not to

use \ at random for multi-line continuations among words.

//Beyond the viewable scope, which requires scrolling to read the

content.

//Use multi-line input, \, to continue for easy content viewing.

//Incorrect multi-line put, where newline is a reserved word and

cannot be cut.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 37

3.9 Conditional Statements

During the project running, it might be necessary to consider different approaches, such as

task fails, function, and communication errors, to various situations. Users can use conditional

statements to adopt different paths to the result values at this time. Two conditional statements, if

and switch, are available so far.

3.9.1 if
The if statement can judge the conditional expression in the brackets. It enforces statement 1

if the condition meets.

if (conditional expression)

{

statement 1 // the condition satisfies.

}

Or vice versa. If the condition satisfies, it goes to statement 1. If not, it goes statement 2.

if (conditional expression)

{

statement 1 // the condition satisfies.

}

else

{

statement 2 // the condition not satisfies.

}

Users can also check more possibilities with the if .. else if .. else statement to judge the

condition 1, 2, 3, and the last otherwise condition in sequence.

if (conditional expression 1)

{

statement 1 // the condition 1 satisfies.

}

else if (conditional expression 2)

{

statement 2 // the condition 2 satisfies.

}

else if (conditional expression 3)

{

statement 3 // the condition 3 satisfies.

}

else

{

statement 4 // the condition 1, 2, and 3 not satisfy at all.

}

Take the example below. If the Score is 100, it displays "Full Score." Between 60 and 99,

"Excellent"; otherwise, "Failed." Users can write the condition with the if statement.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 38

void Test1()

{

int Score = 65

if (Score == 100)

{

Display("Green", "Yellow", "Full Score", "")

}

else if (Score >= 60)

{

Display("Green", "Yellow", "Excellent", "")

}

else

{

Display("Red", "Yellow", "Failed", "")

}

}

// Excellent

NOTE:

== of if (Score==100) stands for comparison, and = of int Score = 65,

assignment.

The criteria to evaluate conditional expressions are as follows, but boolean values have much

to recommend for evaluation.

⚫ Boolean values true or True for the condition satisfies, false or False, not satisfies.

⚫ Numeric values non-zeros for the condition satisfies, zeros, not satisfies.

⚫ String values true or True for the condition satisfies, other string values, not satisfies.

3.9.2 switch
The switch statement is similar in condition judgment to the if statement. The switch

statement goes with the other way of writing for similar conditions.

switch (variable or expression)

{

case condition 1 satisfies

statement 1 // the condition 1 satisfies.

break

case condition 2 satisfies

statement 2 // the condition 2 satisfies.

break

default

statement 3 // the condition 1 and 2 both not satisfy.

break

}

As the example below, it can match various results by the content value of the variable.

void Test1()

{

string di_st = (string)IO["ControlBox"].DI[1] + (string)IO["ControlBox"].DI[0]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 39

switch (di_st)

{

case "00"

Display("DI[0]=0, DI[1]=0")

break

case "01"

Display("DI[0]=1, DI[1]=0")

break

 case "10"

Display("DI[0]=0, DI[1]=1")

break

 default

Display("DI[0]=1, DI[1]=1")

break

}

}

// DI[0]=0, DI[1]=0

Besides, the switch statement supports expressions. Like the example below, if the Score is

100, it displays "Full Score." Between 60 and 99, "Excellent"; otherwise, "Failed."

void Test1()

{

int Score = 65

switch (Score)

{

case >= 100

Display("Green", "Yellow", "Full Score", "")

break

case >= 100-40

Display("Green", "Yellow", "Excellent", "")

break

default

Display("Red", "Yellow", "Failed", "")

break

}

}

// Excellent

The differences from the if statement is

⚫ The switch statement retrieves the value once and compares the result value multiple

times, and the if statement retrieves every time it compares. This makes the switch's

judgment on the DI status more accurate.

⚫ As the reason above, the switch statement cannot apply to the conditions of different

natures, and the if statement can. Such as

void Test1()

{

int Payload = 4

int Length = 130

Omron TM Collaborative Robot: TMScript Language Manual (I664) 40

if (Payload > 4)

{

Display("Green", "Yellow", "Payload", "")

}

else if (Length > 70)

{

Display("Green", "Yellow", "Length", "")

}

// This statement of if .. else if .is unable to be written with the switch statement.

}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 41

3.10 Loop Statements

During the project running, it may be necessary to repeatedly calculate certain values or

check whether the conditions are comprehended. In these cases, it requires the loop statements

that go on iterative processing the code in the statement until the condition is comprehended.

Three loop statements, for, while, and do-while, are available so far.

3.10.1 for
The for loop syntax comprises four sections, the initialization section, the loop condition

section, the statement, and the iterative operation section.

for (the initialization section; the loop condition section; the iterative operation section)

{

statement

}

The execution sequence is as below.

1. The initialization section: When it goes to the for syntax, it executes the initialization

section one time. It is usually used to declare variables. (The variables are the local

variables in the for syntax.)

2. The loop condition section: It decides whether to go on the for loop condition execution.

Once comprehended (true) or not existed, it goes on the for loop execution. It exits the for

loop until the condition is not comprehended (false).

3. The execution statement: The statement to execute.

4. The iterative operation section: After the statement execution, it executes the iterative

operation section once and then goes back to the loop condition section for the condition

judgment.

The example is a basic application of the for loop. It adds the number from 0 to the input K

value.

int sum(int k)

{

int result = 0

for (int i = 0; i < k; i++)

{

result += i

}

return result

}

Users can use multiple for loops together. The example presents the multiplication table by

the for loop.

void Test1()

{

string result = ""

for (int i = 1; i <= 9; i++)

{

for (int j = 1; j <= 9; j++)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 42

{

result += j + "X" + i + "=" + i * j + " "

}

result += newline

}

Display("Green", "Yellow", "multiplication table", result)

}

Users can adopt the four sections in for loop optionally.

void Test1()

{

int i = 0

for (i = 3; i < 4;)

i++

// i = 3

// i < 4 // i++ // i = 4

// i < 4 // false, exit for

for (; i < 5; i++)

{

}

// Since the value of i is not reset, it will continue using i =4.

// i < 5 // // i++, i = 5

// i < 5 // false, exit for

for (; ;) // Execution continues because the loop condition section does not exist.

{

// …

}

}

3.10.2 while
The while loop comes with one boolean conditional expression only. Once the condition

satisfies (true), it executes the statement until the condition does not satisfy (false) and exit the

while loop. Therefore, the number of the while loop execution is zero or more, and it may exit for

the condition does not satisfy at the first time.

while (conditional expression)

{

statement

}

The example below adopts an arithmetic progression to count the number from 0, 1, 2, 3, …,

and N until the total is 500500 and gets the value of N.

void Test1()

{

int sum = 0

int N = 0

while (sum != 500500)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 43

{

N += 1

sum += N

}

Display(N)

}

// N = 1000

3.10.3 do while
The syntax of the do while loop is similar to that of the while loop. The while loop checks

whether if the condition satisfies first before executing statements in the code block; however, the

do while loop executes the command first and then check whether if the condition satisfies.

Accordingly, the do while loop executes the statement one time at least.

do

{

statement

} while (conditional expression)

For example as below, if using the do while loop, it displays Hello TM Robot.

void Test1()

{

int result = 0

do

{

Display("Hello TM Robot")

} while(result > 5)

}

On the contrary, if using the while loop, it does not display any result.

void Test1()

{

int result = 0

while(result > 5)

{

Display("Hello TM Robot")

}

}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 44

3.11 Branching Statements
3.11.1 break

It applies to exit the last loop statement of for, while, or do while without satisfying the loop

condition and exit. As the example below, once i is larger than 10, it exits and ends the for loop.

int sum(int k)

{

int result = 0

for (int i = 0; i < k; i++)

{

if (i > 10)

{

break

}

result += i

}

return result

}

void Test1()

{

string result = ""

for (int i = 1; i <= 9; i++)

{

for (int j = 1; j <= 9; j++)

{

result += j + "X" + i + "=" + i * j + " "

if (j > 4) break

}

result += newline

}

Display("Green", "Yellow", "multiplication table", result)

}

Exit the closest for i loop directly.

Exit the closest for j loop directly.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 45

3.11.2 continue
It applies to the loop statements of for, while, and do while, but it is different from the break

statement in that it ends the closest and current loop and begins the next loop without exiting the

loop. As the example below, if it is an even number, it ends the current loop directly and begins the

next loop. So, it registers odd numbers only.

void Test1()

{

string result = ""

for (int i = 0; i < 10; i++)

{

if (i % 2 == 0)

{

continue

}

result += i + ", "

}

Display("Odd value: " + result)

}

// Odd value: 1, 3, 5, 7, 9

3.11.3 return
The return statement ends the statement execution in the function and returns the value to

the function caller. For example,

main

{

int num = sum(10) // num = 3

Display(num)

}

int sum(int k)

{

int result = 0

for (int i = 0; i < k; i++)

{

if (i == 3) return result // Once i == 3, it returns the result directly without further statement

 executions.

result += i

}

return result

}

Ends the current loop and goes back to the next loop.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 46

3.12 Thread

During the process of project programming, when it comes to asynchronous parallel

operations, users need to use threads. By creating new threads for operations, users can make

the project go with the multi-tasking concept. However, users also have to pay attention to no

priority among threads in execution, and each operates independently when with multiple ones.

The main function to be called first during the project running acts as a thread also. What’s

different about this thread from others is that the main function called by this thread and other

customized functions called in the main function come with the privilege to call robot motion

functions. Calling robot motion functions is not granted to other newly created threads. This is to

ensure the consistency of the robot motion process because each thread processes

independently. It is easy to confuse or interrupt the robot motion processes if granting other

threads to use the robot motion functions.

Other than the other threads, the main thread comes with the privilege of the robot motion

function call. The other newly created threads are not allowed for the robot motion function call. It

is to ensure the consistency of the robot motion process. Since each thread operates

independently, if others are for the robot motion function call, it gets the robot motion to be

interrupted or confused easily.

In addition to the privilege of the robot motion function call, users can set the thread to

whether continuously execute or not, which means if the project pausethread will be influenced by

the or not. Once setting the thread to continuous execution, even if the project pauses, this thread

continues to operate. Such a setting is suitable for communication applications.

When the thread-to-use works in a loop (with the loop statement), adding the additional sleep

function to free up the thread-occupied CPU usage is requisite and recommended while working

around threads, which is an attention must because excessive CPU usage may result in poor

execution efficiency.

3.12.1 ThreadRun()

Create a new thread and use the new one to execute the statement. The previous one will

continue proceeding.

Syntax 1

int ThreadRun(

?,

bool

)

Parameters

? statement or customized function

bool Whether the thread will continue the execution without being paused

true continue the execution without being paused

false to be paused (default)

Return

int return the ID of the newly created thread.

> 0 created successfully

<= 0 created unsuccessfully

Omron TM Collaborative Robot: TMScript Language Manual (I664) 47

*The ID of the newly created thread goes by the system, and it is not a fixed value.

The thread number in the process will not be repetitive, but the number might be

recurring once the thread stops.

Syntax 2

int ThreadRun(

?

)

Note

Same as Syntax 1. The default is to set whether the thread will continue the execution to

false.

3.12.2 ThreadID()

Retrieve the ID of the current thread.

Syntax 1

int ThreadID(

)

Parameter

void No parameter

Return

int return the ID of the thread

Note

main

{

int tid = ThreadRun(ThreadTest1(), false)

Sleep(1000)

ThreadRun(ThreadTest2(tid), true)

}

void ThreadTest1()

{

Display("Hello ThreadTest1() " + ThreadID())

}

void ThreadTest2(int k)

{

Display("Hello ThreadTest2() " + ThreadID() + " " + k)

}

// Hello ThreadTest1() 18

// Hello ThreadTest2() 61 18

The following description denotes the execution order of creating new threads for running

statements.

main

{

int tid = ThreadID()

ThreadRun(ThreadTest3(tid, ThreadID()), false)

}

void ThreadTest3(int k1, int k2)

{

Create a new thread and and continue executiing
ThreadTest1().

The previous thread continues proceeding.

Create a new thread and and continue executiing
ThreadTest2().

Omron TM Collaborative Robot: TMScript Language Manual (I664) 48

Display("Hello ThreadTest3() " + ThreadID() + " " + k1 + " " + k2)

}

// Hello ThreadTest3() 65 47 65

⚫ The execution order goes by

1. Retrieve the thread ID in the main thread and assign the value the local variable tid.

2. Create a new thread and execute the statement of ThreadTest3(tid, ThreadID()).

3. As tid is a local variable, the value of tid is available to lead in.

4. Since ThreadID() is a function and it uses a new thread for the function call, the

obtained thread ID will be different from the tid.

5. Again, call the ThreadTest3() function, and lead it and the obtained thread ID into k1

and k2 in the function, respectively

6. Call the ThreadID() function in the ThreadTest3() function to get the thread ID.

Because it is the same thread as the ThreadTest3() function is in, k2 will go with the

same ID and k1 with a different ID.

3.12.3 ThreadState()

Retrieve the status of the assigned thread ID.

Syntax 1

int ThreadState(

int

)

Parameter

int thread ID

Return

int return the status of the dedicate thread

-1 The thread does not exist.

0 The thread is in execution.

1 The thread is requesting to stop.

2 The thread stopped.

Syntax 2

int ThreadState(

)

Note

Same as Syntax 1. The default is to set the thread ID with the current thread ID of the

function call.

3.12.4 ThreadExit()

Request the assigned thread ID to stop execution.

Syntax 1

int ThreadExit(

int

)

Parameter

int thread ID

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 49

int return the result of requesting the assigned thread to stop

-1 The thread does not exist.

0 The requested thread stopped execution.

Syntax 2

int ThreadExit(

)

Note

Same as Syntax 1. The default is to set the thread ID with the current thread ID of the

function call.

define

{

int tid = 0

}

main

{

int st = 0

int t4 = ThreadRun(ThreadTest4())

do

{

Sleep(100)

st = ThreadState(t4)

Display("t4 " + st) // t4 0

} while (st != 2) // Use the loop statement to wait for the thread t4 to stop.

// Since there is no loop in ThreadTest4, the thread stops after the execution ends.

Display("t4 " + st + " " + tid) // t4 2 51

}

void ThreadTest4()

{

Sleep(1000)

tid = ThreadID()

}

define

{

string title = ""

}

main

{

int st = 0

title = "t5 " + st // t5 0

int t5 = ThreadRun(ThreadTest5())

bool flag = WaitFor((st = ThreadState(t5)) == 2, 1000)

// Use WaitFor to wait for the thread t5 to stop.

title = "t5 " + st + " " + flag // t5 0 false

// Since there is a loop in ThreadTest5, the thread will not stop.

// Therefore, WaitFor quits after a 1000 ㎳ timeout. So, flag = false.

Sleep(1000)

if (flag == false)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 50

{

ThreadExit(t5) // Request the thread t5 to quit.

}

flag = WaitFor((st = ThreadState(t5)) == 2, 1000)

// Use WaitFor to wait for the thread t5 to stop.

// Since the system requested the thread t5 to stop, the WaitFor condition sustains.

Display("t5 " + st + " " + flag, "Hello main() " + ThreadID()) // t5 2 true

}

void ThreadTest5()

{

while (true) // the loop statement

{

Display(title , "Hello ThreadTest5() " + ThreadID())

Sleep(100)

// While using the loop statement, applying the additional sleep function is

recommended to free up the thread-occupied CPU usage.

}

}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 51

4. General Functions
4.1 Byte_ToInt16()

Transform the first two bytes of the assigned byte array to integer, and returns in int type.

Syntax 1

int Byte_ToInt16(

byte[],

int,

int

)

Parameters

byte[] Byte array

int Byte array follows the Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

int Transfer to signed int16 (Signed Number) or unsigned int16 (Unsigned Number)

0 signed int16 (Default)

1 unsigned int16

Return

int A signed or unsigned int16 formed by 2 bytes beginning at index [0].

Because only 2 bytes is needed, the index of byte array will be [0][1]. If the data

is not long enough, it would be filled to 2 bytes before transforming.

Note

byte[] bb1 = {0x90, 0x01, 0x05}

byte[] bb2 = {0x01}

// Cause bb2[] does not fill 2 bytes. It would be filled to 2 bytes before transforming.

value = Byte_ToInt16(bb1, 0, 0) // 0x0190 value = 400

value = Byte_ToInt16(bb1, 0, 1) // 0x0190 value = 400

value = Byte_ToInt16(bb1, 1, 0) // 0x9001 value = -28671

value = Byte_ToInt16(bb1, 1, 1) // 0x9001 value = 36865

value = Byte_ToInt16(bb2, 0, 0) // 0x0001 value = 1

value = Byte_ToInt16(bb2, 0, 1) // 0x0001 value = 1

value = Byte_ToInt16(bb2, 1, 0) // 0x0100 value = 256

value = Byte_ToInt16(bb2, 1, 1) // 0x0100 value = 256

Syntax 2

int Byte_ToInt16(

byte[],

int

)

Note

Similar to Syntax 1 with return value as signed int16

Byte_ToInt16(bb1, 0) => Byte_ToInt16(bb1, 0, 0)

Syntax 3

int Byte_ToInt16(

byte[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 52

)

Note

Similar to Syntax 1 with little endian input and return value as signed int16

Byte_ToInt16(bb1) => Byte_ToInt16(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 53

4.2 Byte_ToInt32()

Transform the first four bytes of byte array to integer, and return in int type.

Syntax 1

int Byte_ToInt32(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

int An unsigned int32 formed by 4 bytes beginning at index [0].

Because only 4 bytes is needed, the index of byte array will be [0][1][2][3]. If the

data is not long enough, it would be filled to 4 bytes before transforming.

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

// Cause bb2[] does not fill 4 bytes. It would be filled to 4 bytes before transforming.

value = Byte_ToInt32(bb1, 0) // 0x4F030201 value = 1325597185

value = Byte_ToInt32(bb1, 1) // 0x0102034F value = 16909135

value = Byte_ToInt32(bb2, 0) // 0x00030201 value = 197121

value = Byte_ToInt32(bb2, 1) // 0x01020300 value = 16909056

Syntax 2

int Byte_ToInt32(

byte[]

)

Note

Similar to Syntax 1 with little endian input

Byte_ToInt32(bb1) => Byte_ToInt32(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 54

4.3 Byte_ToFloat()

Transform the first four bytes of byte array to floating-point number, and return in floating-point

type.

Syntax 1

float Byte_ToFloat(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

float A floating-point number formed by 4 bytes beginning at index [0].

Because only 4 bytes is needed, the index of byte array will be [0][1][2][3]. If the

data is not long enough, it would be filled to 4 bytes before transforming.

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03} // Cause bb2[] does not fill 4 bytes. It would be filled to 4 bytes before

transforming.

value = Byte_ToFloat(bb1, 0) // 0x4F030201 value = 2.1979466E+09

value = Byte_ToFloat(bb1, 1) // 0x0102034F value = 2.3879603E-38

value = Byte_ToFloat(bb2, 0) // 0x00030201 value = 2.76225E-40

value = Byte_ToFloat(bb2, 1) // 0x01020300 value = 2.387938E-38

Syntax 2

float Byte_ToFloat(

byte[]

)

Note

Similar to Syntax 1 with little endian input

Byte_ToFloat(bb1) => Byte_ToFloat(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 55

4.4 Byte_ToDouble()

Transform the first eight bytes of byte array to floating-point number, and return in double type.

Syntax 1

double Byte_ToDouble(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

double A floating-point number formed by 8 bytes beginning at index [0].

Because only 8 bytes is needed, the index of byte array will be

[0][1][2][3][4][5][6][7]. If the data is not long enough, it would be filled to 8 bytes

before transforming.

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x4F, 1} // Cause bb1[] does not fill 8 bytes. It would be filled to 8

bytes before transforming.

byte[] bb2 = {0x01, 0x02, 0x03} // Cause bb1[] does not fill 8 bytes. It would be filled to 8 bytes before

transforming.

value = Byte_ToDouble(bb1, 0) // 0x000000014F030201 value = 2.7769278203E-314

value = Byte_ToDouble(bb1, 1) // 0x0102034F01000000 value = 8.20840179153173E-304

value = Byte_ToDouble(bb2, 0) // 0x0000000000030201 value = 9.73907E-319

value = Byte_ToDouble(bb2, 1) // 0x0102030000000000 value = 8.207852449261364E-304

Syntax 2

double Byte_ToDouble(

byte[]

)

Note

Similar to Syntax 1 with little endian input

Byte_ToDouble(bb1) => Byte_ToDouble(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 56

4.5 Byte_ToInt16Array()

Transform byte array to integer every 2 bytes, and return in int[] type.

Syntax 1

int[] Byte_ToInt16Array(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

int Transfer to signed int16 (Signed Number) or unsigned int16 (Unsigned Number)

0 signed int16 (Default)

1 unsigned int16

Return

int[] A integer array formed by every 2 bytes of byte array beginning at index [0]

Note

byte[] bb1 = {0x90, 0x01, 0x02, 0x03, 0x04}

// When the remaining part does not fill 2 byte, it would be filled to 2 bytes before transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_ToInt16Array(bb1, 0, 0) // {0x0190, 0x0302, 0x0004} value = {400, 770, 4}

value = Byte_ToInt16Array(bb1, 0, 1) // {0x0190, 0x0302, 0x0004} value = {400, 770, 4}

value = Byte_ToInt16Array(bb1, 1, 0) // {0x9001, 0x0203, 0x0400} value = {-28671, 515, 1024}

value = Byte_ToInt16Array(bb1, 1, 1) // {0x9001, 0x0203, 0x0400} value = {36865, 515, 1024}

value = Byte_ToInt16Array(bb2, 0, 0) // {0x0201, 0x0403} value = {513, 1027}

value = Byte_ToInt16Array(bb2, 0, 1) // {0x0201, 0x0403} value = {513, 1027}

value = Byte_ToInt16Array(bb2, 1, 0) // {0x0102, 0x0304} value = {258, 772}

value = Byte_ToInt16Array(bb2, 1, 1) // {0x0102, 0x0304} value = {258, 772}

Syntax 2

int[] Byte_ToInt16Array(

byte[],

int

)

Note

Similar to Syntax 1 with return value as signed int16

Byte_ToInt16Array(bb1, 0) => Byte_ToInt16Array(bb1, 0, 0)

Syntax 3

int[] Byte_ToInt16Array(

byte[]

)

Note

Omron TM Collaborative Robot: TMScript Language Manual (I664) 57

Similar to Syntax 1 with little endian input and return value as signed int16

Byte_ToInt16Array(bb1) => Byte_ToInt16Array(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 58

4.6 Byte_ToInt32Array()

Transform byte array to integer every 4 bytes, and return in int[] type

Syntax 1

int[] Byte_ToInt32Array(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

int[] A integer array formed by every 4 bytes of byte array beginning at index [0]

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x04, 0x05}

// When the remaining part does not fill 4 byte, it would be filled to 4 bytes before transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_ToInt32Array(bb1, 0) // {0x04030201, 0x00000005} value = {67305985, 5}

value = Byte_ToInt32Array(bb1, 1) // {0x01020304, 0x05000000} value = {16909060, 83886080}

value = Byte_ToInt32Array(bb2, 0) // {0x04030201} value = {67305985}

value = Byte_ToInt32Array(bb2, 1) // {0x01020304} value = {16909060}

Syntax 2

int[] Byte_ToInt32Array(

byte[]

)

Note

Similar to Syntax 1 with little endian input.

Byte_ToInt32Array(bb1) => Byte_ToInt32Array(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 59

4.7 Byte_ToFloatArray()

Transform byte array to integer every 4 bytes, and return in float[] type.

Syntax 1

float[] Byte_ToFloatArray(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

float[] A floating-point number array formed by every 4 bytes of byte array

beginning at index [0]

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x04, 0x05}

// When the remaining part does not fill 4 byte, it would be filled to 4 bytes before

transforming.

byte[] bb2 = {1, 2, 3, 4}

value = Byte_ToFloatArray(bb1, 0)

// {0x04030201, 0x00000005} value = {1.5399896E-36,7E-45}

value = Byte_ToFloatArray(bb1, 1)

// {0x01020304, 0x05000000} value = {2.3879393E-38,6.018531E-36}

value = Byte_ToFloatArray(bb2, 0) // {0x04030201} value = {1.5399896E-36}

value = Byte_ToFloatArray(bb2, 1) // {0x01020304} value = {2.3879393E-38}

Syntax 2

float[] Byte_ToFloatArray(

byte[]

)

Note

Similar to Syntax 1 with little endian input

Byte_ToFloatArray(bb1) => Byte_ToFloatArray(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 60

4.8 Byte_ToDoubleArray()

Transform byte array to double every 8 bytes, and return in double[] type.

Syntax 1

double[] Byte_ToDoubleArray(

byte[],

int

)

Parameters

byte[] The input byte array

int The input byte array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

Return

double[] A floating-point number array formed by every 8 bytes of byte array beginning at

index [0]

Note

byte[] bb1 = {0x01, 0x02, 0x03, 0x04, 0x05} // When the remaining part does not fill 8 byte, it would

be filled to 8 bytes before transforming.

byte[] bb2 = {1, 2, 3, 4} // When the remaining part does not fill 8 byte, it would be filled to 8 bytes

before transforming.

value = Byte_ToDoubleArray(bb1, 0) // {0x0000000504030201} value = {1.064323253E-313}

value = Byte_ToDoubleArray(bb1, 1)

// {0x0102030405000000} value = {8.207880398492326E-304}

value = Byte_ToDoubleArray(bb2, 0) // {0x0000000004030201} value = {3.3253575E-316}

value = Byte_ToDoubleArray(bb2, 1)

// {0x0102030400000000} value = {8.207880262684596E-304}

Syntax 2

double[] Byte_ToDoubleArray(

byte[]

)

Note

Similar to Syntax 1 with little endian input

Byte_ToDoubleArray(bb1) => Byte_ToDoubleArray(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 61

4.9 Byte_ToString()

Transform byte array to string

Syntax 1

string Byte_ToString(

byte[],

int

)

Parameters

byte[] The input byte array

int The character encoding rules applied to input byte array

0 UTF8 (Default) (0x00 END)

1 HEX BINARY

2 ASCII (0x00 END)

Return

string String formed by byte array. The transformation begins from index [0].

Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, 0x4F, 1}

byte[] bb2 = {0x01, 0x54, 0x4D, 0x35, 0xE6, 0xA9, 0x9F, 0xE5, 0x99, 0xA8, 0xE4, 0xBA,

0xBA}

value = Byte_ToString(bb1, 0) // value = "123" (UTF8 stop at 0x00)

value = Byte_ToString(bb1, 1) // value = "313233004F01"

value = Byte_ToString(bb1, 2) // value = "123" (ASCII stop at 0x00)

value = Byte_ToString(bb2, 0) // value = "\u01TM5機器人" (UTF8)

value = Byte_ToString(bb2, 1) // value = "01544D35E6A99FE599A8E4BABA"

value = Byte_ToString(bb2, 2) // value = "\u01TM5?????????" (ASCII)

* \u01 represents the SOH control character, not the string value.

Syntax 2

string Byte_ToString(

byte[]

)

Note

Similar to Syntax 1 with UTF8 character encoding rules

Byte_ToString(bb1) => Byte_ToString(bb1, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 62

4.10 Byte_Concat()

Concatenate two byte arrays, or concatenate one array with a byte value.

Syntax 1

byte[] Byte_Concat(

byte[],

byte

)

Parameters

byte[] The input byte array

byte The byte value concatenated after the byte array

Return

byte[] The byte array formed by the input byte array and byte value

Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, 0x4F, 1}

value = Byte_Concat(bb1, 12) // value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x0C}

Syntax 2

byte[] Byte_Concat(

byte[],

byte[]

)

Parameters

byte[] The input byte array1

byte[] The input byte array2, would be concatenated to the end of array1

Return

byte[] Byte array formed from concatenating input arrays.

Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

value = Byte_Concat(bb1, bb2)

// value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02, 0x03}

Syntax 3

byte[] Byte_Concat(

byte[],

byte[],

int

)

Parameters

byte[] The input byte array1

byte[] The input byte array2, would be concatenated after the end of array1

int The number of element in array2 to be concatenated

 0..the length of array2 Valid number

 <0 Invalid. Length of array2 will be applied instead.

 > the length of array2 Invalid. Length of array2 will be applied instead.

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 63

byte[] Byte array formed from concatenating input arrays.

Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

value = Byte_Concat(bb1, bb2, 2) // value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02} //

Concatenate only 2 elements from array2

value = Byte_Concat(bb1, bb2, -1) // value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02,

0x03} // -1 is invalid value

value = Byte_Concat(bb1, bb2, 10) // value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02,

0x03} // 10 exceeds the array size

// Length() can be utilized to acquire the array size
value = Byte_Concat(bb1, bb2, Length(bb2))

// value = {0x31, 0x32, 0x33, 0x00, 0x4F, 0x01, 0x01, 0x02,

0x03}

Syntax 4

byte[] Byte_Concat(

byte[],

int,

int,

byte[],

int,

int

)

Parameters

byte[] The input byte array1

int The starting index of array1

 0..(length of array1)-1 Valid

 <0 The starting index would be 0

 >=(length of array1) The starting index would be the length of array2 (For index

over the length of array2, an empty value would be captured)

int The number of element in array1 to be concatenated

 0.. (length of array1) Valid

 <0 Invalid，length of array1 will be applied instead

 >(length of array1) Invalid，length of array1 will be applied instead

If the total number of starting index and assigning elements exceeds the length

of array1, the surplus index will be suspended.

byte[] The input byte array2，would be concatenated after the end of array1

int The starting index of array2

 0.. (length of array2)-1 Valid

 <0 The starting index would be 0

 >=(length of array2) The starting index would be the length of array2 (For index

over the length of array2, an empty value would be captured)

int The number of element in array2 to be concatenated

 0.. (length of array2) Valid

 <0 Invalid. Length of array2 will be applied instead.

 >(length of array2) Invalid. Length of array2 will be applied instead.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 64

If the total number of starting index and assigning elements exceeds the length

of array2, the surplus index will be suspended.

Return

byte[] Byte array formed from concatenating input arrays.

Note

byte[] bb1 = {0x31, 0x32, 0x33, 0x00, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

value = Byte_Concat(bb1, 1, 3, bb2, 1, 2) // value = {0x32, 0x33, 0x00, 0x02, 0x03}

value = Byte_Concat(bb1, -1, 3, bb2, 3, -1) // value = {0x31, 0x32, 0x33}

Syntax 5

byte[] Byte_Concat(

byte or byte[],

byte or byte[],

...

)

Parameters (active parameter amount)

byte The input byte value

byte[] The input byte array

It concatenates the content of each parameter in order. It ignores the parameter if it is not

a byte or a byte array and continues to concatenate the next parameter.

Return

byte[] Concatenate the parameters in byte and return a new byte array.

Note

byte[] bb1 = {0x31, 0x32, 0x00, 0x4F, 1}

byte[] bb2 = {0x01, 0x02, 0x03}

byte bb3 = 0x5A

value = Byte_Concat(bb1, bb2, bb3)

// value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03} // Syntax 3

value = Byte_Concat(bb1, bb2, "", bb3)

// value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03,0x5A}

value = Byte_Concat(bb2, 0x10, bb1)

// value = {0x01,0x02,0x03,0x10,0x31,0x32,0x00,0x4F,0x01}

value = Byte_Concat(bb1, "AB", bb2, 10)

// value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03,0x0A}

// Parameter "AB" is the string type. Ignored.

value = Byte_Concat(bb1, "AB", bb2, 1000) // value = {0x31,0x32,0x00,0x4F,0x01,0x01,0x02,0x03}

// Parameter "AB" is the string type. Ignored.

// Parameter 1000 is the integer type. Ignored.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 65

4.11 String_ToInteger()

Transform string to integer (int type)

Syntax 1

int String_ToInteger(

string,

int

)

Parameters

string The input string.

int The input string’s notation is decimal, hexadecimal or binary

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

Return

int The integer value formed from input string. If notation is invalid, returns 0.

Note

value = String_ToInteger("1234", 10) // value = 1234

value = String_ToInteger("1234", 16) // value = 4660

value = String_ToInteger("1234", 2) // value = 0 // Invalid binary format

value = String_ToInteger("1100", 2) // value = 12

value = String_ToInteger("0x1234", 10) // value = 4660

// Hexadecimal format by auto detecting

value = String_ToInteger("0x1234", 16) // value = 4660

value = String_ToInteger("0x1234", 2) // value = 0 // Invalid binary format

value = String_ToInteger("0b1100", 10) // value = 12 // Binary format by auto detecting

value = String_ToInteger("0b1100", 16) // value = 725248 // Valid Hexadecimal number

value = String_ToInteger("0b1100", 2) // value = 12

value = String_ToInteger("+1234", 10) // value = 1234

value = String_ToInteger("-1234", 10) // value = -1234

value = String_ToInteger("-0x1234", 16) // value = 0 // Invalid hex format

value = String_ToInteger("-0b1100", 2) // value = 0 // Invalid binary format

Syntax 2

int String_ToInteger(

string

)

Note

Similar to syntax1 with decimal format or auto format detection

String_ToInteger(str) => String_ToInteger(str, 10)

Syntax 3

int[] String_ToInteger(

string[],

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 66

)

Parameters

string[] Input string array

int The notation of element in input string array is decimal, hexadecimal or

binary

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

* The notations of all the elements in a single array have to be identical

Return

int[] The integer array formed from input string array. If notation is invalid, returns 0.

Note

ss = {"12", "ab", "cc", "dd", "10"}

value = String_ToInteger(ss) // value = {12, 0, 0, 0, 10}

// "ab","cc","dd" are invalid decimal numbers

value = String_ToInteger(ss, 2) // value = {0, 0, 0, 0, 2}

// "12","ab","cc","dd" are invalid binary numbers

value = String_ToInteger(ss, 16) // value = {18, 171, 204, 221, 16}

value = String_ToInteger(ss, 10) // value = {12, 0, 0, 0, 10} // "ab","cc","dd" are invalid decimal

numbers

Omron TM Collaborative Robot: TMScript Language Manual (I664) 67

4.12 String_ToFloat()

Transform string to floating-point (floating-point type)

Syntax 1

float String_ToFloat(

string,

int

)

Parameters

string Input string

int Input string’s notation is decimal, hexadecimal or binary format

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

Return

float The floating-point number formed from input string. If notation is invalid, returns 0.
Note

value = String_ToFloat("12.34", 10) // value = 12.34

value = String_ToFloat("12.34", 16) // value = 0 // Invalid hexadecimal format

value = String_ToFloat("12.34", 2) // value = 0 // Invalid binary format

value = String_ToFloat("11.00", 2) // value = 0 // Invalid binary format

value = String_ToFloat("0x1234", 10) // value = 6.53E-42

// Hexadecimal format by auto detecting

value = String_ToFloat("0x1234", 16) // value = 6.53E-42

value = String_ToFloat("0x1234", 2) // value = 0 // Invalid binary format

value = String_ToFloat("0b1100", 10) // value = 1.7E-44 // Binary format by auto detecting

value = String_ToFloat("0b1100", 16) // value = 1.016289E-39 // Valid hexadecimal format

value = String_ToFloat("0b1100", 2) // value = 1.7E-44

value = String_ToFloat("+12.34", 10) // value = 12.34

value = String_ToFloat("-12.34", 10) // value = -12.34

value = String_ToFloat("-0x1234", 16) // value = 0 // Invalid hex format

value = String_ToFloat("-0b1100", 2) // value = 0 // Invalid format

Syntax 2

float String_ToFloat(

string

)

Note

Similar to syntax1 with decimal format or auto format detection

String_ToFloat(str) => String_ToFloat(str, 10)

Syntax 3

float[] String_ToFloat(

string[],

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 68

)

Parameters

string[] Input string array

int The notation of elements in input string array is decimal, hexadecimal or

binary

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

* The notation of all the elements in a single array have to be identical

Return

float[] The floating-point number array formed from input string array. If notation is

invalid, returns 0.
Note

ss = {"12.345", "ab", "cc", "dd", "10.111"}

value = String_ToFloat(ss) // value = {12.345,0,0,0,10.111}

value = String_ToFloat(ss, 2) // value = {0,0,0,0,0}

value = String_ToFloat(ss, 16) // value = {0,2.4E-43,2.86E-43,3.1E-43,0}

value = String_ToFloat(ss, 10) // value = {12.345,0,0,0,10.111}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 69

4.13 String_ToDouble()

Transform string to floating-point number (double type)

Syntax 1

double String_ToDouble(

string,

int

)

Parameters

string Input string

int Input string’s notation is decimal, hexadecimal or binary format

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

Return

double The floating-point number formed from input string. If notation is invalid, returns

0.
Note

value = String_ToDouble("12.34", 10) // value = 12.34

value = String_ToDouble("12.34", 16) // value = 0 // Invalid hexadecimal format

value = String_ToDouble("12.34", 2) // value = 0 // Invalid binary format

value = String_ToDouble("11.00", 2) // value = 0 // Invalid binary format

value = String_ToDouble("0x1234", 10)// value = 2.3023E-320 // Hexadecimal format by auto

detecting

value = String_ToDouble("0x1234", 16)// value = 2.3023E-320

value = String_ToDouble("0x1234", 2) // value = 0 // Invalid binary format

value = String_ToDouble("0b1100", 10)// value = 6E-323 // Binary format by auto detecting

value = String_ToDouble("0b1100", 16)// value = 3.5832E-318 // Valid hexadecimal format

value = String_ToDouble("0b1100", 2) // value = 6E-323

value = String_ToDouble("+12.34", 10) // value = 12.34

value = String_ToDouble("-12.34", 10) // value = -12.34

value = String_ToDouble("-0x1234", 16)// value = 0 // Invalid hex format

value = String_ToDouble("-0b1100", 2)// value = 0 // Invalid binary format

Syntax 2

double String_ToDouble(

string

)

Note

Similar to syntax1 with decimal format or auto format detection

String_ToDouble(str) => String_ToDouble(str, 10)

Syntax 3

double[] String_ToDouble(

string[],

Omron TM Collaborative Robot: TMScript Language Manual (I664) 70

int

)

Parameters

string[] Input string array

int The notation of elements in input string array is decimal, hexadecimal or

binary

10 decimal or auto format detecting (Default)

16 hexadecimal

2 binary

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

* The notation of all the elements in a single array has to be identical

Return

double[] The floating-point number array formed from input string array. If notation is

invalid, returns 0.
Note

ss = {"12.345", "ab", "cc", "dd", "10.111"}

value = String_ToDouble(ss) // value = {12.345, 0, 0, 0, 10.111}

value = String_ToDouble(ss, 2) // value = {0, 0, 0, 0, 0}

value = String_ToDouble(ss, 16) // value = {0,8.45E-322,1.01E-321,1.09E-321,0}

value = String_ToDouble(ss, 10) // value = {12.345, 0, 0, 0, 10.111}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 71

4.14 String_ToByte()

Transform string to byte array

Syntax 1

byte[] String_ToByte(

string,

int

)

Parameters

string Input string

int The character encoding rules applied to input string

0 UTF8 (Default)

1 HEX BINARY // Stop at invalid Hex value

2 ASCII

Return

byte[] The byte array formed from input string

Note

value = String_ToByte("12345", 0) // value = {0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("12345", 1) // value = {0x12, 0x34, 0x50} // the insufficient part will be

filled with 0

value = String_ToByte("12345", 2) // value = {0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("0x12345", 0) // value = {0x30, 0x78, 0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("0x12345", 1) // value = {0x00} // Only 0 be transformed, cause x is

an invalid Hex value

value = String_ToByte("0x12345", 2) // value = {0x30, 0x78, 0x31, 0x32, 0x33, 0x34, 0x35}

value = String_ToByte("TM5機器人", 0) // value = {0x54, 0x4D, 0x35, 0xE6, 0xA9, 0x9F, 0xE5, 0x99, 0xA8,

0xE4, 0xBA, 0xBA}

value = String_ToByte("TM5機器人", 1) // value = {0x00} // T is an invalid Hex value

value = String_ToByte("TM5機器人", 2) // value = {0x54, 0x4D, 0x35, 0x3F, 0x3F, 0x3F}

value = String_ToByte("0123456", 1) // value = {0x01, 0x23, 0x45, 0x60}

value = String_ToByte("01234G5", 1) // value = {0x01, 0x23, 0x40} // G is an invalid Hex value

Syntax 2

byte[] String_ToByte(

string

)

Note

Similar to syntax1 with UTF8 format

String_ToByte(str) => String_ToByte(str, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 72

4.15 String_IndexOf()

Search the address of the first occurrence of a specified strin from left to right.

Syntax 1

int String_IndexOf(

string,

string,

int

)

Parameters

string Input string

string The specified string to search

int The initial address to start searching

Return

int 0..(Length of string)-1 If the specified string is found, returns the index number

 -1 Not found

 0 The specified string is "" or empty

Syntax 2

int String_IndexOf(

string,

string

)

Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from

the leftmost.

int index = String_IndexOf("012314", "1") // 1

index = String_IndexOf("012314", "") // 0

index = String_IndexOf("012314", empty) // 0

index = String_IndexOf("012314", "d") // -1

index = String_IndexOf("", "d") // -1

index = String_IndexOf("012314", "1", 1) // 1 // Start searching with the 1st index number

index = String_IndexOf("012314", "1", 2) // 4 // Start searching with the 2nd index number

index = String_IndexOf("012314", "1", 10) // -1

Syntax 3

int String_IndexOf(

string[],

string,

int

)

Parameters

string The array of the input string

string The specified string to search

int The initial index of the array to start searching

Return

int 0..Array Size -1 Return the index of the string array if found the string.

 -1 Not found

Omron TM Collaborative Robot: TMScript Language Manual (I664) 73

* The array index will start searching with the initial index from left to right.

* Will use String_IndexOf(string, string) to search if the array element available.

Return the index number of the array element but not the index number of the string.

Syntax 4

int String_IndexOf(

string[],

string

)

Note

Same as syntax 3. It defaults 0 to the initial index of the parameter int as searching from

the foremost of the array elements.

string[] ss = {"012314", "ABCDEF", "123TM"}

int index = String_IndexOf(ss, "1") // 0

index = String_IndexOf(ss, "") // 0 // Since using String_IndexOf to search strings, it is available

when searching for "".

index = String_IndexOf(ss, "d") // -1

index = String_IndexOf(ss, "1", 1) // 2

index = String_IndexOf(ss, "1", 10) // -1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 74

4.16 String_LastIndexOf()

Search the address of the last occurrence of a specified strin from right to left.

Syntax 1

int String_LastIndexOf(

string,

string,

int

)

Parameters

string Input string

string The specified string to search

int The initial address to start searching

Return

int 0..(Length of string)-1 If the specified string is found, returns the index number

 -1 Not found

 (Length of string) The specified string is "" or empty

Syntax 2

int String_LastIndexOf(

string,

string

)

Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from

the rightmost.

int index = String_LastIndexOf("012314", "1") // 4

index = String_LastIndexOf("012314", "") // 6

index = String_LastIndexOf("012314", empty) // 6

index = String_LastIndexOf("012314", "d") // -1

index = String_LastIndexOf("", "d") // -1

index = String_LastIndexOf("012314", "1", 1) // 1

// Start searching with the 1st index number

index = String_LastIndexOf("012314", "1", 2) // 1

// Start searching with the 2nd index number

index = String_LastIndexOf("012314", "1", 10) // 4

index = String_LastIndexOf("012314", "4", 10) // 5

Syntax 3

int String_LastIndexOf(

string[],

string,

int

)

Parameters

string The array of the input string

string The specified string to search

int The initial index of the array to start searching

Omron TM Collaborative Robot: TMScript Language Manual (I664) 75

Return

int 0..Array Size -1 Return the index of the string array if found the string.

 -1 Not found

* The array index will start searching with the initial index from right to left.

* Will use String_IndexOf(string, string) to search if the array element available.

Return the index number of the array element but not the index number of the string.

Syntax 4

int String_LastIndexOf(

string[],

string

)

Note

Same as syntax 3. It defaults 0 to the initial index of the parameter int as the array size as

searching from the last of the array elements.

string[] ss = {"012314", "ABCDEF", "123TM"}

int index = String_LastIndexOf(ss, "1") // 2

index = String_LastIndexOf(ss, "") // 2 // Since using String_IndexOf to search strings, it is

available when searching for "".

index = String_LastIndexOf(ss, "d") // -1

index = String_LastIndexOf(ss, "1", 1) // 0

index = String_LastIndexOf(ss, "1", 10) // 2

Omron TM Collaborative Robot: TMScript Language Manual (I664) 76

4.17 String_DiffIndexOf()

Compare the address where the first string difference occurs starting from the start address.

Syntax 1

int String_DiffIndexOf(

string,

string,

int

)

Parameters

string Input string 1

string Input string 2

int The initial address to start comparing

Return

int 0..(Length of string)-1

If a difference is found, returns the index number of

the difference.

 -1 No difference found. Namely, both strings match.

 -2 The initial address exceeds the length of two stings.

Syntax 2

int String_DiffIndexOf(

string,

string

)

Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from

the leftmost.

string s1 = "abcdef"

string s2 = "abcDef"

string s3 = "abcdeF123"

int index = String_DiffIndexOf(s1, s2) // 3

index = String_DiffIndexOf(s1, s3) // 5

index = String_DiffIndexOf(s1, s3, 5) // 5 // Start comparing with index 5, f and F.

index = String_DiffIndexOf(s1, s3, 7) // 7 // Start comparing with index 7, '\0' and 2.

index = String_DiffIndexOf(s1, "abcdef", 7) // -1 // Both strings match.

index = String_DiffIndexOf(s1, "ABCDEF", 7)// -2 // Start comparing with index 7. Exceeded the

length of two strings.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 77

4.18 String_Substring()

Retrieve a substring from input string

Syntax 1

string String_Substring(

string,

int,

int

)

Parameters

string Input string

int The starting character position of sub string (0 .. (length of input string)-1)

int The length of substring

Return

string Substring

 If starting character position <0, returns empty string

 If starting character position >= length of input string, returns empty string

 If length of substring <0, the substring ends at the last character of the input

string

If the sum of starting character position and length of substring exceeds the

length of input string, the substring ends at the last character of the input string

Note

value = String_Substring("0x12345", 2, 4) // value = "1234"

value = String_Substring("0x12345", -1, 4) // value = ""

value = String_Substring("0x12345", 7, 4) // value = ""

value = String_Substring("0x12345", 2, -1) // value = "12345"

value = String_Substring("0x12345", 2, 100) // value = "12345"

Syntax 2

string String_Substring(

string,

int

)

Note

Similar to syntax1 with the substring ends at the last character of the input string

String_Substring(str, 2) => String_Substring(str, 2, maxlen)

Syntax 3

string String_Substring(

string,

string,

int

)

Parameters

string Input string

string The target string to be searched, the substring will start at its position, if it is

found

int The length of substring

Omron TM Collaborative Robot: TMScript Language Manual (I664) 78

Return

string Substring

 If the target string is empty, the substring start at index zero

 If the target string is not found, returns empty string

 If length of substring <0, the substring ends at the last character of the input

string

If the sum of starting character position and length of substring exceeds the

length of input string, the substring ends at the last character of the input string

Note

This syntax is the same as String_Substring(str, String_IndexOf(str1), int)

value = String_Substring("0x12345", "1", 4) // value = "1234"

value = String_Substring("0x12345", "", 4) // value = "0x12"

value = String_Substring("0x12345", "7", 4) // value = ""

value = String_Substring("0x12345", "1", -1) // value = "12345"

value = String_Substring("0x12345", "1", 100) // value = "12345"

Syntax 4

string String_Substring(

string,

string

)

Note

Similar to Syntax 3 with the substring ends at the last character of the input string

String_Substring(str, "1") => String_Substring(str, "1", maxlen)

Syntax 5

string String_Substring(

string,

string,

string,

int

)

Parameters

string Input string

string Prefix. The leading element of the substring

string Suffix. The trailing element of the substring

int The number of occurrence

Return

string Substring

 If prefix and suffix are empty string, returns input string

 If the number of occurrence<=0, returns empty string

Note

value = String_Substring("0x12345", "", "", 0) // value = "0x12345"

value = String_Substring("0x12345", "1", "4", 1) // value = "1234"

value = String_Substring("0x12345", "1", "4", 2) // value = ""

value = String_Substring("0x12345", "1", "4", 0) // value = ""

value = String_Substring("0x123450x12-345", "1", "4", 1) // value = "1234"

value = String_Substring("0x123450x12-345", "1", "4", 2) // value = "12-34"

value = String_Substring("0x123450x12-345", "1", "4", 3) // value = ""

value = String_Substring("0x12345122", "1", "", 1) // value = "12345122" // Retrieves what's

Omron TM Collaborative Robot: TMScript Language Manual (I664) 79

after the matched prefix

value = String_Substring("0x12345122", "1", "", 2) // value = "122" // Retrieves what's after

the matched prefix. The matched amount

moves from the front to the back.

value = String_Substring("0x12345122", "1", "", 4) // value = ""

value = String_Substring("0x12345433", "", "4", 1) // value = "0x123454" // Retrieves what's

after the matched suffix

value = String_Substring("0x12345433", "", "4", 2) // value = "0x1234" // Retrieves what's

after the matched suffix. The matched amount

moves from the back to the front.

Syntax 6

string String_Substring(

string,

string,

string

)

Note

Similar to Syntax 5 with the substring start at the first occurrence

String_Substring(str, prefix, suffix) => String_Substring(str, prefix, suffix, 1)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 80

4.19 String_Split()

Split the string using specified separator.

Syntax 1

string[] String_Split(

string,

string,

int

)

Parameters

string Input string

string Separator (String)

int Format

 0 Split and keep the empty strings

 1 Split and eliminate the empty strings

2 Split with the elements inside double quotation mark skipped, and keep the

empty strings

3 Split with the elements inside double quotation mark skipped, and eliminate

the empty strings

Return

string[] Split substring

If input string is empty, it returns a substring with array. [0] = empty and

deals with empty strings by separators.

If separator is empty, it returns substring with array [0] = Input string and

deals with empty strings by separators.

Note

value = String_Split("0x112345", "1", 0) // value = {"0x","","2345"}

value = String_Split("0x112345", "1", 1) // value = {"0x","2345"}

value = String_Split("", "1", 0) // value = {""} // length = 1

value = String_Split("", "1", 1) // value = {} // length = 0

value = String_Split("0x112345", "", 0) // value = {"0x112345"}

s1 = "123, ""456,67"",89"

value = String_Split(s1, ",", 0) // value = {"123", """456", "67""", "89"} // length = 4

value = String_Split(s1, ",", 2) // value = {"123", """456,67""", "89"} // length = 3

Syntax 2

string[] String_Split(

string,

string

)

Note

Similar to Syntax1 with splitting and keeping the empty strings

String_Split(str, separator) => String_Split(str, separator, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 81

4.20 String_Replace()

Return a new string in which all occurrences of a specified string in the input string are replaced

with another specified string

Syntax 1

string String_Replace(

string,

string,

string

)

Parameters

string Input string

string Old value, the string to be replaced

string New value, the string to replace all occurrences of old value

Return

string The string formed by replacing the old value with new value in input value. If the

old value is empty, returns the input string

Note

value = String_Replace("0x112345", "1", "2") // value = "0x222345"

value = String_Replace("0x112345", "", "2") // value = "0x112345"

value = String_Replace("0x112345", "1", "") // value = "0x2345"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 82

4.21 String_Trim()

Return a new string in which all leading and trailing occurrences of specified characters or

white-space characters from the input string are removed

Syntax 1

string String_Trim(

string

)

Parameters

string Input string

Return

string String formed by removing all leading and trailing occurrences of white-space

characters

Note

value = String_Trim("0x112345 ") // value = "0x112345"

value = String_Trim(" 0x112345") // value = "0x112345"

value = String_Trim(" 0x112345 ") // value = "0x112345"

White-space characters

\u0020 \u1680 \u2000 \u2001 \u2002 \u2003 \u2004

\u2005 \u2006 \u2007 \u2008 \u2009 \u200A \u202F

\u205F \u3000

\u2028

\u2029

\u0009 \u000A \u000B \u000C \u000D \u0085 \u00A0

\u200B \uFEFF

Syntax 2

string String_Trim(

string,

string

)

Parameters

string Input string

string Specified characters to be removed from leading occurrences

Return

string String formed by removing all leading occurrences of specified characters

Syntax 3

string String_Trim(

string,

string,

string

)

Parameters

string Input string

string Specified characters to be removed from leading occurrences

string Specified characters to be removed from trailing occurrences

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 83

string String formed by removing all leading and trailing occurrences of the specified

characters

Note

string s1 = "Hello Hello World Hello World"

string s2 = "HelloHelloWorldHelloWorld"

value = String_Trim(s1, "Hello") // value = " Hello World Hello World"

value = String_Trim(s1, "World") // value = "Hello Hello World Hello World"

value = String_Trim(s1, "", "Hello") // value = "Hello Hello World Hello World"

value = String_Trim(s1, "", "World") // value = "Hello Hello World Hello "

value = String_Trim(s1, "Hello", "World") // value = " Hello World Hello "

value = String_Trim(s2, "Hello") // value = "WorldHelloWorld"

value = String_Trim(s2, "World") // value = "HelloHelloWorldHelloWorld"

value = String_Trim(s2, "", "Hello") // value = "HelloHelloWorldHelloWorld"

value = String_Trim(s2, "", "World") // value = "HelloHelloWorldHello"

value = String_Trim(s2, "Hello", "World") // value = "WorldHello"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 84

4.22 String_ToLower()

Change all the characters in a string to lower case

Syntax 1

string String_ToLower(

string

)

Parameters

string Input string

Return

string The string formed by converting all the English character into lower case. Non-

English character will be remained the same.

Note

value = String_ToLower("0x11Acz34") // value = "0x11acz34"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 85

4.23 String_ToUpper()

Change all the characters in a string to upper case

Syntax 1

string String_ToUpper(

string

)

Parameters

string Input string

Return

string The string formed by converting all the English character into upper case. Non-

English character will remain the same.

Note

value = String_ToUpper("0x11Acz34") // value = "0X11ACZ34"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 86

4.24 Array_Append()

Add new data as the elements in the end of the array.

Syntax 1

?[] Array_Append(

?[],

? or ?[]

)

Parameters

?[] Parameter 1, the array to be appended. Available types: byte, int, float,

double, bool, and string.

? or ?[] Parameter 2, the data or the array to add. The type must be the same with

the type of the array to be appended.

*Both parameters must go with the same type.

Return

?[] The new array with the parameter 2 elements appended to the parameter

1.

Note

? byte[] n1 = {100, 200, 30}

byte[] n2 = {40, 50, 60}

n3 = Array_Append(n1, n2) // n3 = {100, 200, 30, 40, 50, 60}

n1 = Array_Append(n1, 100) // n1 = {100, 200, 30, 100}

n1 = Array_Append(n1, n3) // n1 = {100, 200, 30, 100, 100, 200, 30, 40, 50, 60}

? float[] n1 = {1.1, 2.2, 3.3}

float[] n2 = {0.4, 0.5}

n3 = Array_Append(n1, n2) // n3 = {1.1, 2.2, 3.3, 0.4, 0.5}

n4 = Array_Append(n3, 5.678) // n4 = {1.1, 2.2, 3.3, 0.4, 0.5, 5.678}

? string[] n1 = {"123", "ABC", "456", "DEF"}

string[] n2 = {"ABC", "123", "XYZ"}

n3 = Array_Append(n1, n2) // n3 = {"123", "ABC", "456", "DEF", "ABC", "123", "XYZ"}

n4 = Array_Append(n2, "Hello World")// n4 = {"ABC", "123", "XYZ", "Hello World"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 87

4.25 Array_Insert()

Insert data as the elements in the array.

Syntax1

?[] Array_Insert(

?[],

int,

? or ?[]

)

Parameters

?[] Parameter 1, the array to be inserted. Available types: byte, int, float, double,

bool, and string.

int The index starting address of the parameter 1.

0 The length of the array 1

- 1

Legal value

>= The length of the array 1 Legal value, and will insert the value in the end

of the parameter 1.

< 0 Illegal value, the project will stop by error.

? or ?[] Parameter 2, the data or the array to insert. The type must be the same with

the type of the array to be appended.

* Both parameters must go with the same type.

Return

?[] The new array with the parameter 2 elements inserted to the index starting

address of the parameter 1.

Note

? int[] n1 = {100, 200, 30}

int[] n2 = {40, 50, 60}

n3 = Array_Insert(n1, 0, n2) // n3 = {40, 50, 60, 100, 200, 30} // Insert to the index 0

n4 = Array_Insert(n1, 2, n2) // n4 = {100, 200, 40, 50, 60, 30} // Insert to the index 2

n5 = Array_Insert(n1, -1, n2) // n5 = {}

// The project will stop by error. Illegal index to start with

? double[] n1 = {1.4, 2.6, 3.9}

double[] n2 = {0.5, 0.7}

n3 = Array_Insert(n1, 1, n2) // n3 = {1.4, 0.5, 0.7, 2.6, 3.9}

n4 = Array_Insert(n3, 4, 1.2345) // n4 = {1.4, 0.5, 0.7, 2.6, 1.2345, 3.9}

n5 = Array_Insert(n3, 100, 9) // n5 = {1.4, 0.5, 0.7, 2.6, 3.9, 9}

 // Out of the index. The value will insert in the end of the array.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 88

4.26 Array_Remove()

Delete data as the elements in the array.

Syntax1

?[] Array_Remove(

?[],

int,

int

)

Parameters

?[] Parameter 1, the array to be inserted. Available types: byte, int, float, double,

bool, and string.

int The index starting address of the parameter 1 to remove.

0 The length of the parameter 1

- 1

Legal value

>= The length of the parameter 1 Illegal value, the project will stop by

error.

< 0 Illegal value, the project will stop by

error.

int The number of the elements to remove

> 0 The number of the elements to remove from the index starting

address or until the end of the array.

< 0 The number will be 0 and no element will be removed.

Return

?[] The new array with elements removed after the index staring address.

Syntax2

?[] Array_Remove(

?[],

int

)

Note

Same as syntax 1. The default number of the elements to remove is 1.

? int[] n1 = {100, 200, 30, 40, 50, 60}

n3 = Array_Remove(n1, -1) // n3 = {}

// The project will stop by error. Illegal value to start with.

n4 = Array_Remove(n1, 100) // n4 = {}

 // The project will stop by error. Illegal value to start with.

n5 = Array_Remove(n1, 0) // n5 = {200, 30, 40, 50, 60} // Remove index 0

n6 = Array_Remove(n1, 1, 2) // n6 = {100, 40, 50, 60} // Remove 2 elements from index 1

n7 = Array_Remove(n1, 1, 100) // n7 = {100} // Remove 100 elements from index 1 (remove

to the end of the array)

n8 = Array_Remove(n1, Length(n1)-1) // n8 = {100,200,30,40,50,60}

// Remove from the last of index

n9 = Array_Remove(n1, Length(n1)) // n9 = {}

// The project will stop by error. Illegal value to start with.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 89

4.27 Array_Equals()

Determine whether the specified two arrays are identical.

Syntax 1

bool Array_Equals(

?[],

?[]

)

Parameters

?[] Input array1 (Data type can be byte, int, float, double, bool, string)

?[] Input array2 (Data type can be byte, int, float, double, bool, string)

* The data type of array1 and array2 must be identical.

Return

bool Two arrays are identical or not?

true two arrays are identical

false two arrays are not identical

Syntax 2

bool Array_Equals(

?[],vv

int,

?[],

int,

int

)

Parameters

?[] Input array1 (Data type can be byte, int, float, double, bool, string)

int The starting index of array1 (0 .. (length of arry1)-1)

?[] Input array2 (Data type can be byte, int, float, double, bool, string)

int The starting index of array2 (0 .. (length of arry2)-1)

int The number of elements to be compared (0: return true, <0: return false)

* The data type of array1 and array2 must be identical.

Return

bool The assigned elements in two arrays are identical or not?

true identical

false not identical (or parameters are not valid)

Note

? byte[] n1 = {100, 200, 30}

byte[] n2 = {100, 200, 30}

Array_Equals(n1, n2) // true

Array_Equals(n1, 0, n2, 0, 3) // true

Array_Equals(n1, 0, n2, 0, Length(n2)) // true

? int[] n1 = {1000, 2000, 3000}

int[] n2 = {1000, 2000, 3000, 4000}

Array_Equals(n1, n2) // false

Array_Equals(n1, 0, n2, 0, Length(n2)) // false // compare 4 elements

Array_Equals(n1, 0, n2, 0, 3) // true

? float[] n1 = {1.1, 2.2, 3.3}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 90

float[] n2 = {1.1, 2.2}

Array_Equals(n1, n2) // false

Array_Equals(n1, 0, n2, 0, Length(n2)) // true // compare 2 elements

Array_Equals(n1, 0, n2, 0, Length(n1)) // false

? double[] n1 = {100, 200, 300, 3.3, 2.2, 1.1}

double[] n2 = {100, 200, 400, 3.3, 2.2, 4.4}

Array_Equals(n1, n2) // false

Array_Equals(n1, 0, n2, 0, Length(n2)) // false

Array_Equals(n1, 0, n2, 0, 2) // true

Array_Equals(n1, 3, n2, 3, 2) // true

? bool[] n1 = {true, false, true, true, true}

bool[] n2 = {true, false, true, false, true}

Array_Equals(n1, n2) // false

Array_Equals(n1, 0, n2, 0, -1) // false

Array_Equals(n1, 0, n2, 0, 0) // true // compare 0 element

? string[] n1 = {"123", "ABC", "456", "DEF"}

string[] n2 = {"123", "ABC", "456", "DEF"}

Array_Equals(n1, n2) // true

Array_Equals(n1, -1, n2, 0, 4) // false // Invalid starting index

Omron TM Collaborative Robot: TMScript Language Manual (I664) 91

4.28 Array_IndexOf()

Search for the index number of the first occurrence within array elements.

Syntax 1

int Array_IndexOf(

?[],

?,

int

)

Parameters

?[] input array (Data type can be byte, int, float, double, bool, string)

? The target element to search (The data type needs to be the same as the input

array ?[], but not an array.)

int The initial index of the array to start searching

Return

int 0..(length of input array)-1 If the element is found , it returns the index number.

 -1 No element found

Syntax 2

int Array_IndexOf(

?[],

?

)

Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from

the foremost.

? byte[] n = {100, 200, 30, 100}

value = Array_IndexOf(n, 200) // 1

value = Array_IndexOf(n, 2000) // -1 // Since 2000 is not a byte type, it will be converted to int[],

int to search.

value = Array_IndexOf(n, 100, 1) // 3

? int[] n = {1000, 2000, 3000, 1000}

value = Array_IndexOf(n, 200) // -1

value = Array_IndexOf(n, 1000) // 0

value = Array_IndexOf(n, 1000, 1) // 3

? float[] n = {1.1, 2.2, 3.3, 1.1}

value = Array_IndexOf(n, 1.1) // 0

value = Array_IndexOf(n, 4.4) // -1

value = Array_IndexOf(n, 1.1, 1) // 3

? double[] n = {100, 200, 300, 3.3, 2.2, 1.1, 100}

value = Array_IndexOf(n, 1.1) // 5

value = Array_IndexOf(n, 500) // -1

value = Array_IndexOf(n, 100, 1) // 6

? bool[] n = {true, false, true, true, true}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 92

value = Array_IndexOf(n, true) // 0

value = Array_IndexOf(n, false) // 1

value = Array_IndexOf(n, false, 2) // -1

value = Array_IndexOf(n, true, 2) // 2

? string[] n = {"123", "ABC", "456", "DEF", "123"}

value = Array_IndexOf(n, "456") // 2

value = Array_IndexOf(n, "789") // -1

value = Array_IndexOf(n, "123", 1) // 4

value = Array_IndexOf(n, "AB") // -1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 93

4.29 Array_LastIndexOf()

Search for the index number of the last occurrence within array elements.

Syntax 1

int Array_LastIndexOf(

?[],

?,

int

)

Parameters

?[] input array (Data type can be byte, int, float, double, bool, string)

? The target element to search (The data type needs to be the same as the input

array ?[], but not an array.)

int The initial index of the array to start searching

Return

int 0..(length of input array)-1 If the element is found , returns the index value

 -1 No element found

Syntax 2

int Array_LastIndexOf(

?[],

?

)

Note

Same as syntax 1. It defaults 0 to the initial address of the parameter int as searching from

the foremost.

? byte[] n = {100, 200, 30}

? byte[] n = {100, 200, 30, 100}

value = Array_LastIndexOf(n, 200) // 1

value = Array_LastIndexOf(n, 2000) // -1 // Since 2000 is not a byte type, it will be converted to

int[], int to search.

value = Array_LastIndexOf(n, 100, 1) // 0

? int[] n = {1000, 2000, 3000, 1000}

value = Array_LastIndexOf(n, 200) // -1

value = Array_LastIndexOf(n, 1000) // 3

value = Array_LastIndexOf(n, 1000, 1) // 0

? float[] n = {1.1, 2.2, 3.3, 1.1}

value = Array_LastIndexOf(n, 1.1) // 3

value = Array_LastIndexOf(n, 4.4) // -1

value = Array_LastIndexOf(n, 1.1, 1) // 0

? double[] n = {100, 200, 300, 3.3, 2.2, 1.1, 100}

value = Array_LastIndexOf(n, 1.1) // 5

value = Array_LastIndexOf(n, 500) // -1

value = Array_LastIndexOf(n, 100, 1) // 0

? bool[] n = {true, false, true, true, true}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 94

value = Array_LastIndexOf(n, true) // 4

value = Array_LastIndexOf(n, false) // 1

value = Array_LastIndexOf(n, false, 2) // 1

value = Array_LastIndexOf(n, true, 2) // 2

? string[] n = {"123", "ABC", "456", "DEF", "123"}

value = Array_LastIndexOf(n, "456") // 2

value = Array_LastIndexOf(n, "789") // -1

value = Array_LastIndexOf(n, "123", 1) // 0

value = Array_LastIndexOf(n, "AB") // -1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 95

4.30 Array_Reverse()

Reverse the sequence of the elements in the array

Syntax 1

?[] Array_Reverse(

?[]

)

Parameters

?[] input array (Data type can be byte, int, float, double, bool, string)

Return

?[] The reversed array

Note

? byte[] n = {100, 200, 30}

n = Array_Reverse(n) // n = {30, 200, 100}

? int[] n = {1000, 2000, 3000}

n = Array_Reverse(n) // n = {3000, 2000, 1000}

? float[] n = {1.1, 2.2, 3.3}

n = Array_Reverse(n) // n = {3.3, 2.2, 1.1}

? double[] n = {100, 200, 300, 3.3, 2.2, 1.1}

n = Array_Reverse(n) // n = {1.1, 2.2, 3.3, 300, 200, 100}

? bool[] n = {true, false, true, true, true}

n = Array_Reverse(n) // n = {true, true, true, false, true}

? string[] n = {"123", "ABC", "456", "DEF"}

n = Array_Reverse(n) // n = {"DEF", "456", "ABC", "123"}

Syntax 2

?[] Array_Reverse(

?[],

int

)

Parameters

?[] input array (Data type can be byte, int, float, double, bool, string)

int the number of elements to be viewed as a section to be reversed

2 2 elements as a section

4 4 elements as a section

8 8 elements as a section

* The sequence of the elements in the same section will be reversed, but the

sequence of the sections will remain the same

Return

?[] The reversed array

Note

? byte[] n = {100, 200, 30}

n = Array_Reverse(n, 2) // n = {200, 100, 30}

// 2 elements as a section, that is {100,200}{30}

n = Array_Reverse(n, 4) // n = {30, 200, 100}

// 4 elements as a section, that is {100,200,30}

n = Array_Reverse(n, 8) // n = {30, 200, 100}

? int[] n = {100, 200, 300, 400}

n = Array_Reverse(n, 2) // n = {200, 100, 400, 300}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 96

// 2 elements as a section, that is {100,200}{300,400}

n = Array_Reverse(n, 4) // n = {400, 300, 200, 100}

// 4 elements as a section, that is {100,200,300,400}

n = Array_Reverse(n, 8) // n = {400, 300, 200, 100}

? float[] n = {1.1, 2.2, 3.3, 4.4, 5.5}

n = Array_Reverse(n, 2) // n = {2.2, 1.1, 4.4, 3.3, 5.5}

// 2 elements as a section, that is {1.1,2.2}{3.3,4.4}{5.5}

n = Array_Reverse(n, 4) // n = {4.4, 3.3, 2.2, 1.1, 5.5}

// 4 elements as a section, that is {1.1,2.2,3.3,4.4}{5.5}

n = Array_Reverse(n, 8) // n = {5.5, 4.4, 3.3, 2.2, 1.1}

? double[] n = {100, 200, 300, 400, 4.4, 3.3, 2.2, 1.1, 50, 60, 70, 80}

n = Array_Reverse(n, 2) // n = {200, 100, 400, 300, 3.3, 4.4, 1.1, 2.2, 60, 50, 80, 70}

n = Array_Reverse(n, 4) // n = {400, 300, 200, 100, 1.1, 2.2, 3.3, 4.4, 80, 70, 60, 50}

n = Array_Reverse(n, 8) // n = {1.1, 2.2, 3.3, 4.4, 400, 300, 200, 100, 80, 70, 60, 50}

? bool[] n = {true, false, true, true, true, false, true, false}

n = Array_Reverse(n, 2) // n = {false, true, true, true, false, true, false, true }

n = Array_Reverse(n, 4) // n = {true, true, false, true, false, true, false, true}

n = Array_Reverse(n, 8) // n = {false, true, false, true, true, true, false, true}

? string[] n = {"123", "ABC", "456", "DEF", "000", "111"}

n = Array_Reverse(n, 2) // n = {"ABC", "123", "DEF", "456", "111", "000"}

n = Array_Reverse(n, 4) // n = {"DEF", "456", "ABC", "123", "111", "000"}

n = Array_Reverse(n, 8) // n = {"111", "000", "DEF", "456", "ABC", "123"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 97

4.31 Array_Sort()

Sort the elements in a array

Syntax 1

?[] Array_Sort(

?[],

int

)

Parameters

?[] input array (Data type can be byte, int, float, double, bool, string)

int Sorting direction

0 Ascending Order (Default)

1 Descending Order

Return

?[] The array after sorting

Syntax 2

?[] Array_Sort(

?[]

)

Note

Similar to Syntax1 with sorting direction as ascending order

Array_Sort(array[]) => Array_Sort(array[], 0)

? int[] n = {1000, 2000, 3000}

n = Array_Sort(n) // n = {1000, 2000, 3000}

? double[] n = {100, 200, 300, 3.3, 2.2, 1.1}

n = Array_Sort(n , 1) // n = {300, 200, 100, 3.3, 2.2, 1.1}

? bool[] n = {true, false, true, true, true}

n = Array_Sort(n , 1) // n = {true, true, true, true, false}

? string[] n = {"123", "ABC", "456", "DEF"}

n = Array_Sort(n) // n = {"123", "456", "ABC", "DEF"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 98

4.32 Array_SubElements()

Retrieve the sub-elements from input array

Syntax 1

?[] Array_SubElements(

?[],

int,

int

)

Parameters

?[] Input array (Data type can be byte, int, float, double, bool, string)

int The starting index of sub-elements. (0 .. (length of array)-1)

int The number of element in sub-elements

Return

?[] The sub-elements from input arrays

 If starting index <0, sub-elements equals empty array

 If starting index >= length of input array, sub-elements equals empty array

If sub-element number <0, sub-elements starts at starting index to the last

element of input array

If the sum of starting index and the number of element exceeds the length of the

input array, sub-elements starts at starting index to the last element of input

array

Syntax 2

?[] Array_SubElements(

?[],

int

)

Note

Similar to Syntax 1, but the sub-elements starts at starting index to the last element of

input array

Array_SubElements(array[], 2) => Array_SubElements(array[], 2, maxlen)

? byte[] n = {100, 200, 30}

n1 = Array_SubElements(n1 , 0) // n1 = {100, 200, 30}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 0, 3) // n1 = {100, 200, 30}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {200, 30}

n1 = Array_SubElements(n1 , 2) // n1 = {30}

n1 = Array_SubElements(n1 , 3, 3) // n1 = {}

? int[] n = {1000, 2000, 3000}

n1 = Array_SubElements(n1 , 0) // n1 = {1000, 2000, 3000}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {2000, 3000}

n1 = Array_SubElements(n1 , 2) // n1 = {3000}

? float[] n = {1.1, 2.2, 3.3}

n1 = Array_SubElements(n1 , 0) // n1 = {1.1, 2.2, 3.3}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {2.2, 3.3}

n1 = Array_SubElements(n1 , 2) // n1 = {3.3}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 99

? double[] n = {100, 200, 3.3, 2.2, 1.1}

n1 = Array_SubElements(n1 , 0) // n1 = {100, 200, 3.3, 2.2, 1.1}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {200, 3.3, 2.2}

n1 = Array_SubElements(n1 , 2) // n1 = {3.3, 2.2, 1.1}

? bool[] n = {true, false, true, true, true}

n1 = Array_SubElements(n1 , 0) // n1 = {true, false, true, true, true}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {false, true, true}

n1 = Array_SubElements(n1 , 2) // n1 = {true, true, true}

? string[] n = {"123", "ABC", "456", "DEF"}

n1 = Array_SubElements(n1 , 0) // n1 = {"123", "ABC", "456", "DEF"}

n1 = Array_SubElements(n1 , -1) // n1 = {}

n1 = Array_SubElements(n1 , 1, 3) // n1 = {"ABC", "456", "DEF"}

n1 = Array_SubElements(n1 , 2) // n1 = {"456", "DEF"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 100

4.33 ValueReverse()

Reverse the sequence of byte units inside input data (int 2 bytes or 4 bytes, float 4 bytes, double

8 bytes); or reverse the sequence of character of string.

Syntax 1

int ValueReverse(

int,

int

)

Parameters

int Input value

int The input value follows int32 or int16 format

0 int32 (Default)

1 int16. If the data does not meets int16 format, int32 will be applied instead.

2 int16. Forced to apply int16 format. For int32 data input, there could be

some bytes missing

Return

int The value formed from reversing the sequence of byte units inside the input

value. For Int32 data, reverse with 4 bytes. For int16 data, reverse with 2 bytes.

Note

 int i = 10000

value = ValueReverse(i, 0) // 10000=0x00002710 → 0x10270000 // value = 270991360

value = ValueReverse(i, 1) // 10000=0x2710 → 0x1027 // value = 4135

i = 100000 // int32 value

value = ValueReverse(i, 0) // 100000=0x000186A0 → 0xA0860100 // value = -1601830656

value = ValueReverse(i, 1) // 100000=0x000186A0 → 0xA0860100 // value = -1601830656

value = ValueReverse(i, 2) // 100000=0x000086A0 → 0xA0860000 // value = -24442

Syntax 2

int ValueReverse(

int

)

Parameters

int Input value

Note

Similar to Syntax1 with int32 input format

ValueReverse(int) => ValueReverse(int, 0)

Syntax 3

float ValueReverse(

float

)

Parameters

float Input value

Return

float The value formed from reversing the sequence of byte units inside the input

value. For float data, reverse 4 bytes.

Note

 float i = 40000

Omron TM Collaborative Robot: TMScript Language Manual (I664) 101

value = ValueReverse(i) // 40000=0x471C4000 → 0x00401C47 // value = 5.887616E-39

Syntax 4

double ValueReverse(

double

)

Parameters

double Input value

Return

double The value formed from reversing the sequence of byte units inside the input

value. For double data, reverse 8 bytes.

Note

 double i = 80000

value = ValueReverse(i) // 80000=0x40F3880000000000 → 0x000000000088F340

// value = 4.43432217445369E-317

Syntax 5

string ValueReverse(

string

)

Parameters

string Input string

Return

string The value formed from reversing the sequence of characters of input string.

Note

 string i = "ABCDEF"

value = ValueReverse(i) // value = "FEDCBA"

Syntax 6

int[] ValueReverse(

int[],

int

)

Parameters

int[] Input array value

int The input value follows int32 or int16 format

0 int32 (Default)

1 int16. If the data does not meets int16 format, int32 will be applied instead.

2 int16. Forced to apply int16 format. For int32 data input, there could be

some bytes missing

Return

int[] The array formed from reversing the sequence of byte units inside every

element of the input array.

Note

int[] i = {10000, 20000, 60000, 80000}

value = ValueReverse(i, 0) // value = {270991360, 541982720, 1625948160, -2143813376}

value = ValueReverse(i, 1) // value = {4135, 8270, 1625948160, -2143813376}

value = ValueReverse(i, 2) // value = {4135, 8270, 24810, -32712}

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (I664) 102

int[] ValueReverse(

int[]

)

Parameters

int[] Input array value

Note

Similar to Syntax6 with input integer as int32

ValueReverse(int[]) => ValueReverse(int[], 0)

Syntax 8

float[] ValueReverse(

float[]

)

Parameters

float[] Input array value

Return

float[] The array formed from reversing the sequence of byte units inside every

element of the input array.

Note

float[] i = {10000, 20000}

value = ValueReverse(i) // value = {5.887614E-39, 5.933532E-39}

Syntax 9

double[] ValueReverse(

double[]

)

Parameters

double[] Input array value

Return

double[] The array formed from reversing the sequence of byte units inside every

element of the input array.

Note

double[] i = {10000, 20000}

value = ValueReverse(i) // value = {4.428251E-317,4.430275E-317}

Syntax 10

string[] ValueReverse(

string[]

)

Parameters

string[] Input string array

Return

string[] The string array formed from reversing the string inside every element of

the input string array.

Note

string[] i = {"ABCDEFG", "12345678"}

value = ValueReverse(i) // value = {"GFEDCBA", "87654321"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 103

4.34 GetBytes()

Convert arbitrary data type to byte array.

Syntax 1

byte[] GetBytes(

?,

int

)

Parameters

? The input data. Data type can be int, float, double, bool, string or array.

int The input data as integers and floating points follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

The input data as string arrays separates with 0x00 0x00 for each element

0 Not separate with 0x00 0x00 (Default)

1 Separate with 0x00 0x00

Return

byte[] The byte array formed by input data

Syntax 2

byte[] GetBytes(

?

)

Note

Same as syntax 1 with Little Endian or Big Endian defaults to 0 such as returns based on

Little Endian

GetBytes(?) => GetBytes(?, 0)

? byte n = 100

value = GetBytes(n) // value = {0x64}

value = GetBytes(n, 0) // value = {0x64}

value = GetBytes(n, 1) // value = {0x64}

? byte[] n = {100, 200} // Convert every element of the array to byte, 1 byte as a single unit.

value = GetBytes(n) // value = {0x64, 0xC8}

value = GetBytes(n, 0) // value = {0x64, 0xC8}

value = GetBytes(n, 1) // value = {0x64, 0xC8}

? int

value = GetBytes(123456) // value = {0x40, 0xE2, 0x01, 0x00}

value = GetBytes(123456, 0) // value = {0x40, 0xE2, 0x01, 0x00}

value = GetBytes(0x123456, 0) // value = {0x56, 0x34, 0x12, 0x00}

value = GetBytes(0x1234561, 1) // value = {0x01, 0x23, 0x45, 0x61}

? int[] n = {10000, 20000, 80000}

// Convert every single element of the array to byte. For int32 data, works on 4 bytes sequentially.

value = GetBytes(n)

// value = {0x10, 0x27, 0x00, 0x00, 0x20, 0x4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 104

value = GetBytes(n, 0)

// value = {0x10, 0x27, 0x00, 0x00, 0x20, 0x4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}

value = GetBytes(n, 1)

// value = {0x00, 0x00, 0x27, 0x10, 0x00, 0x00, 0x4E, 0x20, 0x00, 0x01, 0x38, 0x80}

? float

value = GetBytes(123.456, 0) // value = {0x79, 0xE9, 0xF6, 0x42}

float n = -1.2345

value = GetBytes(n, 0) // value = {0x19, 0x04, 0x9E, 0xBF}

value = GetBytes(n, 1) // value = {0xBF, 0x9E, 0x04, 0x19}

? float[] n = {1.23, 4.56, -7.89}

// Convert every single element of the array to byte. For float data, works on 4 bytes sequentially.

value = GetBytes(n)

// value = {0xA4, 0x70, 0x9D, 0x3F, 0x85, 0xEB, 0x91, 0x40, 0xE1, 0x7A, 0xFC, 0xC0}

value = GetBytes(n, 0)

// value = {0xA4, 0x70, 0x9D, 0x3F, 0x85, 0xEB, 0x91, 0x40, 0xE1, 0x7A, 0xFC, 0xC0}

value = GetBytes(n, 1)

// value = {0x3F, 0x9D, 0x70, 0xA4, 0x40, 0x91, 0xEB, 0x85, 0xC0, 0xFC, 0x7A, 0xE1}

? double n = -1.2345

value = GetBytes(n, 0) // value = {0x8D, 0x97, 0x6E, 0x12, 0x83, 0xC0, 0xF3, 0xBF}

value = GetBytes(n, 1) // value = {0xBF, 0xF3, 0xC0, 0x83, 0x12, 0x6E, 0x97, 0x8D}

? double[] n = {1.23, -7.89}

// Convert every single element of the array to byte. For double data, works on 8 bytes sequentially.

value = GetBytes(n)

// value = {0xAE,0x47,0xE1,0x7A,0x14,0xAE,0xF3,0x3F,0x8F,0xC2,0xF5,0x28,0x5C,0x8F,0x1F,0xC0}

value = GetBytes(n, 0)

// value = {0xAE,0x47,0xE1,0x7A,0x14,0xAE,0xF3,0x3F,0x8F,0xC2,0xF5,0x28,0x5C,0x8F,0x1F,0xC0}

value = GetBytes(n, 1)

// value = {0x3F,0xF3,0xAE,0x14,0x7A,0xE1,0x47,0xAE,0xC0,0x1F,0x8F,0x5C,0x28,0xF5,0xC2,0x8F}

? bool flag = true //GetBytes converts true to 1, and false to 0.

value = GetBytes(flag) // value = {1}

value = GetBytes(flag, 0) // value = {1}

// Because bool is 1 byte, Endian Parameters are not sufficient.

value = GetBytes(flag, 1) // value = {1}

? bool[] flag = {true, false, true, false, false, true, true}

value = GetBytes(flag) // value = {1, 0, 1, 0, 0, 1, 1}

value = GetBytes(flag, 0) // value = {1, 0, 1, 0, 0, 1, 1}

value = GetBytes(flag, 1) // value = {1, 0, 1, 0, 0, 1, 1}

? string n = "ABCDEFG" // string to encode in UTF8

value = GetBytes(n) // value = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47}

value = GetBytes(n, 0) // value = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47}

// Endian Parameters not valid

value = GetBytes(n, 1) // value = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47}

// Endian Parameters not valid

Omron TM Collaborative Robot: TMScript Language Manual (I664) 105

? string[] n = {"ABC", "DEF", "達明機器人" }

value = GetBytes(n)

// value = {0x41, 0x42, 0x43, 0x44, 0x45, 0x46,

0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

value = GetBytes(n, 1)

// value = {0x41, 0x42, 0x43, 0x00, 0x00, 0x44, 0x45, 0x46, 0x00, 0x00,

0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

*Conversion of string[] to byte[] can maintain the original contents without separation bytes, but it is unable

to turn byte[] back to string[] effectively.

*It is effective to turn byte[] back to string[] by inserting separation bytes (2 consecutive 0x00s) between the

elements in the array, but it is possible to find conversion errors if the value of the string come with 0x00

0x00.

Syntax 3

Convert integer (int type) to byte array.

byte[] GetBytes(

int,

int,

int

)

Parameters

int The input integer (int type)

int The input value follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

int The input integer value’s data type is int32 or int16

0 int32 (Default)

1 int16. If the data does not meets int16 format, int32 will be applied instead.

2 int16. Forced to apply int16 format. For int32 data input, there could be

some bytes missing.

Return

byte[] The byte array formed by input integer. For int32 data, convert with 4 bytes. For

int16 data, convert with 2 bytes.

Note

value = GetBytes(12345, 0, 0) // value = {0x39, 0x30, 0x00, 0x00}

value = GetBytes(12345, 0, 1) // value = {0x39, 0x30}

value = GetBytes(12345, 0, 2) // value = {0x39, 0x30}

value = GetBytes(0x123456, 0, 0) // value = {0x56, 0x34, 0x12, 0x00}

value = GetBytes(0x123456, 0, 1) // value = {0x56, 0x34, 0x12, 0x00}

value = GetBytes(0x123456, 0, 2) // value = {0x56, 0x34} // bytes missing

value = GetBytes(0x1234561, 1, 0) // value = {0x01, 0x23, 0x45, 0x61}

value = GetBytes(0x1234561, 1, 1) // value = {0x01, 0x23, 0x45, 0x61}

value = GetBytes(0x1234561, 1, 2) // value = {0x45, 0x61} // bytes missing

Syntax 4

Convert the integer array (int[] type) to byte array

byte[] GetBytes(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 106

int[],

int,

int

)

Parameters

int[] The input integer array (int[] type)

int The input integer array follows Little Endian or Big Endian

0 Little Endian (Default)

1 Big Endian

int The input integer array’s data type is int32 or int16

0 int32 (Default)

1 int16. If the data does not meets int16 format, int32 will be applied instead

2 int16. Forced to apply int16 format. For int32 data input, there could be

some bytes missing.

Return

byte[] The byte array formed by input integer array. Every element is converted

independently and forms an array. For int32 data, convert with 4 bytes. For int16

data, convert with 2 bytes.

Note

i ={10000, 20000, 80000}

value = GetBytes(i, 0, 0)

// value = {0x10, 0x27, 0x00, 0x00, 0x20, 0x4E, 0x00, 0x00, 0x80, 0x38, 0x01, 0x00}

value = GetBytes(i, 0, 1) // value = {0x10, 0x27, 0x20, 0x4E, 0x80, 0x38, 0x01, 0x00}

value = GetBytes(i, 0, 2) // value = {0x10, 0x27, 0x20, 0x4E, 0x80, 0x38} // bytes missing

value = GetBytes(i, 1, 0)

// value = {0x00, 0x00, 0x27, 0x10, 0x00, 0x00, 0x4E, 0x20, 0x00, 0x01, 0x38, 0x80}

value = GetBytes(i, 1, 1) // value = {0x27, 0x10, 0x4E, 0x20, 0x00, 0x01, 0x38, 0x80}

value = GetBytes(i, 1, 2) // value = {0x27, 0x10, 0x4E, 0x20, 0x38, 0x80} // bytes missing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 107

4.35 GetString()

Convert arbitrary data type to string

Syntax 1

string GetString(

?,

int,

int

)

Parameters

? The input data. Data type can be int, float, double, bool, string or array.

int When the output string’s notation is decimal, hexadecimal, or binary, the output

string value is in decimal, hexadecimal, or binary.

10 decimal, such as 123

16 hexadecimal, such as 0x7B

2 binary, such as 0b01111011

When the input value is a string array, the output string value is in standard

string format or not.

0 or 10 Automatic detection. If the values in the string come with double

quotations or commas, it converse to standard string format.

1 Mandatory conversion to standard string format

Other No conversion

int The output string format

 When the output is in decimal

0 Never use scientific notation

1 Use scientific notation when needed.

 When the output is in hexadecimal or binary

0 Fill up digits. Add prefix 0x or 0b, e.g. 0x0C or 0b00001100

1 Fill up digits. No prefix 0x or 0b, e.g. 0C or 00001100

2 Don’t fill up digits. Add prefix 0x or 0b, e.g. 0xC or 0b1100

3 Don’t fill up digits. No prefix 0x or 0b, e.g. C or 1100

Return

string String converted from input data. If the input data cannot be converted, returns

empty string.

If the input data is array, every element is converted respectively, and returned

in "{ , , }" format

Syntax 2

string GetString(

?,

int

)

Note

Similar to Syntax1 with filling up digits and adding prefix 0x or 0b.

GetString(?, 16) => GetString(?, 16, 0)

Syntax 3

string GetString(

?

Omron TM Collaborative Robot: TMScript Language Manual (I664) 108

)

Note

Same as syntax 1. The output string’s notation defaults to 10 and the output string format

defaults to 0.

GetString(?) => GetString(?, 10, 0)

GetString(?) => GetString(?, 0, 0) // supposed ? is a string array

? byte n = 123

value = GetString(n) // value = "123"

value = GetString(n, 10) // value = "123"

value = GetString(n, 16) // value = "0x7B"

value = GetString(n, 2) // value = "0b01111011"

value = GetString(n, 16, 3)// value = "7B"

value = GetString(n, 2, 2) // value = "0b1111011"

? byte[] n = {12, 34, 56}

value = GetString(n) // value = "{12,34,56}"

value = GetString(n, 10) // value = "{12,34,56}"

value = GetString(n, 16) // value = "{0x0C,0x22,0x38}"

value = GetString(n, 2) // value = "{0b00001100,0b00100010,0b00111000}"

value = GetString(n, 16, 3)// value = "{C,22,38}"

value = GetString(n, 2, 2) // value = "{0b1100,0b100010,0b111000}"

? int n = 1234

value = GetString(n) // value = "1234"

value = GetString(n, 10) // value = "1234"

value = GetString(n, 16) // value = "0x000004D2"

value = GetString(n, 2) // value = "0b00000000000000000000010011010010"

value = GetString(n, 16, 3)// value = "4D2"

value = GetString(n, 2, 2) // value = "0b10011010010"

? int[] n = {123, 345, -123, -456}

value = GetString(n) // value = "{123,345,-123,-456}"

value = GetString(n, 10) // value = "{123,345,-123,-456}"

value = GetString(n, 16) // value = "{0x0000007B,0x00000159,0xFFFFFF85,0xFFFFFE38}"

value = GetString(n, 2) // value = "{0b00000000000000000000000001111011,

0b00000000000000000000000101011001,

0b11111111111111111111111110000101,

0b11111111111111111111111000111000}"

value = GetString(n, 16, 3)// value = "{7B,159,FFFFFF85,FFFFFE38}"

value = GetString(n, 2, 2) // value = "{0b1111011,

0b101011001,

0b11111111111111111111111110000101,

0b11111111111111111111111000111000}"

? float n = 12.34

value = GetString(n) // value = "12.34"

value = GetString(n, 10) // value = "12.34"

value = GetString(n, 16) // value = "0x414570A4"

value = GetString(n, 2) // value = "0b01000001010001010111000010100100"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 109

value = GetString(n, 16, 3)// value = "414570A4"

value = GetString(n, 2, 2) // value = "0b1000001010001010111000010100100"

? float[] n = {123.4, 345.6, -123.4, -456.7}

value = GetString(n) // value = "{123.4,345.6,-123.4,-456.7}"

value = GetString(n, 10) // value = "{123.4,345.6,-123.4,-456.7}"

value = GetString(n, 16) // value = "{0x42F6CCCD,0x43ACCCCD,0xC2F6CCCD,0xC3E4599A}"

value = GetString(n, 16, 3)// value = "{42F6CCCD,43ACCCCD,C2F6CCCD,C3E4599A}"

? double n = 12.34

value = GetString(n) // value = "12.34"

value = GetString(n, 10) // value = "12.34"

value = GetString(n, 16) // value = "0x4028AE147AE147AE"

value = GetString(n, 16, 3)// value = "4028AE147AE147AE"

? double[] n = {123.45, 345.67, -123.48, -456.79}

value = GetString(n) // value = "{123.45,345.67,-123.48,-456.79}"

value = GetString(n, 10) // value = "{123.45,345.67,-123.48,-456.79}"

value = GetString(n, 16) // value = "{0x405EDCCCCCCCCCCD,0x40759AB851EB851F,

0xC05EDEB851EB851F,0xC07C8CA3D70A3D71}"

value = GetString(n, 16, 3) // value = "{405EDCCCCCCCCCCD,40759AB851EB851F,

C05EDEB851EB851F,C07C8CA3D70A3D71}"

? bool n = true

value = GetString(n) // value = "true"

value = GetString(n, 16) // value = "true"

value = GetString(n, 2) // value = "true"

value = GetString(n, 16, 3)// value = "true"

? bool[] n = {true, false, true, false, false, true}

value = GetString(n) // value = "{true,false,true,false,false,true}"

value = GetString(n, 16) // value = "{true,false,true,false,false,true}"

value = GetString(n, 2) // value = "{true,false,true,false,false,true}"

value = GetString(n, 16, 3)// value = "{true,false,true,false,false,true}"

? string n = "1234567890"

value = GetString(n) // value = "1234567890"

value = GetString(n, 16) // value = "1234567890"

value = GetString(n, 2) // value = "1234567890"

value = GetString(n, 16, 3)// value = "1234567890"

? string[] n = {"123.45", "345.67", "-12""3.48", "-45A6.79"}

value = GetString(n) // value = "{123.45,345.67,-12""3.48,-45A6.79}"

value = GetString(n, 1) // value = "{"123.45","345.67","-12""3.48","-45A6.79"}"

value = GetString(n, 2) // value = "{123.45,345.67,-12"3.48,-45A6.79}" // -12""3.48 displayed

as -12"3.48

value = GetString(n, 16, 3) // value = "{123.45,345.67,-12""3.48,-45A6.79}"

value = GetString(n, 10, 3) // value = "{123.45,345.67,"-12""3.48",-45A6.79}"

//use automatic detection as the default

Omron TM Collaborative Robot: TMScript Language Manual (I664) 110

Syntax 4

string GetString(

?,

string,

int,

int

)

Parameters

? The input data. Data type can be int, float, double, bool, string or array.

string Separator for output string (Only effective to array input)

int When the output string’s notation is decimal, hexadecimal, or binary, the output

string value is in decimal, hexadecimal, or binary.

10 decimal, such as 123

16 hexadecimal, such as 0x7B

2 binary, such as 0b01111011

When the input value is a string array, the output string value is in standard

string format or not.

0 or 10 Automatic detection. If the values in the string come with double

quotations or separation symbols, it converse to standard string format.

1 Mandatory conversion to standard string format

Other No conversion

int The output string format

 When the output is in decimal

0 Never use scientific notation

1 Use scientific notation when needed.

 When the output is in hexadecimal or binary

0 Fill up digits. Add prefix 0x or 0b, e.g. 0x0C or 0b00001100

1 Fill up digits. No prefix 0x or 0b, e.g. 0C or 00001100

2 Don’t fill up digits. Add prefix 0x or 0b, e.g. 0xC or 0b1100

3 Don’t fill up digits. No prefix 0x or 0b, e.g. C or 1100

Return

string String converted from input data. If the input data cannot be converted, returns

empty string.

If the input data is array, every element is converted respectively, and returned

as a string with the assigned separator

Syntax 5

string GetString(

?,

string,

int

)

Note

Same as Syntax 4 with filling up digits and adding prefix 0x or 0b

GetString(?, str, 16) => GetString(?, str, 16, 0)

Syntax 6

string GetString(

?,

string

Omron TM Collaborative Robot: TMScript Language Manual (I664) 111

)

Note

Same as Syntax 4. The output string’s notation defaults to 10 and the output string format

defaults to 0.

GetString(?) => GetString(?, 10, 0)

GetString(?) => GetString(?, 0, 0) // supposed ? is a string array

? byte n = 123

value = GetString(n) // value = "123"

value = GetString(n, ";", 10) // value = "123"

value = GetString(n, "-", 16) // value = "0x7B"

value = GetString(n, "#", 2) // value = "0b01111011"

value = GetString(n, ",", 16, 3) // value = "7B"

value = GetString(n, ",", 2, 2) / value = "0b1111011"

 * Separator is effective to array input only.

? byte[] n = {12, 34, 56}

value = GetString(n, "-") // value = "12-34-56"

value = GetString(n, Ctrl("\r\n"), 10)// value = "12\u0D0A34\u0D0A56"

value = GetString(n, newline, 16) // value = "0x0C\u0D0A0x22\u0D0A0x38"

value = GetString(n, NewLine, 2) // value =

"0b00001100\u0D0A0b00100010\u0D0A0b00111000"

value = GetString(n, "-", 16, 3) // value = "C-22-38"

value = GetString(n, "-", 2, 2) // value = "0b1100-0b100010-0b111000"

* \u0D0A is Newline control character, not string value.

? string[] n = {"123.45", "345.67", "-12""3.48", "-45A6.79"}

value = GetString(n, "-") // value = "123.45-345.67-"-12""3.48"-"-45A6.79""

value = GetString(n, "-", 1) // value = ""123.45"-"345.67"-"-12""3.48"-"-45A6.79""

value = GetString(n, "-", 2) // value = "123.45-345.67--12"3.48--45A6.79"

// Troubled for identifying the separation symbols and the negative signs.

Syntax 7

string GetString(

?,

string,

string,

int,

int

)

Parameters

? The input data. Data type can be int, float, double, bool, string or array.

string The index of the output string for array input. (Only effective to ? as array type

data)

* Support numeric format strings

string Separator for output string (Only effective to array input)

int The output string’s notation is decimal, hexadecimal or binary (Can be only

applied to hexadecimal or binary number)

10 decimal, such as 123

16 hexadecimal, such as 0x7B

Omron TM Collaborative Robot: TMScript Language Manual (I664) 112

2 binary, such as 0b01111011

String’s notation

123 decimal

0x7F hexadecimal

0b101 binary

When the input value is a string array, the output string value is in standard

string format or not.

0 or 10 Automatic detection. If the values in the string come with double

quotations or separation symbols, it converse to standard string format.

1 Mandatory conversion to standard string format

Other No conversion

int The output string format

 When the output is in decimal

0 Never use scientific notation

1 Use scientific notation when needed.

 When the output is in hexadecimal or binary

0 Fill up digits. Add prefix 0x or 0b, e.g. 0x0C or 0b00001100

1 Fill up digits. No prefix 0x or 0b, e.g. 0C or 00001100

2 Don’t fill up digits. Add prefix 0x or 0b, e.g. 0xC or 0b1100

3 Don’t fill up digits. No prefix 0x or 0b, e.g. C or 1100

Return

string Converse the value to the string to return. If unable to converse, it returns an

empty string.

If the type is array, elements in the array will be conversed to strings with

prefixes of the element index value format string separated by separation

symbols to return.

There will be no braces.

Syntax 8

string GetString(

?,

string,

string,

int

)

Note

Similar to Syntax7 with filling up digits and adding prefix.

GetString(?, str, str, 16) => GetString(?, str, str, 16, 0)

Syntax 9

string GetString(

?,

string,

string

)

Note

Similar to Syntax7 with decimal output, with filling up digits and adding prefix.

GetString(?, str, str) => GetString(?, str, str, 10, 0)

? byte n = 123

value = GetString(n) // value = "123"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 113

value = GetString(n, "[0]=", ";", 10) // value = "123"

value = GetString(n, "[0]=", "-", 16) // value = "0x7B"

value = GetString(n, "[0]=", "#", 2) // value = "0b01111011"

 * Index and sepapator are only effective to array input.

? byte[] n = {12, 34, 56}

value = GetString(n, "[0]=", "-") // value = "[0]=12-[1]=34-[2]=56"

value = GetString(n, "[0]=", Ctrl("\r\n"), 10) // value = "[0]=12\u0D0A[1]=34\u0D0A[2]=56"

value = GetString(n, "[0]=", newline, 16) // value = "[0]=0x0C\u0D0A[1]=0x22\u0D0A[2]=0x38"

value = GetString(n, "[0]=", "-", 16, 3) // value = "[0]=C-[1]=22-[2]=38"

value = GetString(n, "[0]=", "-", 2, 2) // value = "[0]=0b1100-[1]=0b100010-[2]=0b111000"

* "[0]=" Support numeric format strings

* \u0D0A is Newline control character, not string value.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 114

4.36 GetToken()

Retrieve a substring from input string, or the sub-array from the input byte[] array

Syntax 1

string GetToken(

string,

string,

string,

int,

int

)

Parameters

string Input string

string Prefix. The leading element of the substring

string Suffix. The trailing element of the substring

int The number of the matched substtring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string String formed by part of the input string

If the prefix and suffix are empty strings, returns the input string

If the number of the matched substrings <=0 or larger than the number of the

total matched substrings, returns empty string

If the remove option is 2 or 3, the first match retrieved must be at the start of the

input string; otherwise, it returns an empty string.

Syntax 2

string GetToken(

string,

string,

string,

int

)

Note

Similar to Syntax1 with reserving prefix and suffix.

GetToken(str,str,str,1) => GetToken(str,str,str,1,0)

Syntax 3

string GetToken(

string,

string,

string

)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 115

Note

Similar to Syntax1 with returning the first occurrence, and reserving prefix and suffix.

GetToken(str,str,str) => GetToken(str,str,str,1,0)

 string n = "$abcd$1234$ABCD$"

value = GetToken(n, "", "", 0) // value = "$abcd$1234$ABCD$"

value = GetToken(n, "$", "$") // value = "$abcd$"

value = GetToken(n, "$", "$", 0) // value = ""

value = GetToken(n, "$", "$", 1) // value = "$abcd$"

value = GetToken(n, "$", "$", 2) // value = "$ABCD$"

value = GetToken(n, "$", "$", 3) // value = ""

value = GetToken(n, "$", "$", -1, 1) // value = "ABCD"

value = GetToken(n, "$", "$", 1, 1) // value = "abcd"

value = GetToken(n, "$", "$", 2, 1) // value = "ABCD"

value = GetToken(n, "$", "", 1) // value = "$abcd"

value = GetToken(n, "$", "", 2) // value = "$1234"

value = GetToken(n, "$", "", 3) // value = "$ABCD"

value = GetToken(n, "$", "", 4) // value = "$"

value = GetToken(n, "", "$", 1) // value = "$"

value = GetToken(n, "", "$", 2) // value = "abcd$"

value = GetToken(n, "", "$", 3) // value = "1234$"

value = GetToken(n, "", "$", 4) // value = "ABCD$"

 string n = "$abcd$1234$ABCD$" + Ctrl("\r\n") + "56\r\n78$"

value = GetToken(n, "$", Ctrl("\r\n"), 1) // value = "$abcd$1234$ABCD$\u0D0A"

value = GetToken(n, "$", newline, 2) // value = ""

value = GetToken(n, "$", NewLine, 1, 1) // value = "abcd1234ABCD$"

// Remove prefix and suffix

value = GetToken(n, Ctrl("\r\n"), "$", 1) // value = "\u0D0A56\r\n78$"

value = GetToken(n, newline, "$", 2) // value = ""

value = GetToken(n, NewLine, "$", 1, 1) // value = "56\r\n78"

* \u0D0A is Newline control character, not string value.

string n = "#abcd$1234#ABCD$5678#"

value = GetToken(n, "", "", 0) // value = "#abcd$1234#ABCD$5678#"

value = GetToken(n, "$", "$") // value = "$1234#ABCD$"

value = GetToken(n, "$", "$", 0) // value = ""

value = GetToken(n, "$", "$", 1) // value = "$1234#ABCD$"

value = GetToken(n, "$", "$", 2) // value = ""

value = GetToken(n, "$", "$", 3) // value = ""

value = GetToken(n, "$", "$", -1, 0) // value = "$1234#ABCD$"

value = GetToken(n, "$", "$", -1, 1) // value = "1234#ABCD"

value = GetToken(n, "$", "$", 1, 1) // value = "1234#ABCD"

value = GetToken(n, "$", "$", 2, 1) // value = ""

value = GetToken(n, "$", "", 1) // value = "$1234#ABCD"

value = GetToken(n, "$", "", 2) // value = "$5678#"

value = GetToken(n, "$", "", 3) // value = ""

value = GetToken(n, "$", "", 4) // value = ""

value = GetToken(n, "", "$", 1) // value = "#abcd$"

value = GetToken(n, "", "$", 2) // value = "1234#ABCD$"

value = GetToken(n, "", "$", 3) // value = ""

value = GetToken(n, "", "$", 4) // value = ""

Omron TM Collaborative Robot: TMScript Language Manual (I664) 116

value = GetToken(n, "$", "$", 1, 2) // value = ""

// The string matched $ not in the start of the input string.

value = GetToken(n, "$", "$", -1, 2) // value = ""

// The string matched $ not in the start of the input string.

value = GetToken(n, "#", "", 1, 3) // value = "abcd$1234"

value = GetToken(n, "#", "", 1, 2) // value = "#abcd$1234"

value = GetToken(n, "#", "", 2, 2) // value = "#ABCD$5678"

value = GetToken(n, "#", "", 3, 2) // value = "#"

value = GetToken(n, "#", "", 4, 2) // value = ""

value = GetToken(n, "#", "", -1, 2) // value = "#"

value = GetToken(n, "#", "", -1, 3) // value = ""

value = GetToken(n, "#", "$", 1, 2) // value = "#abcd$"

value = GetToken(n, "#", "$", 1, 3) // value = "abcd"

Syntax 4

string GetToken(

string,

byte[],

byte[],

int,

int

)

Parameters

string Input string

byte[] Prefix. The leading element of the substring, byte[] type

byte[] Suffix. The trailing element of the substring, byte[] type

int The number of the matched substtring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string String formed by part of the input string

If the prefix and suffix are empty strings, returns the input string

If the number of the matched substrings <=0 or larger than the number of the

totol matached substrings, returns empty string

If the remove option is 2 or 3, the first match retrieved must be at the start of the

input string; otherwise, it returns an empty string.

Syntax 5

string GetToken(

string,

byte[],

byte[],

int

)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 117

Note

Similar to Syntax4 with reserving prefix and suffix

GetToken(str,byte[],byte[],1) => GetToken(str,byte[],byte[],1,0)

Syntax 6

string GetToken(

string,

byte[],

byte[]

)

Note

Similar to Syntax 4 with the first occurrence and reserving prefix and suffix

GetToken(str,byte[],byte[]) => GetToken(str,byte[],byte[],1,0)

string n = "$abcd$1234$ABCD$"

byte[] bb0 = {}, bb1 = {0x24} // 0x24 is $

value = GetToken(n, bb0, bb0, 0) // value = "$abcd$1234$ABCD$"

value = GetToken(n, bb1, bb1)// value = "$abcd$"

value = GetToken(n, bb1, bb1, 0) // value = ""

value = GetToken(n, bb1, bb1, 1) // value = "$abcd$"

value = GetToken(n, bb1, bb1, 2) // value = "$ABCD$"

value = GetToken(n, bb1, bb1, 3) // value = ""

value = GetToken(n, bb1, bb1, 1, 1) // value = "abcd"

value = GetToken(n, bb1, bb1, 2, 1) // value = "ABCD"

value = GetToken(n, bb1, bb0, 1) // value = "$abcd"

value = GetToken(n, bb1, bb0, 2) // value = "$1234"

value = GetToken(n, bb1, bb0, 3) // value = "$ABCD"

value = GetToken(n, bb1, bb0, 4) // value = "$"

value = GetToken(n, bb0, bb1, 1) // value = "$"

value = GetToken(n, bb0, bb1, 2) // value = "abcd$"

value = GetToken(n, bb0, bb1, 3) // value = "1234$"

value = GetToken(n, bb0, bb1, 4) // value = "ABCD$"

string n = "$abcd$1234$ABCD$" + Ctrl("\r\n") + "56\r\n78$"

byte[] bb0 = {0x0D,0x0A}, bb1 = {0x24} // 0x24 is $ // 0x0D,0x0A is \u0D0A

value = GetToken(n, bb1, bb0, 1) // value = "$abcd$1234$ABCD$\u0D0A"

value = GetToken(n, bb1, bb0, 2) // value = ""

value = GetToken(n, bb1, bb0, 1, 1) // value = "abcd1234ABCD$"

// Removing the prefix and the suffix

value = GetToken(n, bb0, bb1, 1) // value = "\u0D0A56\r\n78$"

value = GetToken(n, bb0, bb1, 2) // value = ""

value = GetToken(n, bb0, bb1, 1, 1) // value = "56\r\n78"

* \u0D0A is the Newline control character, not the string content.

Syntax 7

byte[] GetToken(

byte[],

string,

string,

int,

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 118

)

Parameters

byte[] The input byte[]

string Prefix. The leading element of the output byte[], byte[] type

string Suffix. The trailing element of the output byte[], byte[] type

int The number of the matched substring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

byte[] The byte[] formed from part of the input byte[]

If the prefix and suffix are empty, returns the input array

If the number of the matched substrings <=0 or larger than the number of the

total matched substrings, returns empty array

If the remove option is 2 or 3, the first match retrieved must be at the start of the

input string; otherwise, it returns an empty string.

Syntax 8

byte[] GetToken(

byte[],

string,

string,

int

)

Note

Similar to Syntax7 with reserving prefix and suffix

GetToken(byte[],str,str,1) => GetToken(byte[],str,str,1,0)

Syntax 9

byte[] GetToken(

byte[],

string,

string

)

Note

Similar to Syntax7 with returning the first occurrence, and reserving prefix and suffix.

GetToken(byte[],str,str) => GetToken(byte[],str,str,1,0)

string s ="$abcd$1234$ABCD$"

byte[] n = GetBytes(s)

value = GetToken(n, "", "", 0)

// value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}

value = GetToken(n, "$", "$") // value = {0x24,0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, "$", "$", 0) // value = {}

value = GetToken(n, "$", "$", 1) // value = {0x24,0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, "$", "$", 2) // value = {0x24,0x41,0x42,0x43,0x44,0x24}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 119

value = GetToken(n, "$", "$", 1, 1) // value = {0x61,0x62,0x63,0x64}

value = GetToken(n, "$", "$", 2, 1) // value = {0x41,0x42,0x43,0x44}

value = GetToken(n, "$", "", 1) // value = {0x24,0x61,0x62,0x63,0x64}

value = GetToken(n, "$", "", 2) // value = {0x24,0x31,0x32,0x33,0x34}

value = GetToken(n, "$", "", 3) // value = {0x24,0x41,0x42,0x43,0x44}

value = GetToken(n, "$", "", 4) // value = {0x24}

value = GetToken(n, "", "$", 1) // value = {0x24}

value = GetToken(n, "", "$", 2) // value = {0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, "", "$", 3) // value = {0x31,0x32,0x33,0x34,0x24}

value = GetToken(n, "", "$", 4) // value = {0x41,0x42,0x43,0x44,0x24}

 string s ="$abcd$1234$ABCD$" + Ctrl("\r\n") + "56\r\n78$"

byte[] n = GetBytes(s)

value = GetToken(n, "$", Ctrl("\r\n"), 1)

// value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24,0x0D,0x0A}

value = GetToken(n, "$", Ctrl("\r\n"), 1, 1)

// value = {0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}

// Removing prefix and suffix

value = GetToken(n, Ctrl("\r\n"), "$", 1)

// value = {0x0D,0x0A,0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38,0x24}

value = GetToken(n, Ctrl("\r\n"), "$", 1, 1)

// value = {0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38}

Syntax 10

byte[] GetToken(

byte[],

byte[],

byte[],

int,

int

)

Parameters

byte[] The input byte[] array

byte[] Prefix. The leading element of the output byte[]

byte[] Suffix. The trailing element of the output byte[]

int The number of the matched substring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

byte[] The byte[] formed from part of the input byte[]

If the prefix and suffix are empty, returns the input array

If the number of the matched substrings <=0 or larger than the number of total

matched substrings, returns empty array

If the remove option is 2 or 3, the first match retrieved must be at the start of the

input string; otherwise, it returns an empty string.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 120

Syntax 11

byte[] GetToken(

byte[],

byte[],

byte[],

int

)

Note

Similar to Syntax10 with reserving the prefix and suffix

GetToken(byte[],byte[],byte[],1) => GetToken(byte[],byte[],byte[],1,0)

Syntax 12

byte[] GetToken(

byte[],

byte[],

byte[]

)

Note

Similar to Syntax10 with returning the first occurrence, and reserving prefix and suffix.

GetToken(byte[],byte[],byte[]) => GetToken(byte[],byte[],byte[],1,0)

string s ="$abcd$1234$ABCD$"

byte[] n = GetBytes(s)

byte[] bb0 = {}, bb1 = {0x24} // 0x24 is $

value = GetToken(n, bb0, bb0, 0)

// value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}

value = GetToken(n, bb1, bb1) // value = {0x24,0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, bb1, bb1, 0) // value = {}

value = GetToken(n, bb1, bb1, 1) // value = {0x24,0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, bb1, bb1, 2) // value = {0x24,0x41,0x42,0x43,0x44,0x24}

value = GetToken(n, bb1, bb1, 1, 1)// value = {0x61,0x62,0x63,0x64}

value = GetToken(n, bb1, bb1, 2, 1)// value = {0x41,0x42,0x43,0x44}

value = GetToken(n, bb1, bb0, 1) // value = {0x24,0x61,0x62,0x63,0x64}

value = GetToken(n, bb1, bb0, 2) // value = {0x24,0x31,0x32,0x33,0x34}

value = GetToken(n, bb1, bb0, 3) // value = {0x24,0x41,0x42,0x43,0x44}

value = GetToken(n, bb0, bb1, 1) // value = {0x24}

value = GetToken(n, bb0, bb1, 2) // value = {0x61,0x62,0x63,0x64,0x24}

value = GetToken(n, bb0, bb1, 3) // value = {0x31,0x32,0x33,0x34,0x24}

 string s ="$abcd$1234$ABCD$" + Ctrl("\r\n") + "56\r\n78$"

byte[] n = GetBytes(s)

byte[] bb0 = {0x0D,0x0A}, bb1 = {0x24}

value = GetToken(n, bb1, bb0, 1)

// value = {0x24,0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24,0x0D,0x0A}

value = GetToken(n, bb1, bb0, 1, 1)

// value = {0x61,0x62,0x63,0x64,0x24,0x31,0x32,0x33,0x34,0x24,0x41,0x42,0x43,0x44,0x24}

// Remove prefix and suffix

value = GetToken(n, bb0, bb1, 1)

// value = {0x0D,0x0A,0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38,0x24}

value = GetToken(n, bb0, bb1, 1, 1)

// value = {0x35,0x36,0x5C,0x72,0x5C,0x6E,0x37,0x38}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 121

Omron TM Collaborative Robot: TMScript Language Manual (I664) 122

4.37 GetAllTokens()

Retrieve all the substrings from input string, which meets the given condition

Syntax 1

string[] GetAllTokens(

string,

string,

string,

int

)

Parameters

string Input string

string Prefix. The leading element of the substring

string Suffix. The trailing element of the substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix.

(default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string[] String array formed from retrieving all the substrings from input string

 If the prefix and suffix are empty, returns the input array

If the remove option is 2 or 3, the first match retrieved must be at the start

of the input string; otherwise, it returns an empty string.

Syntax 2

string[] GetAllTokens(

string,

string,

string

)

Note

Similar to Syntax1 with reserving prefix and suffix

GetAllTokens(str,str,str) => GetAllTokens(str,str,str,0)

 string n = "$abcd$1234$ABCD$"

value = GetAllTokens(n, "", "") // value = {"$abcd$1234$ABCD$"}

value = GetAllTokens(n, "$", "$") // value = {"$abcd$", "$ABCD$"}

value = GetAllTokens(n, "$", "$", 1) // value = {"abcd", "ABCD"}

value = GetAllTokens(n, "$", "") // value = {"$abcd", "$1234", "$ABCD", "$"}

value = GetAllTokens(n, "", "$", 1) // value = {"", "abcd", "1234", "ABCD"}

string n = "#abcd$1234#ABCD$5678#"

value = GetAllTokens(n, "", "", 0) // value = {"#abcd$1234#ABCD$5678#"}

value = GetAllTokens(n, "$", "", 0) // value = {"$1234#ABCD","$5678#"}

value = GetAllTokens(n, "$", "", 1) // value = {"1234#ABCD","5678#"}

value = GetAllTokens(n, "$", "", 2) // value = {}

// $ is not in the start of the input string. Returns an empty array.

value = GetAllTokens(n, "$", "", 3) // value = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 123

// $ is not in the start of the input string. Returns an empty array.

value = GetAllTokens(n, "$", "$", 0)// value = {"$1234#ABCD$"}

value = GetAllTokens(n, "$", "$", 1)// value = {"1234#ABCD"}

value = GetAllTokens(n, "$", "$", 2)// value = {}

// $ is not in the start of the input string. Returns an empty array.

value = GetAllTokens(n, "$", "$", 3)// value = {}

// $ is not in the start of the input string. Returns an empty array.

value = GetAllTokens(n, "#", "", 0) // value = {"#abcd$1234", "#ABCD$5678", "#"}

value = GetAllTokens(n, "#", "", 1) // value = {"abcd$1234", "ABCD$5678", ""}

value = GetAllTokens(n, "#", "", 2) // value = {"#abcd$1234", "#ABCD$5678", "#"}

value = GetAllTokens(n, "#", "", 3) // value = {"abcd$1234", "ABCD$5678", ""}

value = GetAllTokens(n, "#", "$", 0)// value = {"#abcd$", "#ABCD$"}

value = GetAllTokens(n, "#", "$", 1)// value = {"abcd", "ABCD"}

value = GetAllTokens(n, "#", "$", 2)// value = {"#abcd$", "#ABCD$"}

value = GetAllTokens(n, "#", "$", 3)// value = {"abcd", "ABCD"}

value = GetAllTokens(n, "", "$", 0) // value = {"#abcd$", "1234#ABCD$"}

value = GetAllTokens(n, "", "$", 1) // value = {"#abcd", "1234#ABCD"}

value = GetAllTokens(n, "", "$", 2) // value = {"#abcd$", "1234#ABCD$"}

value = GetAllTokens(n, "", "$", 3) // value = {"#abcd", "1234#ABCD"}

value = GetAllTokens(n, "", "#", 0) // value = {"#", "abcd$1234#", "ABCD$5678#"}

value = GetAllTokens(n, "", "#", 1) // value = {"", "abcd$1234", "ABCD$5678"}

value = GetAllTokens(n, "", "#", 2) // value = {"#", "abcd$1234#", "ABCD$5678#"}

value = GetAllTokens(n, "", "#", 3) // value = {"", "abcd$1234", "ABCD$5678"}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 124

4.38 GetNow()

Get the current system time

Syntax 1

string GetNow(

string

)

Parameters

string The date and time format strings defining the text representation of a date and

time value. The definition of each specifier is listed below. The strings not

included will remains the same.

 d The day of the month, from 1 through 31.

 dd The day of the month, from 01 through 31.

 ddd The abbreviated name of the day of the week.

 dddd The full name of the day of the week.

 f The tenths of a second in a date and time value.

 ff The hundredths of a second in a date and time value.

 fff The milliseconds in a date and time value.

 ffff The ten thousandths of a second in a date and time value.

 h The hour, using a 12-hour clock from 1 to 12.

 hh The hour, using a 12-hour clock from 01 to 12.

 H The hour, using a 24-hour clock from 0 to 23.

 HH The hour, using a 24-hour clock from 00 to 23.

 m The minute, from 0 through 59.

 mm The minute, from 00 through 59.

 M The month, from 1 through 12.

 MM The month, from 01 through 12.

 MMM The abbreviated name of the month.

 MMMM The full name of the month.

 s The second, from 0 through 59.

 ss The second, from 00 through 59.

 t The first character of the AM/PM designator.

 tt The AM/PM designator.

 y The year, from 0 to 99.

 yy The year, from 00 to 99.

 yyyy The year as a four-digit number.

 / The date separator.

Return

string Current date and time. If there is errors in format setting, the default format will

be applied as MM/dd/yyyy HH:mm:ss.

Note

value = GetNow("MM/dd/yyyy HH:mm:ss") // value = 08/15/2017 13:40:30

value = GetNow("yyyy/MM/dd HH:mm:ss.ffff") // value = 2017/08/15 13:40:30.1337

value = GetNow("yyyy-MM-dd hh:mm:ss tt") // value = 2017-08-15 01:40:30 PM

Syntax 2

string GetNow(

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (I664) 125

void No format defined. Default format "MM/dd/yyyy HH:mm:ss" will be applied

Return

string Current date and time.

Note

value = GetNow() // value = 08/15/2017 13:40:30

Omron TM Collaborative Robot: TMScript Language Manual (I664) 126

4.39 GetNowStamp()

Get the total run time or difference in total run time

Syntax 1

int GetNowStamp(

)

Parameters

void No parameter

Return

int The total run time of the current project in ms. The upper limit is 2147483647

ms

< 0 Over flow, invalid total run time

Note

value = GetNowStamp() // value = 2147483647

… others …

value = GetNowStamp() // value = -1 // Over flow

Syntax 2

double GetNowStamp(

bool

)

Parameters

bool Use double format to record project’s total run time or not?

true Use double type, the upper limit is 9223372036854775807 ms

false Use int32 type, the upper limit is 2147483647 ms

Return

double The total run time of the current project

< 0 Over flow. Invalid total run time.

Note

value = GetNowStamp(false) // value = 2147483647

… others …

value = GetNowStamp(false) // value = -1 // Over flow

value = GetNowStamp(true) // value = 3147483647

Syntax 3

int GetNowStamp(

int

)

Parameters

int Previous recorded run time in ms

Return

int The difference between the current run time and the input run time in ms.

Run time difference = current run time – input run time

< 0 Invalid run time difference, caused by input run time larger than current

run time, or over flow.

Note

value = GetNowStamp() // value = 2147483546

… others … (After 100ms)

diff = GetNowStamp(value) // diff = 100

Omron TM Collaborative Robot: TMScript Language Manual (I664) 127

… others … (After 200ms)

diff = GetNowStamp(value) // diff = -1 // Value is over 2147483647

Syntax 4

double GetNowStamp(

double

)

Parameters

double Previous recorded run time in ms

Return

double The difference between the current run time and the input run time in ms.

Run time difference = current run time – input run time

< 0 Invalid run time difference, caused by input run time larger than current

run time, or over flow.

Note

value = GetNowStamp() // value = 2147483546

… others … (After 100ms)

diff = GetNowStamp(value) // diff = 100

… others … (After 200ms)

diff = GetNowStamp(value) // diff = 200

Syntax 5

bool GetNowStamp(

int,

int

)

Parameters

int Previous recorded run time in ms

int The expected run time difference

Return

bool The time difference between current run time and input run time is larger than

the expected run time difference or not.

true (Current run time – input run time) >= expected run time

 Or Time difference smaller than zero or over flow

false (Current run time – input run time) < expected run time

Note

value = GetNowStamp() // value = 41730494

… others … (After 60ms)

flag = GetNowStamp(value, 100) // diff = 60 // flag = false

… others … (After 60ms)

flag = GetNowStamp(value, 100) // diff = 120 // flag = true

Syntax 6

bool GetNowStamp(

double,

double

)

Parameters

double Previous recorded run time in ms

double The expected run time difference

Omron TM Collaborative Robot: TMScript Language Manual (I664) 128

Return

bool The time difference between current run time and input run time is larger than

the expected run time difference or not.

true (Current run time – input run time) >= expected run time

 Or Time difference smaller than zero or over flow

false (Current run time – input run time) < expected run time

Note

value = GetNowStamp() // value = 41730494

… others … (After 60ms)

flag = GetNowStamp(value, 100) // diff = 60 // flag = false

… others … (After 60ms)

flag = GetNowStamp(value, 100) // diff = 120 // flag = true

Omron TM Collaborative Robot: TMScript Language Manual (I664) 129

4.40 GetVarValue()

Retrieve the value of the variable value. Users can use the string to combine the variable names,

and then retrieve the combined value of the variables.

Syntax 1

? GetVarValue(

string

)

Parameters

string The name of the variable

Return

? Return the value of the variable. The return type goes by the definition of the

variable.

Return an error if the variable is not existed.

Note

string var_s1 = "Hello World"

string var_h = " var_s1"

string var_t = " var_s"

string var_re = var_t // var_re = " var_s"

var_re = var_t + "1" // var_re = " var_s" + "1" = " var_s1"

var_re = GetVarValue("var_h") // var_re = " var_s1"

var_re = GetVarValue(var_h) // var_re = "Hello World" // var_h = " var_s1"

// Retrieve the value of var_s1

var_re = GetVarValue(var_t + "1") // var_re = "Hello World" // var_b + "1" = " var_s1"

// Retrieve the value of var_s1

var_re = GetVarValue(var_t) // Error // var_t = " var_s"

//Retrieve the value of var_s, but the variable is not existed.

string s

int[] var_array0 = {10, 11, 12, 13, 14}

int[] var_array1 = {20, 21, 22, 23, 24}

for (int i = 0; i < 2; i++)

{

int[] v = GetVarValue("var_array" + i)

for (int j = 0; j < Length(v) ; j++) s += v[j] + ", "

s += newline

}

Display(s) // 10, 11, 12, 13, 14, \u0D0A20, 21, 22, 23, 24, \u0D0A

* \u0D0A is a written line break, not a string value.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 130

4.41 SetVarValue()

For variable value settings, users can use a string to combine the variable names to set the

variable value of the combined variable names.

Syntax 1
bool SetVarValue(

string,
?

)

Parameters

string The name of the variable

? The variable value

Return

bool The variable setting value. Return True if successful; False if unsuccessful.
Returns an error if the variable does not exist or cannot convert
legitimately.

Note

string var_s1 = "Hello World"

SetVarValue("var_s1", "Hi World") // var_s1 = "Hi World"
int var_k = 100
SetVarValue("var_k", 200) // var_k = 200

SetVarValue("var_k", 2.3) // var_k = 2 // Since 2.3 converting to the int type

SetVarValue("var_k", "2.3") // var_k = 2 // Since "2.3" converting to the int type

SetVarValue("var_k", true) // Error

SetVarValue("var_k", "XYZ") // Error

int[] var_array0 = {10, 11, 12, 13, 14}
int[] var_array1 = {20, 21, 22, 23, 24}
for (int i = 0; i < 2; i++)
{

int[] v = GetVarValue("var_array" + i) // Retrieve var_array0 or var_array1
for (int j = 0; j < Length(v) ; j++)

v[j] += 100 // +100 for each element in int[] v
SetVarValue("var_array" + i, v) // Set the value of int[] v to var_array0 or var_array1.

}
Display(var_array0) // {110,111,112,113,114}

Display(var_array1) // {120,121,122,123,124}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 131

4.42 Length()

Acquire the number of byte of input data, length of string or length of array (number of elements

in array)

Syntax 1

int Length(

?

)

Parameters

? The input data. The available data types are integer, floating-point, boolean, string, or

array.

Return

int Length of data

For input as integer, floating-point number, and boolean, returns the number of

byte.

For input as string, returns the length of string.

For input as array, returns the number of element in array

Note

? byte n = 100

value = Length(n) // value = 1

value = Length(100) // value = 1

? int n = 400

value = Length(n) // value = 4

value = Length(400) // value = 4

? float n = 1.234

value = Length(n) // value = 4

value = Length(1.234) // value = 4

? double n = 1.234

value = Length(n) // value = 8

value = Length(1.234) // value = 4

// float // Numbers would be stored as the smaller data type first.

? bool n = true

value = Length(n) // value = 1

value = Length(false) // value = 1

? string n = "A""BC"

value = Length(n) // value = 4

// The string is A"BC. Two double quotation marks represent " in string

value = Length("") // value = 0

value = Length("123") // value = 3

value = Length(empty) // value = 0

? byte[] n = {100, 200, 30}

value = Length(n) // value = 3

? int[] n = {}

value = Length(n) // value = 0

n = {400, 500, 600}

value = Length(n) // value = 3

? float[] n = {1.234}

value = Length(n) // value = 1

? double[] n = {1.234, 200, -100, +300}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 132

value = Length(n) // value = 4

? bool[] n = {true, false, true, true, true, true, false}

value = Length(n) // value = 7

? string[] n = {"A""BC", "123", "456", "ABC"}

value = Length(n) // value = 4

Omron TM Collaborative Robot: TMScript Language Manual (I664) 133

4.43 Ctrl()

Change the integer or string to control characters

Syntax 1

string Ctrl(

int

)

Parameters

int The input integer, which follows the Big Endian format. 4 characters could be

transformed at most. 0x00 will not be transformed.

Return

string The string formed by input integer (contains the control character)

Note

b = 0x0D0A

value = Ctrl(b) // value = \r\n

value = Ctrl(0x0D0A) // value = \r\n

value = Ctrl(0x0D000A09) // value = \r\n\t // 0x00 will not be transformed

value = Ctrl(0x0D300A09) // value = \r0\n\t // 0x30 is transformed to 0

value = Ctrl(0x00) // value = ""

// empty string does not equal to NULL. For NULL, the code is Ctrl("\0")

Syntax 2

string Ctrl(

string

)

Parameters

string Input string. The following rules will be applied. For string not on the list, it will

remain the same.

\0 0x00 null

\a 0x07 bell

\b 0x08 backspace

\t 0x09 horizontal tab

\r 0x0D carriage return

\v 0x0B vertical tab

\f 0x0C form feed

\n 0x0A line feed

Return

string The string formed by input integer (contains the control character)

Note

b = "\r\n"

value = Ctrl(b) // value = \r\n

value = Ctrl("\r\n") // value = \r\n

value = Ctrl("\r\n\t") // value = \r\n\t

value = Ctrl("\r0\n\t")// value = \r0\n\t

value = Ctrl("\0") // value = \0 // NULL

Syntax 3

string Ctrl(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 134

byte[]

)

Parameters

byte[] The input byte array, the transfer will start from index [0] to the end of the array.

(0x00 will be transferred also)

Return

string The string formed by input integer (contains the control character)

Note

byte[] bb1 = {0xFF,0x55,0x31,0x32,0x33,0x00,0x35,0x36,0x0D,0x0A}

value = Ctrl(bb1) // value = �U123 56\r\n

byte[] bb2 = {}

value = Ctrl(bb2) // value = ""

Omron TM Collaborative Robot: TMScript Language Manual (I664) 135

4.44 XOR8()

Utilize XOR 8 bits algorithm to compute the checksum

Syntax 1

byte XOR8(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The starting index

 0..(array size-1) Valid

 <0 Invalid. Returns the initial value 0

 >=array size Invalid. Returns the initial value 0

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte Checksum.

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = XOR8(bb1,0,Length(bb1)) // value = 0x6F

value = XOR8(bb1,0,-1) // value = 0x6F

value = XOR8(bb1,1,-1) // value = 0x7F

value = XOR8(bb1,-1,-1) // value = 0

Syntax 2

byte XOR8(

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

XOR8(byte[], int) => XOR8(byte[], int, Length(byte[]))

Syntax 3

byte XOR8(

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

XOR8(byte[]) => XOR8(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = XOR8(bb1,0,Length(bb1)) // value = 0x6F

value = XOR8(bb1,0) // value = 0x6F

Omron TM Collaborative Robot: TMScript Language Manual (I664) 136

value = XOR8(bb1) // value = 0x6F

bb1 = Byte_Concat(bb1, XOR(bb1)) // bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF,

0x6F}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 137

4.45 SUM8()

Utilize SUM 8 bits algorithm to compute the checksum

Syntax 1

byte SUM8(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The starting index

 0..array size-1 Valid

 <0 Invalid. Returns the initial value 0

 >=array size Invalid. Returns the initial value 0

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

 If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte Checksum.

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM8(bb1,0,Length(bb1)) // value = 0x6D

value = SUM8(bb1,0,-1) // value = 0x6D

value = SUM8(bb1,1,-1) // value = 0x5D

value = SUM8(bb1,-1,-1) // value = 0

Syntax 2

byte SUM8(

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

SUM8(byte[], int) => SUM8(byte[], int, Length(byte[]))

Syntax 3

byte SUM8(

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

SUM8(byte[]) => SUM8(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM8(bb1,0,Length(bb1)) // value = 0x6D

value = SUM8(bb1,0) // value = 0x6D

value = SUM8(bb1) // value = 0x6D

bb1 = Byte_Concat(bb1, SUM8(bb1)) // bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 138

0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 139

4.46 SUM16()

Utilize SUM 16 bits algorithm to compute the checksum

Syntax 1

byte[] SUM16(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The starting index

 0..array size-1 Valid

 <0 Invalid. Returns the initial value 0

 >=array size Invalid. Returns the initial value 0

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte[] Checksum. The length is 16bits 2 bytes (The Checksum follows Big Endian)

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM16(bb1,0,Length(bb1)) // value = {0x04, 0x6D}

value = SUM16(bb1,0,-1) // value = {0x04, 0x6D}

value = SUM16(bb1,1,-1) // value = {0x04, 0x5D}

value = SUM16(bb1,-1,-1) // value = {0x00, 0x00}

Syntax 2

byte[] SUM16(

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

SUM16(byte[], int) => SUM16(byte[], int, Length(byte[]))

Syntax 3

byte[] SUM16(

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

SUM16(byte[]) => SUM16(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM16(bb1,0,Length(bb1)) // value = {0x04, 0x6D}

value = SUM16(bb1,0) // value = {0x04, 0x6D}

value = SUM16(bb1) // value = {0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 140

bb1 = Byte_Concat(bb1, SUM16(bb1)) // bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF,

0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 141

4.47 SUM32()

Utilize SUM 32 bits algorithm to compute the checksum

Syntax 1

byte[] SUM32(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The starting index

 0..array size-1 Valid

 <0 Invalid. Returns the initial value 0

 >=array size Invalid. Returns the initial value 0

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte[] Checksum. The length is 32bits 4 bytes (The Checksum follows Big Endian)

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM32(bb1,0,Length(bb1)) // value = {0x00, 0x00, 0x04, 0x6D}

value = SUM32(bb1,0,-1) // value = {0x00, 0x00, 0x04, 0x6D}

value = SUM32(bb1,1,-1) // value = {0x00, 0x00, 0x04, 0x5D}

value = SUM32(bb1,-1,-1) // value = {0x00, 0x00, 0x00, 0x00}

Syntax 2

byte[] SUM32(

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

SUM32(byte[], int) => SUM32(byte[], int, Length(byte[]))

Syntax 3

byte[] SUM32(

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

SUM32(byte[]) => SUM32(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = SUM32(bb1,0,Length(bb1)) // value = {0x00, 0x00, 0x04, 0x6D}

value = SUM32(bb1,0) // value = {0x00, 0x00, 0x04, 0x6D}

value = SUM32(bb1) // value = {0x00, 0x00, 0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 142

bb1 = Byte_Concat(bb1, SUM32(bb1)) // bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF, 0x00, 0x00,

0x04, 0x6D}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 143

4.48 CRC16()

Utilize CRC 16 bits algorithm to compute the checksum

Syntax 1

byte[] CRC16(

int,

byte[],

int,

int

)

Parameters

int CRC16 algorithm

0 CRC16 // initial value 0x0000 // Polynomial 0xA001

1 CRC16 (Modbus) // initial value 0xFFFF // Polynomial 0xA001

2 CRC16 (Sick) // initial value 0x0000 // Polynomial 0x8005

3 CRC16-CCITT (0x1D0F) // initial value 0x1D0F // Polynomial 0x1021

4 CRC16-CCITT (0xFFFF) // initial value 0xFFFF // Polynomial 0x1021

5 CRC16-CCITT (XModem) // initial value 0x0000 // Polynomial 0x1021

6 CRC16-CCITT (Kermit) // initial value 0x0000 // Polynomial 0x8408

7 CRC16 Schunk Gripper // initial value 0xFFFF // Polynomial 0x1021

byte[] The input byte array

int The starting index

 0..array size-1 Valid

 <0 Invalid. Returns the initial value

 >=array size Invalid. Returns the initial value

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte[] Checksum. The length is 16bits 2 bytes (The checksum follows Big Endian)

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = CRC16(0, bb1,0,Length(bb1)) // value = {0x2D, 0xD4}

value = CRC16(0, bb1,0,-1) // value = {0x2D, 0xD4}

value = CRC16(0, bb1,1,-1) // value = {0xEC, 0xC5}

value = CRC16(0, bb1,-1,-1) // value = {0x00, 0x00}

value = CRC16(3, bb1,0,Length(bb1)) // value = {0x42, 0x12}

value = CRC16(4, bb1,0,Length(bb1)) // value = {0xAB, 0xAE}

Syntax 2

byte[] CRC16(

int,

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

Omron TM Collaborative Robot: TMScript Language Manual (I664) 144

CRC16(int, byte[], int) => CRC16(int, byte[], int, Length(byte[]))

Syntax 3

byte[] CRC16(

int,

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

CRC16(int, byte[]) => CRC16(int, byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = CRC16(0, bb1,0,Length(bb1)) // value = {0x2D, 0xD4}

value = CRC16(0, bb1,0) // value = {0x2D, 0xD4}

value = CRC16(0, bb1) // value = {0x2D, 0xD4}

bb1 = Byte_Concat(bb1, CRC16(0, bb1)) // bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF,

0x2D, 0xD4}

Syntax 4

byte[] CRC16(

byte[],

int,

int

)

Note

Similar to Syntax1 with CRC16 algorithm as 0 CRC16

CRC16(byte[], int, int) => CRC16(0, byte[], int, int)

Syntax 5

byte[] CRC16(

byte[],

int

)

Note

Similar to Syntax1 with CRC16 algorithm as 0 CRC16 and computing to the last element

of the array

CRC16(byte[], int) => CRC16(0, byte[], int, Length(byte[]))

Syntax 6

byte[] CRC16(

byte[]

)

Note

Similar to Syntax1 with CRC16 algorithm as 0 CRC16 and computing all the elements of

the array

CRC16(byte[]) => CRC16(0, byte[], 0, Length(byte[]))

Omron TM Collaborative Robot: TMScript Language Manual (I664) 145

4.49 CRC32()

Utilize CRC 32 bits algorithm to compute the checksum

Syntax 1

byte[] CRC32(

byte[],

int,

int

)

Parameters

byte[] The input byte array

int The starting index

 0..array size-1 Valid

 <0 Invalid. Returns the initial value 0

 >=array size Invalid. Returns the initial value 0

int The number of elements to be computed.

 If the number of elements <0, the calculation ends at the last element of the

array

If the sum of starting index and number of element exceeds the array size, the

calculation ends at the last element of the array.

Return

byte[] Checksum. The checksum length is 32bits 4 bytes (The checksum follows Big

Endian)

Note

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = CRC32(bb1,0,Length(bb1)) // value = {0x43, 0xD5, 0xB9, 0xF8}

value = CRC32(bb1,0,-1) // value = {0x43, 0xD5, 0xB9, 0xF8}

value = CRC32(bb1,1,-1) // value = {0x08, 0xA5, 0x5B, 0xEB}

value = CRC32(bb1,-1,-1) // value = {0x00, 0x00, 0x00, 0x00}

Syntax 2

byte[] CRC32(

byte[],

int

)

Note

Similar to Syntax1 with computing to the last element of the array

CRC32(byte[], int) => CRC32(byte[], int, Length(byte[]))

Syntax 3

byte[] CRC32(

byte[]

)

Note

Similar to Syntax1 with computing all the elements of the array

CRC32(byte[]) => CRC32(byte[], 0, Length(byte[]))

byte[] bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF}

value = CRC32(bb1,0,Length(bb1)) // value = {0x43, 0xD5, 0xB9, 0xF8}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 146

value = CRC32(bb1,0) // value = {0x43, 0xD5, 0xB9, 0xF8}

value = CRC32(bb1) // value = {0x43, 0xD5, 0xB9, 0xF8}

bb1 = Byte_Concat(bb1, CRC32(bb1))

// bb1 = {0x10, 0x20, 0x50, 0xF0, 0xFF, 0xFF, 0xFF, 0x43, 0xD5, 0xB9, 0xF8}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 147

4.50 ListenPacket()

Pack the string contents as the compatible protocol for the Listen Node (External Script Control

Mode)

Syntax 1

string ListenPacket(

string,

string

)

Parameters

string User defined Header. For empty string, Default string "TMSCT" will be applied

string The data section in Listen Node communication format

Return

string Packed data (Including header, data length and check sum)

Note

string var_data1 = "1, var_i++"

string var_data2 = "Hello World"

value = ListenPacket("TMSCT", var_data1) // $TMSCT,9,1,var_i++,*06\r\n

value = ListenPacket("", var_data2) // $TMSCT,11,Hello World,*51\r\n

// Error for TMSCT

value = ListenPacket("", "2,Techman Robot") // $TMSCT,15,2,Techman Robot,*57\r\n

value = ListenPacket("TMSTA", var_data2) // $TMSTA,11,Hello World,*53\r\n

// Error for TMSTA

value = ListenPacket("TMSTA", "00") // $TMSTA,2,00,*41\r\n

Syntax 2

string ListenPacket(

string

)

Parameters

string The data section in Listen Node communication format (With TMSCT header)

Return

string Packed data (Including header, data length and check sum)

Note

string var_data1 = "1,var_counter++" // ScriptID, ScriptLanguage

value = ListenPacket(var_data1) // $TMSCT,15,1, var_counter++,*26\r\n

Omron TM Collaborative Robot: TMScript Language Manual (I664) 148

4.51 ListenSend()

Send TMSTA, the communication protocol of Listen node, to the client devices connected to

the Listen Server currently.

Syntax1

int ListenSend(

string,

int,

?

)

Parameters

string Target IP filtering such as 127.0.0.1 meaning to send to all client devices

connecting from 127.0.0.1.

int TMSTA SubCmd numbering for sending self-defined data message only 90 .. 99

? The value to send. Available types: byte, int, float, double, bool, and string.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

Return

int Return the result

0 sent successfully

-1 error. Listen Server is not starting.

-2 error. SubCmd must be between 90 and 99.

Syntax2

int ListenSend(

int,

?

)

Parameters

int TMSTA SubCmd numbering for sending self-defined data message only 90 .. 99

? The value to send. Available types: byte, int, float, double, bool, and string.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

Return

int Return the result

0 sent successfully

-1 error. Listen Server is not starting.

-2 error. SubCmd must be between 90 and 99.

Note

No target IP filtering will result in sending data messages to all connected client devices.

Note

string ip = "127.0.0.1"

byte b = 100

value = ListenSend(ip, 10, b)

// send 0x64 to ipfilter "127.0.0.1" // value = -2 // SubCmd must be between 90 and 99.

value = ListenSend(ip, 90, b)

// send 0x64 to ipfilter "127.0.0.1" // value = -1 // Supposedly Listen Server is not starting.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 149

value = ListenSend(ip, 90, b)

// send 0x64 to ipfilter "127.0.0.1" // value = 0 // sent successfully

// IP filtering 127.0.0.1 and send to the devices connected to Listen Server via the IP.

// $TMSTA,4,90,d,*06 // The value of 100 is conversed to 0x64.

value = ListenSend(ip, 90, 123456)

// send 0x40 0xE2 0x01 0x00 to ipfilter "127.0.0.1"

// $TMSTA,7,90,@� ,*C2

// The value of 123456 is conversed to 0x40 0xE2 0x01 0x00 (int, Little Endian)

value = ListenSend(90, "123.456")

// send 0x31 0x32 0x33 0x2E 0x34 0x35 0x36

// No target IP filtering will result in sending data messages to all connected client devices.

// $TMSTA,10,90,123.456,*7E

// The value of "123.456" is conversed to 0x31 0x32 0x33 0x2E 0x34 0x35 0x36 (string, UTF8).

byte[] bb = {100, 200}

value = ListenSend(90, bb)

// send 0x64 0xC8

// $TMSTA,5,90,d�,*CF // The value of {100, 200} is conversed to 0x64 0xC8

string[] ss = {"T", "M", "達明機器人" }

value = ListenSend(90, ss)

// send 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA

0xBA

// $TMSTA,20,90,TM達明機器人,*A1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 150

4.52 VarSync()

Send the Variable object to TMmanager (Robot Management System)

* When performing this function, the flow will not go on until the object is sent out successfully

or the maximum retry times is reached.

Syntax 1

int VarSync(

int,

int,

?

)

Parameters

int The maximum times to retry

 <= 0 Keep retrying as error occurred.

int The time duration between two retries (millisecond)

 < 0 Invalid time duration. The default value, 1000ms, will be applied

? The string or string array. The name of variables to be sent.

Multiple items can be listed. If there are indefinite variables, they will be not be

sent; other definite variables will be sent.

* The item is the name of the variable, not what the variable equals such that i

goes with "i".

* If the variable is listed, the value of the variable will be used to send the

matched object.

Return

int Sending times

> 0 Send success. The return value returns the sending times

0 Send failed

-1 TM Manager function is not enabled

-9 Invalid Parameters

Note

string var_s = "ABC"

string var_s1 = " var_s"

string[] var_ss = {"ABC", " var_s", " var_s1"}

value = VarSync(1, 1000, " var_s") // Send var_s variable object

value = VarSync(2, 2000, var_s) // Send ABC variable object (Because the value of var_s is

"ABC")

value = VarSync(3, 2000, var_ss) // Send ABC, var_s, var_s1 variable object (From the value of

ss string array)

value = VarSync(3, 2000, " var_ss") // Send var_ss variable object

value = VarSync(4, 2000, " var_ss", " var_s1", "ABC") // Send var_ss, var_s1, ABC variable

object

Syntax 2

int VarSync(

int,

?

)

Note

Same as Syntax 1 with the time between two retries defaults to 1000 ms.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 151

VarSync(int, ?) => VarSync(int, 1000, ?)

Syntax 3

int VarSync(

?

)

Note

Same as Syntax 1 with the time between two retries defaults to 1000 ms without limit of

times to retry

VarSync(?) => VarSync(0, 1000, ?)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 152

5. General Functions (Script)
5.1 Exit()

Stop the project running.

Syntax 1

void Exit(

bool,

int

)

Parameter

bool Whether to wait for the end of the motion command to stop the project

true Wait (default)

false No wait

int Ending code

> 0 Execute the closestop funciton.

== 0 Evaluate if the project errs. (default)

< 0 Execute the errorstop funciton.

Return

void No return

Syntax 2

void Exit(

bool

)

Parameter

bool Whether to wait for the end of the motion command to stop the project

true Wait (default)

false No wait

Note

Same as syntax 1. It defaults 0 to the ending code.

Syntax 3

void Exit(

)

Parameter

void No input

Note

Same as syntax 1. It defaults true to whether to wait for the end of the motion command

to stop the project and 0 to the ending code.

Syntax 4

void Exit(

int

)

Parameter

int Ending code.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 153

> 0 Execute the closestop funciton.

== 0 Same as syntax 1. Evaluates if the project errs.

< 0 Execute the errorstop funciton.

Note

Same as syntax 1. It defaults true to whether to wait for the end of the motion command

to stop the project.

Exit()

// Wait for the end of the motion command, stop the project running, and assess if errors occurred.

// Run the closestop function next when there is no error.

// Run the errorstop function next when there is an error.

Exit(false) // Wait not for the end of the motion command not, stop the project running shortly, and

assess if errors occurred.

Exit(false, 1) // Wait not for the end of the motion command not, stop the project running shortly, and run

the closestop function.

Exit(1) // Wait for the end of the motion command, stop the project running, and run the closestop function.

Exit(0) // Wait for the end of the motion command, stop the project running, and assess if errors occurred.

Exit(-1) // Wait for the end of the motion command, stop the project running, and run the errorstop function.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 154

5.2 Pause()

Pause the project and the motion of the robot other than non-paused threads and external

script processes. Use Resume() or press the Play button on the robot stick to resume.

Syntax 1

bool Pause(

)

Parameter

void No parameter

Return

bool True Command accepted； False Command rejected

Note

Pause()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 155

5.3 Resume()

Resume the project and the motion of the robot.

Syntax 1

bool Resume(

)

Parameter

void No parameter

Return

bool True Command accepted； False Command rejected

Note

Resume()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 156

5.4 WaitFor()

The loop wait condition stands or time out on waiting.

Syntax 1

bool WaitFor(

bool,

int

)

Parameter

bool The loop wait condition. It can be true/false or a statement returns the bool value.

int wait time (millisecond)

< 0 wait indefinitely

>= 0 time to wait

Return

bool Return True for the loop wait condition stands and False for time out on waiting.

Note

int i = 0

bool flag = WaitFor(i++ > 100, 1000)

// The loop executes i++ and judges whether it is larger than 100. It exits the loop at once if the condition

satisfies (flag = true) or it is timeout after 1000ms (flag = false).

Syntax 2

bool WaitFor(

int

)

Parameter

int wait time (millisecond)

< 0 invalid

>= 0 time to wait

Return

bool Return True for the wait time stands and False for not. (Interrupted by the project

stop)

Note

WaitFor(100) // Timeout after 100ms of waiting.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 157

5.5 Sleep()

Stop the thread in the time specified. Same as WaitFor(int).

Syntax 1

bool Sleep(

int

)

Parameter

int wait time (millisecond)

< 0 invalid

>= 0 time to wait

Return

bool Return True for the wait time stands and False for not. (Interrupted by the project

stop)

Note

Sleep(100) // Timeout after 100ms of waiting.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 158

5.6 Display()

Display contents on the TMflow dashboard.

Syntax 1

bool Display(

string,

string,

string,

string

)

Parameter

string Headline text color

"Red" Set headline background color to red.

"Green" Set headline background color to green.

"Blue" Set headline background color to blue.

"Yellow" Set headline background color to yellow.

"Black" Set headline background color to black.

"White" Set headline background color to white.

"Gray" Set headline background color.to gray.

string Headline background color

"Red" Set headline text color to red.

"Green" Set headline text color to green.

"Blue" Set headline text color to blue.

"Yellow" Set headline text color to yellow.

"Black" Set headline text color to black.

"White" Set headline text color to white.

"Gray" Set headline text color to gray.

string Headline text

string Text

Return

bool Return True for set successfully and False for unsuccessfully.

Note

Display("Yellow", "Green", "Gripper Initial Finish", "Force = 30N") // Output the headline of

Gripper Initial Finish with the text of Force = 30N to the TMflow dashboard and set headline text color to

yellow and headline background color to green.

Syntax 2

bool Display(

string,

string

)

Parameter

string Headline text

string Text

Note

Same as Syntax 1. It sets headline text color to black and headline background color to

white by default.

Syntax 3

bool Display(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 159

string

)

Parameter

string Text

Note

Same as Syntax 1. It sets headline text color to black and headline background color to

white by default. The headline text is an empty string.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 160

6. Math Functions
6.1 abs()

Return the absolute value of the designate number

Syntax 1

int abs(

int

)

Parameter

int Input number in integer

Return

int Return the absolute value of the input number in integer

Note

int i = 10

value = abs(i) // 10

i = -10

value = abs(i) // 10

Syntax 2

float abs(

float

)

Parameter

float Input number in float

Return

float Return the absolute value of the input number in float

Note

float f = 10.1

value = abs(f) // 10.1

f = -10.1

value = abs(f) // 10.1

Syntax 3

double abs(

double

)

Parameter

double Input number in double

Return

double Return the absolute value of the input number in double

Note

double d = 10.8

value = abs(d) // 10.8

d = -10.8

value = abs(d) // 10.8

Omron TM Collaborative Robot: TMScript Language Manual (I664) 161

6.2 pow()

Return the power of the designate base and exponent

Syntax 1

int pow(

int,

double

)

Parameter

int Input base in integer

double Exponent

Return

int Return the power in integer

Syntax 2

float pow(

float,

double

)

Parameter

float Input base in float

double Exponent

Return

float Return the power in float

Syntax 3

double pow(

double,

double

)

Parameter

double Input base in double

double Exponent

Return

double Return the power in double

Note

? int b = 100

value = pow(b, 2) // 10000

value = pow(b, -2) // 0 // 0.0001, but int type

value = pow(b, 0.1) // 1 // 1.5848932, but int type

value = pow(b, 2.1) // 15848 // 15848.932, but int type

value = pow(b, -2.1) // 0 // 6.309574E-05, but int type

? float b = -100

value = pow(b, 2) // 10000

value = pow(b, -2) // 0.0001

value = pow(b, 0.2) // Error // NaN

value = pow(b, 2.2) // Error // NaN

value = pow(b, -2.2) // Error // NaN

Omron TM Collaborative Robot: TMScript Language Manual (I664) 162

? double b = 100

value = pow(b, 2) // 10000

value = pow(b, -2) // 0.0001

value = pow(b, 0.31) // 4.168694

value = pow(b, 2.31) // 41686.938

value = pow(b, -2.31) // 2.3988328E-05

Omron TM Collaborative Robot: TMScript Language Manual (I664) 163

6.3 sqrt()

Return the square root of the designate number

Syntax 1

float sqrt(

float

)

Parameter

float Input number in float

Return

float Return the square root in float

Syntax 2

double sqrt(

double

)

Parameter

double Input number in double

Return

double Return the square root in double

Note

value = sqrt(100) // 10

value = sqrt(100.1234) // 10.006168

value = sqrt(0.1234) // 0.35128337

value = sqrt(-100) // Error // NaN

value = sqrt(-100.1234) // Error // NaN

value = sqrt(-0.1234) // Error // NaN

Omron TM Collaborative Robot: TMScript Language Manual (I664) 164

6.4 ceil()

Return a number rounded upward to its nearest integer.

Syntax 1

float ceil(

float

)

Parameter

float input number in float

Return

float Return a number in float rounded upward to its nearest integer

Syntax 2

double ceil(

double

)

Parameter

double input number in double

Return

double Return a number in double rounded upward to its nearest integer

Note

value = ceil(100) // 100

value = ceil(100.1234) // 101

value = ceil(0.1234) // 1

value = ceil(-100) // -100

value = ceil(-100.1234) // -100

value = ceil(-0.1234) // 0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 165

6.5 floor()

Return a number rounded downward to its nearest integer.

Syntax 1

float floor(

float

)

Parameter

float input number in float

Return

float Return a number in float rounded downward to its nearest integer

Syntax 2

double floor(

double

)

Parameter

double input number in double

Return

double Return a number in double rounded downward to its nearest integer

Note

value = floor(100) // 100

value = floor(100.1234) // 100

value = floor(0.1234) // 0

value = floor(-100) // -100

value = floor(-100.1234) // -101

value = floor(-0.1234) // -1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 166

6.6 round()

Return a number rounded to its nearest integer.

Syntax 1

float round(

float,

int

)

Parameter

float input number in float

int digits after the returned decimal point (0 by default meaning the number is

rounded to integer)

 0 .. 15 valid values

 < 0 value invalid, will use 0 by default

 > 15 value invalid, will use 0 by default

Return

float Return a number in float rounded to its nearest integer.

Syntax 2

float round(

float

)

Note

Same as syntax 1. Obtain 0 digit after the decimal point by default.

round(float) => round(float, 0)

Syntax 3

double round(

double,

int

)

Parameter

double input number in double

int digits after the returned decimal point (0 by default meaning the number is

rounded to integer)

 0 .. 15 valid values

 < 0 value invalid, will use 0 by default

 > 15 value invalid, will use 0 by default

Return

double Return a number in double rounded to its nearest integer.

Syntax 4

double round(

double

)

Note

Same as syntax 3. Obtain 0 digit after the decimal point by default.

round(double) => round(double, 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 167

value = round(100) // 100

value = round(100.456) // 100

value = round(0.567) // 1

value = round(-100) // -100

value = round(-100.456) // -100

value = round(-0.567) // -1

value = round(100.345, 1) // 100.3

value = round(100.345, 2) // 100.35

value = round(-100.345, 1) // -100.3

value = round(-100.345, 2) // -100.35

value = round(-100.345, 16) // -100

Omron TM Collaborative Robot: TMScript Language Manual (I664) 168

6.7 random()

Return a random number in float between 0 and 1 or in integer between the lower bound and

the upper bound.

Syntax 1

float random(

)

Parameter

void No parameter

Return

float Return a random number in float between 0 and 1.

Note

value = random() // 0.9473762

value = random() // 0.7764986

value = random() // 0.9911129

Syntax 2

int random(

int

)

Parameter

int The upper bound of the random number

Return

int Return a random number in integer between 0 and the upper bound

Note

value = random(10) // 8

value = random(10) // 1

value = random(10) // 5

value = random(-10) // 0 // The value of the upper bound must be larger than 0.

Syntax 3

int random(

int,

int

)

Parameter

int The lower bound of the random number

int The upper bound of the random number must be larger than the lower bound, or

it will return the value of the lower bound in integer.

Return

int Return a random number in integer between the lower bound and the upper bound.

Note

value = random(5, 10) // 8

value = random(5, 10) // 8

value = random(5, 10) // 6

value = random(5, -1) // 5 // The upper bound is smaller than the lower bound. Returned the value of

the lower bound in integer.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 169

6.8 sum()

Return the sum of the given numbers or the array of numbers.

Syntax 1

int sum(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, byte[], or int[]

calculate the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

int Return the sum, in the integer type, of the given numbers.

Syntax 2

double sum(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]

calculate the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the sum, in the double type, of the given numbers.

Note

int sum1 = sum(1,2,3,4,5) // 15

int sum2 = sum(1,2,3,4,{5,6,7,8}) // 36

int sum3 = sum(1,2,3,4,{5,6,7,8},1.2) // 37 // due to putting the int type

double sum4 = sum(1,2,3,4,{5,6,7,8},1.2) // 37.2

double sum5 = sum(1,2,3,4,{5,6,7,8},9.2) // 45.2

double sum6 = sum(1,2,3,4,{5,6,7,8},9.2,sum5,{1.2,3.4}) // 95

Omron TM Collaborative Robot: TMScript Language Manual (I664) 170

6.9 average()

Return the average of the given numbers or the array of numbers.

Syntax 1

double average(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or

double[]

calculate the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the average, in the double type, of the given numbers.

Note

double avg1 = average(1,2,3,4,5) // 3

double avg2 = average(1,2,3,4,{5,6,7,8},9.2) // 5.02222222222222

double avg3 = average(1,2,3,4,sum({5,6,7,8}),9.2) // 7.53333333333333

double avg4 = average(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 4.52727272727273

Omron TM Collaborative Robot: TMScript Language Manual (I664) 171

6.10 stdevp()

Return the standard deviation 𝜎 = √∑ (𝑋 −
∑ 𝑋

𝑁
)

2

𝑁⁄ based on the entire population of the

given numbers or the array of numbers.

Syntax 1

double stdevp(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or

double[]

calculate the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the standard deviation, in the double type, of the given numbers.

Note

double stdp1 = stdevp(1,2,3,4,5) // 1.4142135623731

double stdp2 = stdevp(1,2,3,4,{5,6,7,8},9.2) // 2.61694384000276

double stdp3 = stdevp(1,2,3,4,sum({5,6,7,8}),9.2) // 8.66153694341958

double stdp4 = stdevp(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 2.63165724111457

Omron TM Collaborative Robot: TMScript Language Manual (I664) 172

6.11 stdevs()

Return the standard deviation 𝑠 = √∑ (𝑋 −
∑ 𝑋

𝑁
)

2

(𝑁 − 1)⁄ based on a sample of the given

numbers or the array of numbers.

Syntax 1

double stdevs(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, float, double, byte[], int[], float[], or

double[]

calculate the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the standard deviation, in the double type, of the given numbers.

Note

double stds1 = stdevs(1,2,3,4,5) // 1.58113883008419

double stds2 = stdevs(1,2,3,4,{5,6,7,8},9.2) // 2.77568810287547

double stds3 = stdevs(1,2,3,4,sum({5,6,7,8}),9.2) // 9.4882383331505

double stds4 = stdevs(1,2,3,4,{5,6,7,8},9.2,{1.2,3.4}) // 2.76010539983201

Omron TM Collaborative Robot: TMScript Language Manual (I664) 173

6.12 min()

Return the minimum of the given numbers or the array of numbers.

Syntax 1

int min(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, byte[], or int[]

compare the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

int Return the minimum, in the integer type, of the given numbers.

Syntax 2

double min(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]

compare the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the minimum, in the double type, of the given numbers.

Note

int min1 = min(1,2,3) // 1

int min2 = min(1,2,3,{-4,-5.3,6.2},1.2) // -5 // due to putting the int type

double min3 = min(1,2,3,{-4,-5.3,6.2},1.2) // -5.3

double min4 = min(1,2,3,{-0.2,-0.1,0.1},9.2) // -0.2

Omron TM Collaborative Robot: TMScript Language Manual (I664) 174

6.13 max()

Return the maximum of the given numbers or the array of numbers.

Syntax 1

int max(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of byte, int, byte[], or int[]

compare the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

int Return the maximum, in the integer type, of the given numbers.

Syntax 2

double max(

?,

...

)

Parameter (variable parameter amount)

? input value, can be in the type of float, double, float[], or double[]

compare the value of each parameter or each element in the array. It returns

an error and stops if it comes with a non-numeric type.

Return

double Return the maximum, in the double type, of the given numbers.

Note

int max1 = max(1,2,3) // 3

int max2 = max(1,2,3,{-4,-5.3,6.2},1.2) // 6 // due to putting the int type

double max3 = max(1,2,3,{-4,-5.3,6.2},1.2) // 6.2

double max4 = max(1,2,3,{-0.2,-0.1,0.1},9.2) // 9.2

Omron TM Collaborative Robot: TMScript Language Manual (I664) 175

6.14 d2r()

Convert the value of degree to radian

Syntax 1

float d2r(

float

)

Parameter

float Input the value of degree in float

Return

float Return the value of radian in float

Syntax 2

double d2r(

double

)

Parameter

double Input the value of degree in double

Return

double Return the value of radian in double

Note

value = d2r(1) // 0.017453292

Omron TM Collaborative Robot: TMScript Language Manual (I664) 176

6.15 r2d()

Convert the value of degree to radian to degree

Syntax 1

float r2d(

float

)

Parameter

float Input the value of radian in float

Return

float Return the value of degree in float

Syntax 2

double r2d(

double

)

Parameter

double Input the value of radian in double

Return

double Return the value of degree in double

Note

value = r2d(1) // 57.29578

Omron TM Collaborative Robot: TMScript Language Manual (I664) 177

6.16 sin()

Return the sine of the input value of degree

Syntax 1

float sin(

float

)

Parameter

float Input the value of degree in float

Return

float Return the sine of the input value of degree in float

Syntax 2

double sin(

double

)

Parameter

double Input the value of degree in double

Return

double Return the sine of the input value of degree in double

Note

value = sin(0) // 0

value = sin(15) // 0.25881904

value = sin(30) // 0.5

value = sin(60) // 0.8660254

value = sin(90) // 1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 178

6.17 cos()

Return the cosine of the input value of degree

Syntax 1

float cos(

float

)

Parameter

float Input the value of degree in float

Return

float Return the cosine of the input value of degree in float

Syntax 2

double cos(

double

)

Parameter

double Input the value of degree in double

Return

double Return the cosine of the input value of degree in double

Note

value = cos(0) // 1

value = cos(15) // 0.9659258

value = cos(30) // 0.8660254

value = cos(45) // 0.70710677

value = cos(60) // 0.5

Omron TM Collaborative Robot: TMScript Language Manual (I664) 179

6.18 tan()

Return the tangent of the input value of degree

Syntax 1

float tan(

float

)

Parameter

float Input the value of degree in float

Return

float Return the tangent of the input value of degree in float

Syntax 2

double tan(

double

)

Parameter

double Input the value of degree in double

Return

double Return the tangent of the input value of degree in double

Note

value = tan(0) // 0

value = tan(15) // 0.2679492

value = tan(30) // 0.57735026

value = tan(45) // 1

value = tan(60) // 1.7320508

Omron TM Collaborative Robot: TMScript Language Manual (I664) 180

6.19 asin()

Return the arcsine of the input value in degree

Syntax 1

float asin(

float

)

Parameter

float Input the sine value in float between -1 and 1

Return

float Return the arcsine of the input value of degree in float

Syntax 2

double asin(

double

)

Parameter

double Input the sine value in double between -1 and 1

Return

double Return the arcsine of the input value of degree in double

Note

value = asin(0) // 0

value = asin(0.258819) // 14.999998

value = asin(0.5) // 30

value = asin(0.8660254) // 60

value = asin(1) // 90

value = asin(sin(15)) // 15

value = asin(sin(60)) // 60

Omron TM Collaborative Robot: TMScript Language Manual (I664) 181

6.20 acos()

Return the arccosine of the input value in degree

Syntax 1

float acos(

float

)

Parameter

float Input the cosine value in float between -1 and 1

Return

float Return the degree value in float

Syntax 2

double acos(

double

)

Parameter

double Input the cosine value in double between -1 and 1

Return

double Return the degree value in double

Note

value = acos(1) // 0

value = acos(0.9659258) // 15.000003

value = acos(0.8660254) // 30.000002

value = acos(0.7071068) // 44.999996

value = acos(0.5) // 60

value = acos(cos(15)) // 15.000003

value = acos(cos(30)) // 30.000002

value = acos(cos(45)) // 45

value = acos(cos((double)15)) // 14.999999999999996

value = acos(cos((double)30)) // 29.999999999999993

Omron TM Collaborative Robot: TMScript Language Manual (I664) 182

6.21 atan()

Return the arctangent of the input value in degree

Syntax 1

float atan(

float

)

Parameter

float Input the arctangent value in float

Return

float Return the degree value in float

Syntax 2

double atan(

double

)

Parameter

double Input the arctangent value in double

Return

double Return the degree value in double

Note

value = atan(0) // 0

value = atan(0.2679492) // 15

value = atan(0.5773503) // 30.000002

value = atan(1) // 45

value = atan(1.732051) // 60.000004

value = atan(tan(30)) // 30

value = atan(tan(60)) // 60

Omron TM Collaborative Robot: TMScript Language Manual (I664) 183

6.22 atan2()

Return the arctangent of the quotient of it arguments

Syntax 1

float atan2(

float,

float

)

Parameter

float Input a number in float representing the Y coordinate

float Input a number in float representing the X coordinate

Return

float Return the degree value in float

Syntax 2

double atan2(

double,

double

)

Parameter

double Input a number in double representing the Y coordinate

double Input a number in double representing the X coordinate

Return

double Return the degree value in double

Note

value = atan2(2, 1) // 63.434948

value = atan2(1, 1) // 45

value = atan2(-1, -1) // -135

value = atan2(4, -3) // 126.869896

Omron TM Collaborative Robot: TMScript Language Manual (I664) 184

6.23 log()

Return the natural logarithm of the input value

Syntax 1

float log(

float,

double

)

Parameter

float Input value in float

double The base of the logarithm

Return

float Return the logarithm of the input value and the base in float

Syntax 2

double log(

double,

double

)

Parameter

double Input value in double

double The base of the logarithm

Return

double Return the logarithm of the input value and the base in double

Note

value = log(16, 2) // 4

value = log(16, 8) // 1.3333334

value = log(16, 10) // 1.20412

value = log(16, 16) // 1

Syntax 3

float log(

float

)

Parameter

float Input value in float

Return

float Return the natural logarithm of the input value and the base e in float

Syntax 4

double log(

double

)

Parameter

double Input value in double

Return

double Return the natural logarithm of the input value and the base e in double

Note

value = log(16, 2) // 4

Omron TM Collaborative Robot: TMScript Language Manual (I664) 185

value = log(16) // 2.7725887

value = log(2) // 0.6931472

value = log(16)/log(2) // 2.7725887/0.6931472 = 3.9999998557305

Omron TM Collaborative Robot: TMScript Language Manual (I664) 186

6.24 log10()

Return the logarithm of the input value with the base 10

Syntax 1

float log10(

float

)

Parameter

float Input value in float

Return

float Return the logarithm of the input value with the base 10 in float

Syntax 2

double log10(

double

)

Parameter

double Input value in double

Return

double Return the logarithm of the input value with the base 10 in double

Note

value = log(16, 10) // 1.20412

value = log10(16) // 1.20412

value = log(500, 10) // 2.69897

value = log10(500) // 2.69897

Omron TM Collaborative Robot: TMScript Language Manual (I664) 187

6.25 norm2()

Return the second norm of a specified vector.

Syntax 1

float norm2(

float[]

)

Parameter

float[] A vector whose second norm (or called Euclidean norm, vector magnitude)

is to be found.

Return

float the second norm (or called Euclidean norm, vector magnitude) of a

specified vector

Note

‖𝒗‖ = √∑ |𝒗𝒊|𝟐
𝒊=𝑵

𝒊=𝟏

float[] vector1 = {3,4}

float[] vector2 = {3,4,5}

float[] vector3 = {3,4,5,6,8}

value = norm2(vector1) // 5

value = norm2(vector2) // 7.071068

value = norm2(vector3) // 12.247449

Omron TM Collaborative Robot: TMScript Language Manual (I664) 188

6.26 dist()

Return the distance between the two coordinates.

Syntax 1

float dist(

float[],

float[]

)

Parameter

float[] The first coordinate {𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)}
float[] The second coordinate {𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)}

Return

float The distance between the two coordinates

Note

float[] c1 = {100,200,100,30,50,20}

float[] c2 = {100,100,100,50,50,10}

value = dist(c1, c2) // 100

Omron TM Collaborative Robot: TMScript Language Manual (I664) 189

6.27 trans()

Return the displacement and rotation angle from one specified point to another point.

Syntax 1

float[] trans(

float[],

float[],

bool

)

Parameter

float[] First Point {𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)}
float[] Second Point {𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)}
bool The reference coordinate

false Refer to the robot’s base(default)

true Refer to the first point

Return

float[] The displacement and rotation angle from first point to second point

{𝑋𝑡𝑟𝑎𝑛𝑠 𝑌𝑡𝑟𝑎𝑛𝑠 𝑍𝑡𝑟𝑎𝑛𝑠 𝑅𝑋𝑡𝑟𝑎𝑛𝑠 𝑅𝑌𝑡𝑟𝑎𝑛𝑠 𝑅𝑍𝑡𝑟𝑎𝑛𝑠}
Return an empty array if unable to calculate.

Syntax 2

float[] trans(

float[],

float[]

)

Note

Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.

Original Transformation Matrix = [
𝑅 𝑃
0 1

]

𝑅𝑛 = [

𝑐𝑜𝑠(𝑅𝑍𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛) −𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) −𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

−𝑠𝑖𝑛(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)
]

First Point = [
𝑅1 𝑃1

0 1
]

Second Point = [
𝑅2 𝑃2

0 1
]

If reference coordinate is false (reference coordinate is Robot Base)

 𝑃𝑡𝑟𝑎𝑛𝑠 = 𝑃2 − 𝑃1

 𝑅𝑡𝑟𝑎𝑛𝑠 = 𝑅2 ∗ 𝑅1
−1

If reference coordinate is true (reference coordinate is First Point)

 𝑃𝑡𝑟𝑎𝑛𝑠 = 𝑅1
−1 ∗ (𝑃2 − 𝑃1)

 𝑅𝑡𝑟𝑎𝑛𝑠 = 𝑅1
−1 ∗ 𝑅2

float[] var_P1 = {100, -200, 300, 10, 20, 60}

float[] var_P2 = {-400, 200, 50, -20, 30, -45}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 190

float[] var_trans_RB = trans(var_P1, var_P2)

// {-500,400,-250,-24.615868,-15.565178,-88.613686}

float[] var_trans_i = trans(var_P1, var_P2, true)

// {176.10095,588.32776,-308.80237,3.7459252,23.13792,-92.46916}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 191

6.28 inversetrans()

Return the displacement and rotation angle {x, y, z, rx, ry, rz} opposite to the input displacement

and rotation angle {x, y, z, rx, ry, rz}.

Syntax 1

float[] inversetrans(

float[],

bool

)

Parameter

float[] The input displacement and rotation angle {𝑋𝑜 𝑌𝑜 𝑍𝑜 𝑅𝑋𝑜 𝑅𝑌𝑜 𝑅𝑍𝑜}
bool The reference coordinate

false Refer to the robot’s base(default)

true Refer to the input displacement and the rotation angle

Return

float[] The displacement and rotation angle

{Xinv Yinv Zinv RXinv RYinv RZinv}
opposite to the input displacement and rotation angle

{Xo Yo Zo RXo RYo RZo}

Return an empty array if unable to calculate.

Syntax 2

float[] inversetrans(

float[]

)

Note

Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.

Original Transformation Matrix = [
𝑅 𝑃
0 1

]

𝑅𝑛 = [

𝑐𝑜𝑠(𝑅𝑍𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛) −𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) −𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

−𝑠𝑖𝑛(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)
]

Initial Point = [
𝑅𝑖 𝑃𝑖

0 1
]

If reference coordinate is false (reference coordinate is Robot Base)

 𝑃𝑖𝑛𝑣 = −𝑃𝑖

 𝑅𝑖𝑛𝑣 = 𝑅𝑖
−1

If reference coordinate is true (reference coordinate is the input {x, y, z, rx, ry, rz}, which is

equivalent to inverse of Transformation Matrix)

 𝑃𝑖𝑛𝑣 = 𝑅𝑖
−1 ∗ (− 𝑃𝑖)

 𝑅𝑖𝑛𝑣 = 𝑅𝑖
−1

float[] var_P1 = {100, -200, 300, 10, 20, 60}

float[] var_inv_RB = inversetrans(var_P1)

// {-100,200,-300,12.483133,-18.590115,-60.283367}

float[] var_inv_i = inversetrans(var_P1, true)

// {218.38095,142.13216,-268.52972,12.483133,-18.590115,-60.283367}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 192

6.29 applytrans()

Return the terminal point computed by applied the displacement and rotation angle to the

specified point.

Syntax 1

float[] applytrans(

float[],

float[],

bool

)

Parameter

float[] Initial point {Xi Yi Zi RXi RYi RZi}
float[] the displacement and rotation angle {Xo Yo Zo RXo RYo RZo}

bool The reference coordinate

false Refer to the robot’s base(default)

true Refer to the initial point

Return

float[] the terminal point {Xt Yt Zt RXt RYt RZt} computed by applied the

displacement and rotation angle to the initial point

Return an empty array if unable to calculate.

Syntax 2

float[] applytrans(

float[],

float[]

)

Note

Same as syntax 1. By default, the reference coordinate is set to false for the robot’s base.

Original Transformation Matrix = [
𝑅 𝑃
0 1

]

𝑅𝑛 = [

𝑐𝑜𝑠(𝑅𝑍𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛) −𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

𝑠𝑖𝑛(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑍𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) −𝑐𝑜𝑠(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) + 𝑠𝑖𝑛(𝑅𝑍𝑛)𝑠𝑖𝑛(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)

−𝑠𝑖𝑛(𝑅𝑌𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑠𝑖𝑛(𝑅𝑋𝑛) 𝑐𝑜𝑠(𝑅𝑌𝑛)𝑐𝑜𝑠(𝑅𝑋𝑛)
]

Initial Point = [
𝑅𝑖 𝑃𝑖

0 1
]

If reference coordinate is false (reference coordinate is Robot Base)

 𝑃𝑡 = 𝑃𝑖 + 𝑃𝑡𝑟𝑎𝑛𝑠

 𝑅𝑡 = 𝑅𝑡𝑟𝑎𝑛𝑠 ∗ 𝑅𝑖

If reference coordinate is true (reference coordinate is Initial point)

 𝑃𝑡 = 𝑃𝑖 + 𝑅𝑖 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠

 𝑅𝑡 = 𝑅𝑖 ∗ 𝑅𝑡𝑟𝑎𝑛𝑠

float[] var_P1 = {100, -200, 300, 10, 20, 60}

float[] var_P2 = {-400, 200, 50, -20, 30, -45}

float[] var_trans_RB = trans(var_P1, var_P2)

// {-500,400,-250,-24.615868,-15.565178,-88.613686}

float[] var_trans_i = trans(var_P1, var_P2, true)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 193

// {176.10095,588.32776,-308.80237,3.7459252,23.13792,-92.46916}

float[] var_apply_RB = applytrans(var_P1, var_trans_RB)

// {-400,200,50,-20,30,-44.999996}

float[] var_apply_i = applytrans(var_P1, var_trans_i, true)

// {-400,200,50.000015,-20,30,-45}

float[] var_inv_RB = inversetrans(var_P1)

// {-100,200,-300,12.483133,-18.590115,-60.283367}

float[] var_inv_i = inversetrans(var_P1, true)

// {218.38095,142.13216,-268.52972,12.483133,-18.590115,-60.283367}

float[] var_apply_1 = applytrans(var_P1, var_inv_RB)

// {0,0,0,-4.8045007E-07,1.4295254E-07,4.8365365E-07}

float[] var_apply_2 = applytrans(var_P1, var_inv_i, true)

// {-3.845248E-06,6.1641267E-06,1.4917891E-06,-1.8922562E-07,-2.1415798E-07,6.352311E-07}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 194

6.30 interpoint()

Return the interpolate point between two points according to the specified points and ratio

Syntax 1

float[] interpoint(

float[],

float[],

float

)

Parameter

float[] First Point {X1(mm) Y1(mm) Z1(mm) RX1(°) RY1(°) RZ1(°)}
float[] Second Point {X2(mm) Y2(mm) Z2(mm) RX2(°) RY2(°) RZ2(°)}
float Ratio

Return

float[] the linear interpolate point {Xi Yi Zi RXi RYi RZi} between initial point

and endpoint according to the ratio.

Return an empty array if unable to calculate.

Note

{𝑋𝑖 𝑌𝑖 𝑍𝑖 𝑅𝑋𝑖 𝑅𝑌𝑖 𝑅𝑍𝑖}

= ({𝑋2 𝑌2 𝑍2 𝑅𝑋2 𝑅𝑌2 𝑅𝑍2} − {𝑋1 𝑌1 𝑍1 𝑅𝑋1 𝑅𝑌1 𝑅𝑍1}) × 𝑅𝑎𝑡𝑖𝑜

+ {𝑋1 𝑌1 𝑍1 𝑅𝑋1 𝑅𝑌1 𝑅𝑍1}

float[] var_P1 = {-388.3831,-199.8061,367.0702,177.4319,1.717448,-46.02005}

float[] var_P2 = {-436.9584,115.7343,371.4378,179.4419,-42.86601,-96.91867}

float[] interp = interpoint(var_P1, var_P2, 0.5)

// {-412.67075,-42.035904,369.254,172.91898,-20.690556,-69.33843}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 195

6.31 changeref()

Return the new coordinate value described with the new base converted from the original

coordinate value through the base conversion. In the process of the conversion, the physical

position of the original point in the world of the coordinates will remain the same, the change

takes effects on its descriptions of the reference coordinates and the corresponding

coordinate values.

Syntax 1

float[] changeref(

float[],

float[],

float[]

)

Parameter

float[] The coordinate value of the original point {𝑋𝑜 𝑌𝑜 𝑍𝑜 𝑅𝑋𝑜 𝑅𝑌𝑜 𝑅𝑍𝑜}𝐴

float[] The original reference base {𝑋𝑜𝑎 𝑌𝑜𝑎 𝑍𝑜𝑎 𝑅𝑋𝑜𝑎 𝑅𝑌𝑜𝑎 𝑅𝑍𝑜𝑎}𝐴

float[] The new reference base {𝑋𝑛 𝑌𝑛 𝑍𝑛 𝑅𝑋𝑛 𝑅𝑌𝑛 𝑅𝑍𝑛}𝐵

Return

float[] The coordinate value of the new point

{𝑋𝑛𝑏 𝑌𝑛𝑏 𝑍𝑛𝑏 𝑅𝑋𝑛𝑏 𝑅𝑌𝑛𝑏 𝑅𝑍𝑛𝑏}𝐵

Return an empty array if unable to calculate.

Note

P1 = {-431.927, -140.6103, 368.7306, -179. 288, -0.6893783, -105.8449}

RobotBase = {0, 0, 0, 0, 0, 0}

base1 = {-431.93, -140.61, 368.73, -57.70, -44.98, 33.62}

float[] f0 = changeref(Point["P1"].Value, Base["RobotBase"].Value, Base["base1"].Value)

// f0 = {0.0020519744,1.9731047E-05,-0.0022721738,113.94231,14.9346,-123.19886}

// Convert the value of "P1" in the base "RobotBase" to the value of a point in the base "base1"

Syntax 2

float[] changeref(

float[],

float[]

{X, Y, Z, RX, RY, RZ}
A

X

Y

Z

(A)

The coordinate value of the original point

{X, Y, Z, RX, RY, RZ}
A

(B)

The coordinate value of the new point

The original reference coordinate The robot coordinate

Omron TM Collaborative Robot: TMScript Language Manual (I664) 196

)

Parameter

float[] The coordinate value of the original point {𝑋𝑜 𝑌𝑜 𝑍𝑜 𝑅𝑋𝑜 𝑅𝑌𝑜 𝑅𝑍𝑜}𝐴

float[] The original reference base {𝑋𝑜𝑎 𝑌𝑜𝑎 𝑍𝑜𝑎 𝑅𝑋𝑜𝑎 𝑅𝑌𝑜𝑎 𝑅𝑍𝑜𝑎}𝐴

Return

float[] The coordinate value of the new point

{𝑋𝑛𝑟 𝑌𝑛𝑟 𝑍𝑛𝑟 𝑅𝑋𝑛𝑟 𝑅𝑌𝑛𝑟 𝑅𝑍𝑛𝑟}𝑅

Return an empty array if unable to calculate.

Note

The usage is the same as Syntax1’s except assuming the robot base

 {0 0 0 0 0 0}𝑅 as the default new reference base.

base1 = {-431.93, -140.61, 368.73, -57.70, -44.98, 33.62}

f0 = {0.002052, 0.000020, -0.002272, 113.9423, 14.9346, -123.1989}

float[] f1 = changeref(f0, Base["base1"].Value)

// f1 = {-431.927,-140.6103,368.7306,-179.288,-0.6893424,-105.84492}

{X, Y, Z, RX, RY, RZ}
A

X

Y

Z

(A)

The coordinate value of the original point

The original reference coordinate

{X, Y, Z, RX, RY, RZ}
A

(B)

The coordinate value of the new point

The robot coordinate

Omron TM Collaborative Robot: TMScript Language Manual (I664) 197

6.32 points2coord()

Based on the input points, calculate the coordinate plane of the input points and return the

values of the plane parameters converted by the three points on the plane.

Syntax 1

float[] points2coord(

float[],

float[],

float[]

)

Parameters

float[] The origin coordinates in the coordinate plane

𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)

float[] Any point on the X axis in the plane 𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)

float[] Any point on the +X and +Y in the plane

𝑋3(𝑚𝑚) 𝑌3(𝑚𝑚) 𝑍3(𝑚𝑚) 𝑅𝑋3(°) 𝑅𝑌3(°) 𝑅𝑍3(°)

* The input points above are required to be described in the same base.

Return

float[] The value of the plane parameter formed by the three points on the plane

𝑋𝑝(𝑚𝑚) 𝑌𝑝(𝑚𝑚) 𝑍𝑝(𝑚𝑚) 𝑅𝑋𝑝(°) 𝑅𝑌𝑝(°) 𝑅𝑍𝑝(°)

that coincided with the origin of the plane

𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚)

and calculated with the corners of

𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)

and

𝑋3(𝑚𝑚) 𝑌3(𝑚𝑚) 𝑍3(𝑚𝑚) 𝑅𝑋3(°) 𝑅𝑌3(°) 𝑅𝑍3(°)

Note

Supposed there are three points: P1, P2, and P3

Point["P1"].Value = {389.9641,-4.797323,416.2175,177.3384,0.9190881,91.07789}

Point["P2"].Value = {365.0222,137.3036,423.2249,177.4598,0.9549707,112.4033}

Point["P3"].Value = {546.7307,94.02614,385.1812,176.3468,0.5975906,95.82078}

Base["points2coord_b1"].Value = points2coord(Point["P1"].Value, Point["P2"].Value,

Point["P3"].Value)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 198

// {389.9641,-4.797323,416.2175,-168.6551,-2.780696,99.9553}

Point["P4"].Value = {0,0,0,0,0,0}

ChangeBase("points2coord_b1")

PTP("CPP",Point["P4"].Value,10,200,0,false)

Syntax 2

float[] points2coord(

float, float, float,

float, float, float,

float, float, float

)

Parameter

float, float, float The origin coordinates in the coordinate plane to calculate

𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚)

float, float, float The coordinates of any point on the X axis in the coordinate

plane to calculate 𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚)

float, float, float The coordinates of any point in the coordinate plane to calculate

𝑋3(𝑚𝑚) 𝑌3(𝑚𝑚) 𝑍3(𝑚𝑚)

* The input points above are required to be described in the same base.

Return

float[] Definition parameters of the coordinate plane to calculate.

𝑋𝑝(𝑚𝑚) 𝑌𝑝(𝑚𝑚) 𝑍𝑝(𝑚𝑚) 𝑅𝑋𝑝(°) 𝑅𝑌𝑝(°) 𝑅𝑍𝑝(°)

Note

Base["points2coord_2"].Value = points2coord(260,0,360,260,100,360,100,0,360)

// {260,0,360,0,0,90}

Point["P1"].Value = {0,0,0,180,0,0}

ChangeBase("points2coord_2")

PTP("CPP",Point["P1"].Value,10,200,0,false)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 199

6.33 intercoord()

Convert two input planes into a new plane.

Syntax 1

float[] intercoord(

float[],

float[]

)

Parameters

float[] The first input plane 𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)

float[] The second input plane 𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)

* The input points above are required to be described in the same base.

Return

float[] The new plane converted by the two input planes.

𝑋3(𝑚𝑚) 𝑌3(𝑚𝑚) 𝑍3(𝑚𝑚) 𝑅𝑋3(°) 𝑅𝑌3(°) 𝑅𝑍3(°)

Note

Supposed there are vision landmark jobs: vb_1 and vb_2

vb_1 outputs Base["vision_vb_1"].Value = {-69.73,380.02,141.79,-176.11,1.13,-121.27}

vb_2 outputs Base["vision_vb_2"].Value = {58.81,613.03,140.7,171.62,-0.89,0.8}

Base["mix_base"].Value = intercoord(Base["vision_vb_1"].Value,

Base["vision_vb_2"].Value)

// {-5.460001,496.52502,141.245,176.06546,0.23468152,61.116673}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 200

6.34 coorshift()

Calculate a new coordinate by adding a shift value to the original coordinate, where the shift

depends on the position and direction of the original coordinate.

Syntax 1

float[] coordshift(
float[],
float[]

)

Parameters

float[] base value 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

float[] shift value 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Return

float[] the new coordinate value calculated by the given position and direction of
the coordinate and the shift value. 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Note

Base["base1"].Value = {200,100,300,0,15,0}
Base["base2"].Value = {0,0,0,0,0,-90}
float[] var_shift = {10,50,0,0,0,0}

Base["base2"].Value = coordshift(Base["base2"].Value, var_shift)

// {50, -10, 0, 0, 0, -90}

float[] var_baseNew = coordshift(Base["base1"].Value, Base["base2"].Value)
// {248.2963, 90, 287.05905, -15, 0, -90}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 201

7. File Functions
⚫ The file functions are capable of operations related to file reading, writing, or inquiry.

⚫ File path

1. Local path. Available in the directories named TextFiles, XmlFiles, and TMcraft only.

FileName.txt The directory default to .\TextFiles

(File path the same as .\TextFiles\FileName.txt)

.\TextFiles\FileName.txt The file is in the local directory named TextFiles.

.\XmlFiles\FileName.xml The file is in the local directory named XmlFiles.

.\XmlFiles\folder\file The subdirector is in the local directory named XmlFiles.

..\folder Unavailable.

.\TextFiles\..\..\folder Unavailable.

Void for absolute paths.

C:\file1 Void.

D:\folder\file2 Void.

\TextFiles\FileName.txt Void.

2. External device path. Available to USB drives or SSD labelled TMROBOT.

\USB\TMROBOT The root directory of the external USB drive.

3. Remote path. Available with the Network service in TMflow.

\\127.0.0.1\shared SMB / CIFS

ftp://127.0.0.1 FTP

⚫ The path is not case sensitive. For example, the paths below all point to the same file.

.\TextFiles\FileName.txt

.\textfiles\fileName.txt

.\Textfiles\Filename.TXT

⚫ The path is available for pointing to subdirectories such as:

subfolder\file

.\TextFiles\subfolder1\subfolder2\file

.\XmlFiles\subfolder\file

\USB\TMROBOT\subfolder\file

\\127.0.0.1\shared\subfolder\file

⚫ The maximum file size is limited to 10MB (10485760 Bytes).

⚫ The type of the array to read or write depends on the definition of the array.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 202

7.1 File_ReadBytes()

Read the file content and return in the type of byte[].

Syntax 1

byte[] File_ReadBytes(

string

)

Parameter

string File path

Return

byte[] Return the file content in the type of byte[].

Note

byte[] var_bb1 = File_ReadBytes("sampleFile1.txt")

// {0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64,0x21,0x0D,0x0A,

0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x54,0x4D,0x20,0x52,0x6F,0x62,0x6F,0x74,0x21}

byte[] var_bb2 = File_ReadBytes(".\TextFiles\SampleFile1.txt")

// {0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64,0x21,0x0D,0x0A,

0x31,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x54,0x4D,0x20,0x52,0x6F,0x62,0x6F,0x74,0x21}

byte[] var_bb3 = File_ReadBytes("C:\SampleFile1.txt") // Error. Void for absolute paths.

byte[] var_bb4 = File_ReadBytes(".\SampleFile1.txt")

// Error. The file is in the local directory named TextFiles or XmlFiles.

byte[] var_bb5 = File_ReadBytes("SampleFileXX.txt") // Error. The file does not exist.

.\TextFiles\SampleFile1.txt

1| 1Hello World!

2| 1Hello TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 203

7.2 File_ReadText()

Read the file content and return in the type of string.

Syntax 1

string File_ReadText(

string

)

Parameter

string File path

Return

string Return the file content in the type of string.

Note

string var_s1 = File_ReadText("sampleFile1.txt")

// "1Hello World!\u0D0A1Hello TM Robot!"

string var_s2 = File_ReadText(".\TextFiles\SampleFile1.txt")

// "1Hello World!\u0D0A1Hello TM Robot!"

* \u0D0A denotes a new line character but not a string value.

string var_s3 = File_ReadText("C:\SampleFile1.txt")

// Error. Void for absolute paths.

string var_s4 = File_ReadText(".\SampleFile1.txt")

// Error. The file is in the local directory named TextFiles or XmlFiles.

.\TextFiles\SampleFile1.txt

1| 1Hello World!

2| 1Hello TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 204

7.3 File_ReadLines()

Read the file content and return in the type of string separated by new line characters .

Syntax 1

string[] File_ReadLines(

string

)

Parameter

string File path

Return

string[] Return the file content in the type of string separated by new line characters.

Syntax 2

string[] File_ReadLines(

string,

int,

int

)

Parameter

string File path

int The number of the line to start to read

int The amount of the lines to read

Return

string[] Return the file content in the type of string separated by new line characters.

If the number of the line to start to read <= 0, it returns an empty array.

If the number of the line to start to read > the total number of lines, it

returns an empty array.

If the amount of the lines to read <= 0，it returns from the first line to the

last line.

If the amount of the lines to read > the total number of lines，it returns from

the first line to star to read to the last line.

Syntax 3

string[] File_ReadLines(

string,

int

)

Note

Same as Syntax 2 with the parameter of amount of the lines to read defaults to 0 and

returns to the last line. File_ReadLines(string,int,int) => File_ReadLines(string,int,0)

Note

string[] var_ss = {""}
var_ss = File_ReadLines("SampleFile2.txt") // {"2Hello World!", "2Hello TM Robot!", "2Hi TM

.\TextFiles\SampleFile2.txt

1| 2Hello World!

2| 2Hello TM Robot!

3| 2Hi TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 205

Robot!"}

var_ss = File_ReadLines("SampleFile2.txt", 1, 2) // {"2Hello World!", "2Hello TM Robot!"}

var_ss = File_ReadLines("SampleFile2.txt", 2, 2) // {"2Hello TM Robot!", "2Hi TM Robot!"}

var_ss = File_ReadLines("SampleFile2.txt", 3, 2) // {"2Hi TM Robot!"} // Tops the total number of

lines. Returns to the last line.

var_ss = File_ReadLines("SampleFile2.txt", 0) // {} // empty array

var_ss = File_ReadLines("SampleFile2.txt", 4) // {} // empty array

int var_len = Length(var_ss) // 0

var_ss = File_ReadLines("SampleFile2.txt", 3, 0) // {"2Hi TM Robot!"} // Returns from line

3 to the last line.

var_ss = File_ReadLines("SampleFile3.txt") // {""} // var_ss[0] = ""
var_len = Length(var_ss) // 1

.\TextFiles\SampleFile3.txt

1|

Omron TM Collaborative Robot: TMScript Language Manual (I664) 206

7.4 File_NextLine()

Record the last read file path, and continue to read the next line of the file content or open the

file to read.

Syntax1

string File_NextLine(

string

)

Parameter

string File path

Return

string If the same as the last read file path, it returns the next line of the file

content.

If different from the last read file path, it opens the file and returns the first

line of the file content. If read the end of the file, it returns an empty string.

Syntax 2

string File_NextLine(

string,

bool

)

Parameter

string File path

bool Whether open the file to read or not

false Try the file path. Continue to read the next line if the same. Open

the file to read if different.

true Open the file and read the first line.

Return

string Whether open the file to read or not false

If the same as the last read file path, it returns the next line of the file

content.

If different from the last read file path, it opens the file and returns the

first line of the file content.

Whether open the file to read or not true

It opens the file and returns the first line of the file content.

If read the end of the file, it returns an empty string.

Syntax 3

string File_NextLine(

)

Parameter

void No parameter

Return

string Return the next line of the file content in the last record to read or returns an

empty string if not read.

Note

.\TextFiles\SampleFile4.txt

1| 4Hello World!

2|

.\TextFiles\SampleFile5.txt

1| 5Hello World!

2| 5Hello TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 207

3| 4Hello TM Robot! 3| 5Hi TM Robot!

string var_s = ""

var_s = File_NextLine() // "" // Not open the file to read.

var_s = File_NextLine("SampleFile4.txt") // "4Hello World!"

var_s = File_NextLine("SampleFile4.txt") // "" // Continue to read the next line.

var_s = File_NextLine("SampleFile5.txt") // "5Hello World!"

// Different file path. Open the file to read.

var_s = File_NextLine("SampleFile4.txt") // "4Hello World!"

// Different file path. Open the file to read.

var_s = File_NextLine("SampleFile4.txt") // "" // Continue to read the next line

var_s = File_NextLine("SampleFile4.txt") // "4Hello TM Robot!"

var_s = File_NextLine("SampleFile4.txt") // "" // Continue to read the next line (to the

EOF)

var_s = File_NextLine("SampleFile4.txt", true) // "4Hello World!"

// Open the file to read the first line.

var_s = File_NextLine("SampleFile4.txt", true) // "4Hello World!"

// Open the file to read the first line.

var_s = File_NextLine("SampleFile4.txt", false) // ""

// Continue to read the next line

var_s = File_NextLine() // "4Hello TM Robot!"

* To determine a blank line or the end of the file, use syntax 4 with the size of string[].

* Or, use File_NextEOF() to determine the end of the file.

Syntax 4

string[] File_NextLine(

string,

int

)

Parameter

string File path

int Parameters to read

0 Try the file path. Continue to read the next line if the same. Open the

file to read if different.

1 Open the file and read the first line.

2 Open the file without reading. Returns a empty array.

Return

string[] Return strings in the next line of the file content in an array.

If the array size is 1, it denotes read the strings in the next line.

If the array size is 0, it denotes read the end of the file already.

Syntax 5

string[] File_NextLine(

int

)

Parameter

int Parameters to read

0 Try the file path. Continue to read the next line if the same. Open the

file to read if different.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 208

1 Open the file and read the first line.

2 Open the file without reading. Returns a empty array.

Return

string[] Return strings in the next line of the file content in an array in the last

record to read or an empty string array if not read.

If the array size is 1, it denotes read the strings in the next line.

If the array size is 0, it denotes read the end of the file already.

Note

.\TextFiles\SampleFile4.txt

1| 4Hello World!

2|

3| 4Hello TM Robot!

.\TextFiles\SampleFile5.txt

1| 5Hello World!

2| 5Hello TM Robot!

3| 5Hi TM Robot!

string[] var_ss = {""}
var_ss = File_NextLine(0) // {} // Not open the file to read.

var_ss = File_NextLine("SampleFile4.txt", 0) // {"4Hello World!"}

var_ss = File_NextLine("SampleFile4.txt", 0) // {""} // Continue to read the next line.

var_ss = File_NextLine("SampleFile5.txt", 0) // {"5Hello World!"}

// Different file path. Open the file to read.

var_ss = File_NextLine("SampleFile4.txt", 0) // {"4Hello World!"}

// Different file path. Open the file to read.

var_ss = File_NextLine("SampleFile4.txt", 0) // {""} // Continue to read the next line.

int var_len = Length(var_ss) // 1

var_ss = File_NextLine("SampleFile4.txt", 0) // {"4Hello TM Robot!"}

var_ss = File_NextLine("SampleFile4.txt", 0) // {}

// Continue to read the next line (to the EOF)

var_len = Length(var_ss) // 0

var_ss = File_NextLine("SampleFile4.txt", 1) // {"4Hello World!"}

//Open the file and read the first line.

var_ss= File_NextLine("SampleFile4.txt", 2) // {}

//Open the file without reading.

var_len = Length(var_ss) // 0

var_ss = File_NextLine("SampleFile4.txt") // {"4Hello World!"}

// Continue to read the next line.

var_ss = File_NextLine(0) // {""}

// Continue to read the next line.

var_ss = File_NextLine(0) // {"4Hello TM Robot!"}

var_ss = File_NextLine(0) // {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 209

7.5 File_NextEOF()

Try the last read file path for reading to the end of the file already.

Syntax 1

bool File_NextEOF(

)

Parameter

void No parameter but needs to use with File_NextLine()

Return

bool Return true if not read.

false Not read to the end of the file.

true Not open the file or read to the end of the file.

Note

bool var_eof = File_NextEOF() // true // Not open the file to read.
string var_s = ""
var_s = File_NextLine("SampleFile4.txt") // "4Hello World!"

var_eof = File_NextEOF() // false

var_s = File_NextLine("SampleFile4.txt") // ""

var_eof = File_NextEOF() // false

var_s = File_NextLine("SampleFile4.txt") // 4Hello TM Robot!"

var_eof = File_NextEOF() // true

var_s = File_NextLine("SampleFile4.txt") // ""

File_NextLine("SampleFile4.txt", 2) // Open the file without reading.

var_eof = File_NextEOF() // false

.\TextFiles\SampleFile4.txt

1| 4Hello World!

2|

3| 4Hello TM Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 210

7.6 File_WriteBytes()

Put the data content into an array in byte and write to a file.

Syntax 1

bool File_WriteBytes(

string,

?,

int,

int,

int

)

Parameter

string File path

? Values to write. Eligible for integers, floating-point numbers, Booleans,

strings, or arrays.

Values will be converted with Little Endian, and strings will be converted

with UTF8.

int Overwrite the file or append to the file.

0 Over the file. If not existed, create a new file.

1 Append to the file. If not existed, create a new file.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

bool true Write successfully.

false Write unsuccessfully.

Syntax 2

bool File_WriteBytes(

string,

?,

int,

int

)

Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.

File_WriteBytes(string,?,int,int) => File_WriteBytes(string,?,int,int,0)

Syntax 3

bool File_WriteBytes(

string,

?,

int

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 211

up to the data ends.

File_WriteBytes(string,?,int) => File_WriteBytes(string,?,int,0,0)

Syntax 4

bool File_WriteBytes(

string,

?

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 overwriting

the file up to the data ends.

File_WriteBytes(string,?) => File_WriteBytes(string,?,0,0,0)

byte[] var_bb1 = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}

byte[] var_bb2 = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38}

byte[] var_bb3 = {}

bool flag = false
var_flag = File_WriteBytes("writebytes.txt", var_bb1) // Overwrite var_bb1 to the file

var_flag = File_WriteBytes("writebytes.txt", var_bb2) // Overwrite var_bb2 to the file

var_flag = File_WriteBytes("writebytes.txt", var_bb3) // Overwrite var_bb3 to the file

File_WriteBytes("writebytes.txt", var_bb1, 1) // Append var_bb1 to the file

File_WriteBytes("writebytes.txt", var_bb2, 1) // Append var_bb2 to the file

File_WriteBytes("writebytes.txt", var_bb1, 1, 3)
// Append var_bb1 to the file starting from index 3 to the end.

File_WriteBytes("writebytes.txt", var_bb2, 1, 3, 2)
// Append var_bb2 to the file starting from index 3 for the length of 2

File_WriteBytes("writebytes.txt", var_bb1, 1, -1)
// -1 illegitimate value // Append var_bb1 to the file starting from index 0 to the end.

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 30 31 32 33 34 35 36 37 38

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36

00000010 37 38

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36

00000010 37 38 03 04 05 06 07 08

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36

00000010 37 38 03 04 05 06 07 08 33 34

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36

00000010 37 38 03 04 05 06 07 08 33 34 00 01 02 03 04 05

00000020 06 07 08

Omron TM Collaborative Robot: TMScript Language Manual (I664) 212

File_WriteBytes("writebytes.txt", var_bb2, 1, 0, 100)
// Append var_bb2 to the file starting from index 0 for the length of 100 or to the end.

? byte var_n1 = 100 // Convert the value with Little Endian.

File_WriteBytes("writebytes2.txt", var_n1, 1)

? byte[] var_n2 = {100, 200} // Convert every value in the array with Little Endian one after another.

File_WriteBytes("writebytes2.txt", var_n2, 1)

? int var_n3 = 10000
File_WriteBytes("writebytes2.txt", var_n3, 1)

? int[] var_n4 = {10000, 20000, 80000}

File_WriteBytes("writebytes2.txt", var_n4, 1)

 ? float var_n5 = 1.234

File_WriteBytes("writebytes2.txt", var_ n5, 1)

 ? float[] var_n6 = {1.23, 4.56, -7.89}

File_WriteBytes("writebytes2.txt", var_n6, 1)

 ? double var_n7 = -1.2345

File_WriteBytes("writebytes3.txt", var_ n7, 1)

 ? double[] var_n8 = {1.23, -7.89}

File_WriteBytes("writebytes3.txt", var_n8, 1)

 ? bool var_n9 = true // Convert true to 1 and false to 0.

File_WriteBytes("writebytes3.txt", var_n9, 1)

? bool[] var_n10 = {true, false, true, false, false, true, true}

File_WriteBytes("writebytes3.txt", var_n10, 1)

writebytes.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 00 01 02 03 04 05 06 07 08 30 31 32 33 34 35 36

00000010 37 38 03 04 05 06 07 08 33 34 00 01 02 03 04 05

00000020 06 07 08 30 31 32 33 34 35 36 37 38

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64 64 C8 10 27 00 00

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00 80

00000010 38 01 00

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00 80

00000010 38 01 00 B6 F3 9D 3F

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64 64 C8 10 27 00 00 10 27 00 00 20 4E 00 00 80

00000010 38 01 00 B6 F3 9D 3F A4 70 9D 3F 85 EB 91 40 E1

00000020 7A FC C0

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF AE 47 E1 7A 14 AE F3 3F

00000010 8F C2 F5 28 5C 8F 1F C0

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF AE 47 E1 7A 14 AE F3 3F

00000010 8F C2 F5 28 5C 8F 1F C0 01

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64

writebytes2.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 64 64 C8

Omron TM Collaborative Robot: TMScript Language Manual (I664) 213

? string var_n11 = "ABCDEFG" // Convert the string into UTF8.

File_WriteBytes("writebytes3.txt", var_n11, 1)

 ? string[] var_n12 = {"ABC", "DEF", "達明機器人" }

File_WriteBytes("writebytes3.txt", var_n12, 1)

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF AE 47 E1 7A 14 AE F3 3F

00000010 8F C2 F5 28 5C 8F 1F C0 01 01 00 01 00 00 01 01

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF AE 47 E1 7A 14 AE F3 3F

00000010 8F C2 F5 28 5C 8F 1F C0 01 01 00 01 00 00 01 01

00000020 41 42 43 44 45 46 47

writebytes3.txt

Offset(h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 8D 97 6E 12 83 C0 F3 BF AE 47 E1 7A 14 AE F3 3F

00000010 8F C2 F5 28 5C 8F 1F C0 01 01 00 01 00 00 01 01

00000020 41 42 43 44 45 46 47 41 42 43 44 45 46 E9 81 94

00000030 E6 98 8E E6 A9 9F E5 99 A8 E4 BA BA

Omron TM Collaborative Robot: TMScript Language Manual (I664) 214

7.7 File_WriteText()

Put the data content in a string and write to a file.

Syntax 1

bool File_WriteText(

string,

?,

int,

int,

int

)

Parameter

string File path

? Values to write. Eligible for integers, floating-point numbers, Booleans,

strings, or arrays.

int Overwrite the file or append to the file.

0 Over the file. If not existed, create a new file.

1 Append to the file. If not existed, create a new file.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length -1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

bool true Write successfully.

false Write unsuccessfully.

Syntax 2

bool File_WriteText(

string,

?,

int,

int

)

Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.

File_WriteText(string,?,int,int) => File_WriteText(string,?,int,int,0)

Syntax 3

bool File_WriteText(

string,

?,

int

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

up to the data ends.

File_WriteText(string,?,int) => File_WriteText(string,?,int,0,0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 215

Syntax 4

File_WriteText(string,?) => File_WriteText(string,?,0,0,0)

string var_s1 = "Hi TM Robot"

string var_s2 = "達明機器人"

bool var_flag = false
var_flag = File_WriteText("writetext.txt", var_s1) // Overwrite "Hi TM Robot" to the file

var_flag = File_WriteText("writetext.txt", var_s2) // Overwrite "達明機器人" to the file

var_flag = File_WriteText("writetext.txt", var_s1, 1) // Append "Hi TM Robot" to the file

var_flag = File_WriteText("writetext.txt", var_s2, 1, 2, 3)

// Append 3 characters from the starting indext to the file

? byte var_n1 = 100 // Use decimal for values to convert to strings

File_WriteText("writetext2.txt", var_n1, 1)

? int[] var_n4 = {10000, 20000, 80000} // Use the "{, ,}" format for arrays

File_WriteText("writetext2.txt", var_n4, 1)

// For other formats, use GetString() to convert to a stitng and write the string

? float var_n5 = 1.234
File_WriteText("writetext2.txt", var_n5, 1)

? double[] var_n8 = {1.23, -7.89}
File_WriteText("writetext2.txt", var_n8, 1)

? bool var_n9 = true
File_WriteText("writetext2.txt", var_n9, 1)

? string var_n11 = "ABCDEFG"
File_WriteText("writetext2.txt", var_n11, 1)

? string[] var_n12 = {"ABC", "DEF", "達明機器人" }

File_WriteText("writetext2.txt", var_n12, 1)

writetext.txt

1| Hi TM Robot

writetext.txt

1| 達明機器人

writetext.txt

1| 達明機器人 Hi TM Robot

writetext.txt

1| 達明機器人 Hi TM Robot機器人

writetext2.txt

1| 100

writetext2.txt

1| 100{10000,20000,80000}

writetext2.txt

1| 100{10000,20000,80000}1.234

writetext2.txt

1| 100{10000,20000,80000}1.234{1.23,-7.89}

writetext2.txt

1| 100{10000,20000,80000}1.234{1.23,-7.89}true

writetext2.txt

1| 100{10000,20000,80000}1.234{1.23,-7.89}trueABCDEFG

Omron TM Collaborative Robot: TMScript Language Manual (I664) 216

writetext2.txt

1| 100{10000,20000,80000}1.234{1.23,-7.89}trueABCDEFG{ABC,DEF,達明機器人}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 217

7.8 File_WriteLine()

Put the data content in a string with newline characters (0x0D 0x0A) in the end and write to a

file.

Syntax 1

bool File_WriteLine(

string,

?,

int,

int,

int

)

Parameter

string File path

? Values to write. Eligible for integers, floating-point numbers, Booleans,

strings, or arrays.

int Overwrite the file or append to the file.

0 Over the file. If not existed, create a new file.

1 Append to the file. If not existed, create a new file.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length -1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

bool true Write successfully.

false Write unsuccessfully.

Syntax 2

bool File_WriteLine(

string,

?,

int,

int

)

Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.

File_WriteLine(string,?,int,int) => File_WriteLine(string,?,int,int,0)

Syntax 3

bool File_WriteLine(

string,

?,

int

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

up to the data ends.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 218

File_WriteLine(string,?,int) => File_WriteLine(string,?,int,0,0)

Syntax 4

bool File_WriteLine(

string,

?

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 overwriting

the file up to the data ends.

File_WriteLine(string,?) => File_WriteLine(string,?,0,0,0)

string var_s1 = "Hi TM Robot"

string var_s2 = "達明機器人"

bool var_flag = false
var_flag = File_WriteLine("writeline.txt", var_s2)

// Overwrite "達明機器人\u0D0A" to the file

var_flag = File_WriteLine("writeline.txt", var_s1)
// Overwrite "Hi TM Robot\u0D0A" to the file

var_flag = File_WriteLine("writeline.txt", var_s2, 1)

// Append "達明機器人\u0D0A" to the file

var_flag = File_WriteLine("writeline.txt", var_s1, 1, 3)
// Append "TM Robot\u0D0A" from the starting index 3 to the end to the file.

? byte[] var_n2 = {100, 200} // The array uses the format {, ,}.

File_WriteLine("writeline2.txt", var_n2, 1)

// For other formats, use GetString() to convert to string and write.

? int var_n3 = 10000 // Convert the value in decimal to a string.
File_WriteLine("writeline2.txt", var_n3, 1)

? float[] var_n6 = {1.23, 4.56, -7.89}

File_WriteLine("writeline2.txt", var_n6, 1)

writeline.txt

1| 達明機器人

2|

writeline.txt

1| Hi TM Robot

2|

writeline.txt

1| Hi TM Robot

2| 達明機器人

3|

writeline.txt

1| Hi TM Robot

2| 達明機器人

3| TM Robot

4|

writeline2.txt

1| {100,200}

2|

writeline2.txt

1| {100,200}

2| 10000

3|

Omron TM Collaborative Robot: TMScript Language Manual (I664) 219

? bool var_n9 = true

File_WriteLine("writeline2.txt", var_n9, 1)

? string var_n11 = "ABCDEFG"

File_WriteLine("writeline2.txt", var_n11, 1)

? string[] var_n12 = {"ABC", "DEF", "達明機器人" }

File_WriteLine("writeline2.txt", var_n12, 1)

writeline2.txt

1| {100,200}

2| 10000

3| {1.23,4.56,-7.89}

4|

writeline2.txt

1| {100,200}

2| 10000

3| {1.23,4.56,-7.89}

4| true

5|

writeline2.txt

1| {100,200}

2| 10000

3| {1.23,4.56,-7.89}

4| true

5| ABCDEFG

6|

writeline2.txt

1| {100,200}

2| 10000

3| {1.23,4.56,-7.89}

4| true

5| ABCDEFG

6| {ABC,DEF,達明機器人}

7|

Omron TM Collaborative Robot: TMScript Language Manual (I664) 220

7.9 File_WriteLines()

Put the data content in a string array with newline characters (0x0D 0x0A) in the end and write

to a file.

Syntax 1

bool File_WriteLines(

string,

?,

int,

int,

int

)

Parameter

string File path

? Values to write. Eligible for integers, floating-point numbers, Booleans,

strings, or arrays.

int Overwrite the file or append to the file.

0 Over the file. If not existed, create a new file.

1 Append to the file. If not existed, create a new file.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

bool true Write successfully.

false Write unsuccessfully.

Syntax 2

bool File_WriteLines(

string,

?,

int,

int

)

Note

Same as Syntax 1. Set the length of the value to write to 0 writing up to the data ends.

File_WriteLines(string,?,int,int) => File_WriteLines(string,?,int,int,0)

Syntax 3

bool File_WriteLines(

string,

?,

int

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 writing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 221

up to the data ends.

File_WriteLines(string,?,int) => File_WriteLines(string,?,int,0,0)

Syntax 4

bool File_WriteLines(

string,

?

)

Note

Same as Syntax 1. Set the starting index and the length of the value to write to 0 overwriting

the file up to the data ends.

File_WriteLines(string,?) => File_WriteLines(string,?,0,0,0)

* File_WriteText() : convert the data values to write to a string without adding newline

characters in the end of the string.

File_WriteLine(): convert the data values to write to a string with adding newline

characters in the end of the string.

File_WriteLines(): convert the data values to write to a string array with adding newline

characters in the end of each element of the array.

string var_ss1 = {"Hi TM Robot", "達明機器人"}

bool var_flag = false
var_flag = File_WriteLines("writelines.txt", var_ss1) // Overwrite ss1 to the file

var_flag = File_WriteLines("writelines.txt", var_ss1, 1, 1)
// Append ss1 from the starting index 1 to the end to the file.

? byte[] var_n2 = {100, 200}

File_WriteLines("writelines2.txt", var_n2, 1)

? int var_n3 = 10000

File_WriteLines("writelines2.txt", var_n3, 1)

? float[] var_n6 = {1.23, 4.56, -7.89}

File_WriteLines("writelines2.txt", var_n6, 1)

writelines.txt

1| Hi TM Robot

2| 達明機器人
3|

writelines.txt

1| Hi TM Robot

2| 達明機器人
3| Hi TM Robot

4|

writelines2.txt

1| 100

2| 200

3|

writelines2.txt

1| 100

2| 200

3| 10000

4|

Omron TM Collaborative Robot: TMScript Language Manual (I664) 222

? string var_n11 = "ABCDEFG"

File_WriteLines("writelines2.txt", var_n11, 1)

? string[] var_n12 = {"ABC", "DEF", "達明機器人" }

File_WriteLines("writelines2.txt", var_n12, 1)

writelines2.txt

1| 100

2| 200

3| 10000

4| 1.23

5| 4.56

6| -7.89

7|

writelines2.txt

1| 100

2| 200

3| 10000

4| 1.23

5| 4.56

6| -7.89

7| ABCDEFG

8|

writelines2.txt

1| 100

2| 200

3| 10000

4| 1.23

5| 4.56

6| -7.89

7| ABCDEFG

8| ABC

9| DEF

10| 達明機器人
11|

Omron TM Collaborative Robot: TMScript Language Manual (I664) 223

7.10 File_Exists()

Check the file path for availability.

Syntax 1

bool File_Exists(

string

)

Parameter

string File path

Return

bool true File path available

false File path unavailable

*Return false file path unavailable for Voided file path without errors.

Note

bool var_exists = false

var_exists = File_Exists("sampleFile1.txt") // true

var_exists = File_Exists("sampleFileX.txt") // false // File path unavailable

var_exists = File_Exists("C:\SampleFile1.txt") // false // Void for absolute paths.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 224

7.11 File_Length()

Check the file size.

Syntax 1

int File_Length(

string

)

Parameter

string File path

Return

int In int32 data type. The maximum file size is limited to 2147483647 bytes.

-1 File path unavailable.

-2 Exceeded the maximum file size limit.

* Return -1 file path unavailable for void file path without errors.

Note

Int var_len = 0

var_len = File_Length("sampleFile1.txt") // 31

var_len = File_Length("sampleFileX.txt") // -1 // File path unavailable

var_len = File_Length("C:\SampleFile1.txt") // -1 // Void for absolute paths.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 225

7.12 File_Delete()

Delete the file.

Syntax 1

bool File_Delete(

string

...

)

Parameter

string File path

... Available for multiple strings.

Return

bool true Delete successfully. (Included unavailable or void file paths)

false Delete unsuccessfully. (Unable to delete the file for occupied)

Syntax 2

bool File_Delete(

string[]

)

Parameter

string[] File path

Return

bool true Delete successfully. (Included unavailable or void file paths)

false Delete unsuccessfully. (Unable to delete the file for occupied)

Note

bool var_flag = false

var_flag = File_Delete("sampleFile1.txt") // true

var_flag = File_Delete("sampleFileX.txt") // true // File path unavailable

var_flag = File_Delete("C:\SampleFile1.txt") // true // Void for absolute paths.

var_flag = File_Delete("sampleFile1.txt", "sampleFileX.txt")

// Available for multiple file paths.

var_flag = File_Delete("sampleFile1.txt", "sampleFileX.txt", "C:\SampleFile1.txt")

// Available for multiple file paths.

string[] var_ss = {"sampleFile1.txt", "sampleFileX.txt", "C:\SampleFile1.txt""}

var_flag = File_Delete(var_ss)

var_flag = File_Delete(var_ss, "sampleFile2.txt") // Error. Void for syntax.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 226

7.13 File_Copy()

Copy the file.

Syntax 1

bool File_Copy(

string,

string,

string

)

Parameter

string Source file path

string Target directory path

string Target file name. Use the source file path equivalent for naming as the

default if empty.

Return

bool true Copy successfully.

false Copy unsuccessfully.

* Overwrite the target file if existed in the target path.

Syntax 2

bool File_Copy(

string,

string

)

Note

Same as Syntax 1. Set the target file name with an empty string and use the source file

path equivalent for naming.

File_Copy(string,string) => File_Copy(string,string,"")

File_Copy("sampleFile1.txt", ".\TextFiles", "s1.txt")

// copy .\TextFiles\sampleFile1.txt to .\TextFiles\s1.txt

File_Copy("sampleFile1.txt", ".\XmlFiles", "")

// copy .\TextFiles\sampleFile1.txt to .\XmlFiles\sampleFile1.txt

File_Copy("sampleFile1.txt", "\USB\TMROBOT", "s1.txt")

// copy .\TextFiles\sampleFile1.txt to USB\s1.txt

File_Copy("sampleFile1.txt", "\USB\TMROBOT")

// copy .\TextFiles\sampleFile1.txt to USB\sampleFile1.txt

bool var_flag = false

var_flag = File_Copy("sampleFile1.txt", "C:\folder") // Error. Void for absolute paths.

var_flag = File_Copy("sampleFile1.txt", ".")

// Error. Neither TextFiles nor XmlFiles is in the file path.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 227

7.14 File_CopyImage()

Copy the saved vision file.

Syntax 1

bool File_CopyImage(

string,

string,

string,

int

)

Parameters

string Source saved vision file path

string Target directory path

Granted to copy and save images to external paths such as external device

path directories or remote path directories

Not granted to copy and save the image to the local path such as

".\TextFiles" or ".\XmlFiles", and an error will be reported.

string Target file name.

If the name is an empty string, the default files name is the same as the

one in the source file path.

int Copy options

0 No error returned when failed to copy. No relative directory of the

sourced image reserved. (default)

1 No error returned when failed to copy. The relative directory of the

sourced image reserved.

2 An error returned when failed to copy. No relative directory of the

sourced image reserved.

3 An error returned when failed to copy. The relative directory of the

sourced image reserved.

Return

bool true Copy successfully.

false Copy unsuccessfully.

* If the file exists in the destination path, the destination file will be

overwritten.

Syntax 2

bool File_CopyImage(

string,

string,

string

)

Note

Same as syntax 1. Set the copy option to 0. No error returned when failed to copy. No

relative directory of the sourced image reserved.

File_CopyImage(string,string,string) => File_CopyImage(string,string,string,0)

Syntax 3

bool File_CopyImage(

string,

string

Omron TM Collaborative Robot: TMScript Language Manual (I664) 228

)

Note

Same as syntax 1. Set the target file name to an empty string and the same as the one in

the source file path. Set the copy option to 0. No error returned when failed to copy. No

relative directory of the sourced image reserved.

File_CopyImage(string,string) => File_CopyImage(string,string,"",0)

Syntax 4

bool File_CopyImage(

string,

string,

int

)

Note

Same as syntax 1. Set the target file name to an empty string and the same as the one in

the source file path.

File_CopyImage(string,string,int) => File_CopyImage(string,string,"",int)

var_bool flag = false

var_flag = File_CopyImage(Job1_ImagePath_TM, ".\TextFiles", "1.png")

// false // Copy to local directories not supported.

var_flag = File_CopyImage(Job1_ImagePath_TM, ".\XmlFiles", "1.png")

// false // Copy to local directories not supported.

var_flag = File_CopyImage(Job1_ImagePath_TM, ".\XmlFiles", "1.png", 2)

// false // Copy to local directories not supported.

var_flag = File_CopyImage(Job1_ImagePath_TM, "\USB\TMROBOT", "1.png")

// true // Copy Job1_ImagePath_TM (the vision AOI-only variable) to USB\1.png

var_flag = File_CopyImage(Job1_ImagePath_TM, "\USB\TMROBOT", "1.png", 3)

// true // Copy Job1_ImagePath_TM (the vision AOI-only variable) to USB\ProjectName\Job1\Date\source\1.png

// Reserve the directory of the image to save.

var_flag = File_CopyImage(Job1_ImagePath_TM, "\USB\TMROBOT")

// true // Copy Job1_ImagePath_TM (the vision AOI-only variable) to USB\15-16-12_423.png

// Reserve the file name of the image to save.

var_flag = File_CopyImage(Job1_ImagePath_TM, "\USB\TMROBOT", 3)

// true // Copy Job1_ImagePath_TM (the vision AOI-only variable) to USB\ProjectName\Job1\Date\source\15-16-

12_423.png

// Reserve the directory and the file name of the image to save.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 229

7.15 File_GetImage()

After executing a task job in TMvision, the system keeps the Source image storage path and

the Result image storage path in the image storage path buffer. Users can use this function to

retrieve the file path stored in the buffer and proceed to other operations such as copying it externally.

This function takes priority to the oldest image storage path to get images (FIFO) and removes the

path automatically later.

The maximum number of stored image paths in the buffer is 60. When a new image storage

path to add to the buffer, if the capacity is insufficient, the oldest image storage path will be

automatically removed from the butter, and the new image storage path will be automatically added

to the buffer.

Syntax 1

string[] File_GetImage(

int

)

Parameter

int Waiting time out to retrieve the image storage path

< 0 Wait indefinitely until retrieved the image storage path. (default)

= 0 Retrieve once.

> 0 Time out after waiting for how much time (milliseconds)

Once using waiting, the process stays at this command until retrieved the image

storage path or waiting timeout and keeps on the following executions

Return

string[] If SourceImage and ResultImage are empty strings, it denotes it does not

retrieve any image storag path.

[0] SourceImage Path

[1] ResultImage Path

[2] ResultData Path

[1] JobName as the name of the vision job

Syntax 2

string[] File_GetImage(

)

Note

Same as syntax 1. Set the waiting to retrieve timeout to -1 as indefinitely waiting until

retrieved the image storage path.

File_GetImage() => File_GetImage(-1)

string[] var_image = File_GetImage() // Wait until retrieved the image storage path.

bool var_flag1 = File_CopyImage(var_image[0], "\USB\TMROBOT")

bool var_flag2 = File_CopyImage(var_image[1], "\USB\TMROBOT")

Syntax 3

string[] File_GetImage(

string,

int

)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (I664) 230

string The name of the vision job. Retrieve the job name-matched image storage path

int Waiting time out to retrieve the image storage path

< 0 Wait indefinitely until retrieved the image storage path. (default)

= 0 Retrieve once.

> 0 Time out after waiting for how much time (milliseconds)

Once using waiting, the process stays at this command until retrieved the image

storage path or waiting timeout and keeps on the following executions

Return

string[] If SourceImage and ResultImage are empty strings, it denotes it does not

retrieve any image storag path.

[0] SourceImage Path

[1] ResultImage Path

[2] ResultData Path

[1] JobName as the name of the vision job

Syntax 4

string[] File_GetImage(

 string

)

Note

Same as syntax 3. Set the waiting to retrieve timeout to -1 as indefinitely waiting until

retrieved the image storage path.

File_GetImage("Job1") => File_GetImage("Job1", -1)

string[] var_image = File_GetImage("Job1") // Wait until retrieved the image storage path.

bool var_flag1 = File_CopyImage(var_image[0], "\USB\TMROBOT")

bool var_flag2 = File_CopyImage(var_image[1], "\USB\TMROBOT")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 231

7.16 File_Replace()

Replace and overwrite the string in the file with a specified string.

Syntax 1

bool File_Replace(

string,

string,

string

)

Parameter

string File path

string The string to be replaced

string The string to replace

Return

bool true Success 1. The string to be replaced is empty.

2. The string to be replaced is absent.

3. The string to be replaced is found and overwritten in

the file.

false Failure

Note

bool var_flag = false

var_flag = File_Replace("SampleFile6.txt", "Hello", "HI")

var_flag = File_Replace("SampleFile6.txt", "TM", "Techman")

var_flag = File_Replace("SampleFile6.txt", "6", "")

.\TextFiles\SampleFile6.txt

1| 6Hello World!

2| 6Hello TM Robot!

3| 6Hi TM Robot!

SampleFile6.txt

1| 6HI World!

2| 6HI TM Robot!

3| 6Hi TM Robot!

SampleFile6.txt

1| 6HI World!

2| 6HI Techman Robot!

3| 6Hi Techman Robot!

SampleFile6.txt

1| HI World!

2| HI Techman Robot!

3| Hi Techman Robot!

Omron TM Collaborative Robot: TMScript Language Manual (I664) 232

7.17 File_GetToken()

Read the file by the string pattern and retrieve the substring in the string.

Syntax 1

string File_GetToken(

string,

string,

string,

int,

int

)

Parameter

string File path

string The prefix of the string to retrieve

string The suffix of the string to retrieve

int The number of the matched substring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string Return the retrieved string.

Return the content of the string in the file if the prefix and the suffix are

empty.

Return an empty string if matching number <=0.

If the remove option is 2 or 3, the first match retrieved must be at the start

of the input string; otherwise, it returns an empty string.

Syntax 2

string File_GetToken(

string,

string,

string,

int

)

Note

Same as Syntax 1. Fill 0 for not removing the prefix and the suffix as the default.

File_GetToken(string,string,string,int) => File_GetToken(string,string,string,int,0)

Syntax 3

string File_GetToken(

string,

string,

string

)

Note

Same as Syntax 1. Fill 1 for the matching and 0 for not removing the prefix and the suffix

Omron TM Collaborative Robot: TMScript Language Manual (I664) 233

as the default.

File_GetToken(string,string,string) => File_GetToken(string,string,string,1,0)

string var_n = "SampleFile7.txt"

string var_s = ""

var_s = File_GetToken(var_n, "", "", 0) // "$Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM

Robot!$"

var_s = File_GetToken(var_n, "$", "$") // "$Hello World!\u0D0A$"

var_s = File_GetToken(var_n, "$", "$", 0) // ""

var_s = File_GetToken(var_n, "$", "$", 1) // "$Hello World!\u0D0A$"

var_s = File_GetToken(var_n, "$", "$", 2) // "$Hi TM Robot!$"

var_s = File_GetToken(var_n, "$", "$", 3) // ""

var_s = File_GetToken(var_n, "$", "$", 1, 1) // "Hello World!\u0D0A"

var_s = File_GetToken(var_n, "$", "$", 2, 1) // "Hi TM Robot!"

var_s = File_GetToken(var_n, "$", "", 1) // "$Hello World!\u0D0A"

var_s = File_GetToken(var_n, "$", "", 2) // "$Hello TM Robot!\u0D0A"

var_s = File_GetToken(var_n, "$", "", 3) // "$Hi TM Robot!"

var_s = File_GetToken(var_n, "$", "", 4) // "$"

var_s = File_GetToken(var_n, "", "$", 1) // "$"

var_s = File_GetToken(var_n, "", "$", 2) // "Hello World!\u0D0A$"

var_s = File_GetToken(var_n, "", "$", 3) // "Hello TM Robot!\u0D0A$"

var_s = File_GetToken(var_n, "", "$", 4) // "Hi TM Robot!$"

var_s = File_GetToken(var_n, "$", Ctrl("\r\n"), 1) // "$Hello World!\u0D0A"

var_s = File_GetToken(var_n, "$", newline, 2) // "$Hello TM Robot!\u0D0A"

var_s = File_GetToken(var_n, "$", NewLine, 1, 1) // "Hello World!"

// Remove the prefix and the suffix

var_s = File_GetToken(var_n, Ctrl("\r\n"), "$", 1) // "\u0D0A$"

var_s = File_GetToken(var_n, newline, "$", 2) // "\u0D0A$"

var_s = File_GetToken(var_n, NewLine, "$", 1, 1) // ""

* \u0D0A denotes a new line character but not a string value.

string var_n = "SampleFile9.txt"

string var_s = ""

var_s = File_GetToken(var_n, "", "") // "#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM

Robot!$"

var_s = File_GetToken(var_n, "#", "") // "#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM

Robot!$"

var_s = File_GetToken(var_n, "", "$") // "#Hello World!\u0D0A$"

var_s = File_GetToken(var_n, "#", newline, 1, 0) // "#Hello World!\u0D0A"

var_s = File_GetToken(var_n, "#", newline, 1, 1) // "Hello World!"

var_s = File_GetToken(var_n, "#", newline, 1, 2) // "#Hello World!\u0D0A"

var_s = File_GetToken(var_n, "#", newline, 1, 3) // "Hello World!"

var_s = File_GetToken(var_n, "$", newline, 1, 0) // "$Hello TM Robot!\u0D0A"

var_s = File_GetToken(var_n, "$", newline, 1, 2) // ""

.\TextFiles\SampleFile7.txt

1| $Hello World!

2| $Hello TM Robot!

3| $Hi TM Robot!$

.\TextFiles\SampleFile9.txt

1| #Hello World!

2| $Hello TM Robot!

3| $Hi TM Robot!$

Omron TM Collaborative Robot: TMScript Language Manual (I664) 234

// $ not in the start of the file. Return an empty string.

var_s = File_GetToken(var_n, "$", "", 1, 2) // ""

// $ not in the start of the file. Return an empty string.

var_s = File_GetToken(var_n, "#", "", 1, 2) // "#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM

Robot!$"

var_s = File_GetToken(var_n, "", "$", 1, 2) // "#Hello World!\u0D0A$"

var_s = File_GetToken(var_n, "", "$", -1, 2) // "Hi TM Robot!$"

var_s = File_GetToken(var_n, "", "$", 100, 2) // "" // Exceeded the matching number

var_s = File_GetToken(var_n, "", "#", 1, 2) // "#"

Syntax 4

string File_GetToken(

string,

byte[],

byte[],

int,

int

)

Parameter

string File path

byte[] The prefix of the string to retrieve in the byte array

byte[] The suffix of the string to retrieve in the byte array

int The number of the matched substring to retrieve

>=1 Retrieve the nth matched substring

-1 Retrieve the last matched substring

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string Return the retrieved string.

Return the content of the string in the file if the prefix and the suffix are

empty.

Return an empty string if matching number <=0.

If the remove option is 2 or 3, the first match retrieved must be at the start

of the input string; otherwise, it returns an empty string.

Syntax 5

string File_GetToken(

string,

byte[],

byte[],

int

)

Note

Same as Syntax 4. Fill 0 for not removing the prefix and the suffix as the default.

File_GetToken(string,byte[],byte[],int) => File_GetToken(string,byte[],byte[],int,0)

Syntax 6

string File_GetToken(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 235

string,

byte[],

byte[]

)

Note

Same as Syntax 4. Fill 1 for the matching and 0 for not removing the prefix and the suffix

as the default.

File_GetToken(string,byte[],byte[]) => File_GetToken(string,byte[],byte[],1,0)

string var_n = "SampleFile8.txt", var_s = ""

byte[] var_bb0 = {}, var_bb1 = {0x24}, var_bb2 = {0x0D, 0x0A}

// 0x24 is $ and 0x0D 0x0A is \u0D0A

var_s = File_GetToken(var_n, bb0, bb0, 0)

// "$Hello World\u0D0AHello$ TM Robot!\u0D0AHi$ TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb1) // "$Hello World\u0D0AHello$"

var_s = File_GetToken(var_n, bb1, bb1, 0) // ""

var_s = File_GetToken(var_n, bb1, bb1, 1) // "$Hello World\u0D0AHello$"

var_s = File_GetToken(var_n, bb1, bb1, 2) // "$ TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb1, 3) // ""

var_s = File_GetToken(var_n, bb1, bb1, 1, 1) // "Hello World\u0D0AHello"

var_s = File_GetToken(var_n, bb1, bb1, 2, 1) // " TM Robot!"

var_s = File_GetToken(var_n, bb1, bb0, 1) // "$Hello World\u0D0AHello"

var_s = File_GetToken(var_n, bb1, bb0, 2) // "$ TM Robot!\u0D0AHi"

var_s = File_GetToken(var_n, bb1, bb0, 3) // "$ TM Robot!"

var_s = File_GetToken(var_n, bb1, bb0, 4) // "$"

var_s = File_GetToken(var_n, bb0, bb1, 1) // "$"

var_s = File_GetToken(var_n, bb0, bb1, 2) // "Hello World\u0D0AHello$"

var_s = File_GetToken(var_n, bb0, bb1, 3) // " TM Robot!\u0D0AHi$"

var_s = File_GetToken(var_n, bb0, bb1, 4) // " TM Robot!$"

var_s = File_GetToken(var_n, bb1, bb2, 1) // "$Hello World\u0D0A"

var_s = File_GetToken(var_n, bb1, bb2, 2) // "$ TM Robot!\u0D0A"

var_s = File_GetToken(var_n, bb1, bb2, 1, 1) // "Hello World"

// Remove the prefix and the suffix

var_s = File_GetToken(var_n, bb2, bb1, 1) // "\u0D0AHello$"

var_s = File_GetToken(var_n, bb2, bb1, 2) // "\u0D0AHi$"

var_s = File_GetToken(var_n, bb2, bb1, 1, 1) // "Hello"

* \u0D0A denotes a new line character but not a string value.

.\TextFiles\SampleFile8.txt

1| $Hello World!

2| Hello$ TM Robot!

3| Hi$ TM Robot!$

Omron TM Collaborative Robot: TMScript Language Manual (I664) 236

7.18 File_GetAllTokens()

Read the file by the string pattern and retrieve all eligible substrings.

Syntax 1

string[] File_GetAllTokens(

string,

string,

string,

int

)

Parameter

string File path

string The prefix of the string to retrieve

string The suffix of the string to retrieve

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

Return

string[] Return the eligible string in an array.

Return the content of the string in the file as a string array if the prefix and

the suffix are empty.

If the remove option is 2 or 3, the first match retrieved must be at the start

of the input string; otherwise, it returns an empty string.

Syntax 2

string[] File_GetAllTokens(

string,

string,

string

)

Note

Same as Syntax 1. Fill 0 for not removing the prefix and the suffix as the default.

File_GetAllTokens(string,string,string) => File_GetAllTokens(string,string,string,0)

string var_n = "SampleFile7.txt"

string[] var_ss = {}

var_ss = File_GetAllTokens(var_n, "", "") // {"$Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM

Robot!$"}

var_ss = File_GetAllTokens(var_n, "$", "$") // {"$Hello World!\u0D0A$", "$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "$", "$", 1) // {"Hello World!\u0D0A", "Hi TM Robot!"}

var_ss = File_GetAllTokens(var_n, "$", "", 1)

// {"Hello World!\u0D0A", "Hello TM Robot!\u0D0A", "Hi TM Robot!", ""}

.\TextFiles\SampleFile7.txt

1| $Hello World!

2| $Hello TM Robot!

3| $Hi TM Robot!$

Omron TM Collaborative Robot: TMScript Language Manual (I664) 237

string var_n = "SampleFile9.txt"

string[] var_ss = {}

var_ss = File_GetAllTokens(var_n, "", "")

// {"#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "$", "$", 0) // {"$Hello TM Robot!\u0D0A$"}

var_ss = File_GetAllTokens(var_n, "$", "$", 1) // {"Hello TM Robot!\u0D0A"}

var_ss = File_GetAllTokens(var_n, "$", "$", 2) // {}

var_ss = File_GetAllTokens(var_n, "$", "$", 3) // {}

var_ss = File_GetAllTokens(var_n, "$", "", 0) // {"$Hello TM Robot!\u0D0A", "$Hi TM Robot!", "$"}

var_ss = File_GetAllTokens(var_n, "$", "", 2) // {}

var_ss = File_GetAllTokens(var_n, "#", "", 0)

// {"#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", "", 1)

// {"Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", "", 2)

// {"#Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM Robot!$"}

var_ss = File_GetAllTokens(var_n, "#", "", 3)

// {"Hello World!\u0D0A$Hello TM Robot!\u0D0A$Hi TM Robot!$"}

.\TextFiles\SampleFile9.txt

1| #Hello World!

2| $Hello TM Robot!

3| $Hi TM Robot!$

Omron TM Collaborative Robot: TMScript Language Manual (I664) 238

7.19 File_GetFiles()

Retrieve file names in the assigned directory.

Syntax 1

string[] File_GetFiles(
string,
string,
int

)

Parameter

string The assigned directory
string The string to be searched in the file name is case-insensitive. A search is

considered valid even if the string is empty.
int Retrieving options

0 Retrieve the file names in the specified directory only.
1 Retrieve the file names in the specified directory and all its

subdirectories.

Return

string[] Return the file name with the path associated with the assigned directory,such as
assigned .\TextFiles as the directory.
[0] "Text1.txt" // ".\TextFiles\Text1.txt"

[1] "Folder2\Text2.txt" // ".\TextFiles\Folder2\Text2.txt"

Syntax 2

string[] File_GetFiles(
string,
string

)

Note

Same as Syntax 1, with 0 as the default retrieving option.

Syntax 3

string[] File_GetFiles(
string

)

Note

Same as Syntax 1, with 0 as the default retrieving option and an empty string set to search in the

filename.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 239

Note

Supposed that files in the directory \TextFiles are
Text1.txt
Folder2\Text2.txt

File_GetFiles(".\TextFiles", "", 0) // {"Text1.txt"}
File_GetFiles(".\TextFiles", "", 1) // {"Text1.txt", "Folder2\Text2.txt"}

File_GetFiles(".\TextFiles", "Text1.txt", 1) // {"Text1.txt"}

File_GetFiles(".\TextFiles", "Text2.txt") // {}
File_GetFiles(".\TextFiles", "Text2.txt", 1) // {"Folder2\Text2.txt"}

File_GetFiles(".\TextFiles") // {"Text1.txt"}

Supposed that files in the directory \\127.0.0.1\shared are

PN-2024-07-07.log
Image1.png
Text1.txt
Folder2\Image1.png
Folder2\Text2.txt

File_GetFiles("\\127.0.0.1\shared", "", 0) // {"PN-2024-07-07.log", "Image1.png", "Text1.txt"}

File_GetFiles("\\127.0.0.1\shared", "", 1)
// {"PN-2024-07-07.log", "Image1.png", "Text1.txt", "Folder2\Image1.png", "Folder2\Text2.txt"}

File_GetFiles("\\127.0.0.1\shared", "image1.png", 0) // {"Image1.png"} // case-insensitive

File_GetFiles("\\127.0.0.1\shared", "image1.png", 1) // {"Image1.png", "Folder2\Image1.png"}

File_GetFiles("\\127.0.0.1\shared", "*.txt", 1) // {"Text1.txt", "Folder2\Text2.txt"}

File_GetFiles("\\127.0.0.1\shared", "*.txt") // {"Text1.txt"}

file://///127.0.0.1/shared

Omron TM Collaborative Robot: TMScript Language Manual (I664) 240

7.20 File_LogWrite()

Write the log file that messages are available on the view page of the flowchart.

Syntax 1

bool File_LogWrite(
string,
string,
string,
string, ...

)

Parameter

string The device to write
string The directory to write
string Title
string Content
*Titles and content can be multiple.

Return

bool true Write successfully.
false Write unsuccessfully.

Syntax 2

bool File_LogWrite(
string,
string

)

Parameter

string Title
string Content
* The system will use the device and directory settings from the previous execution of Syntax 1.
No file writing if there is no previous execution of Syntax 1, but the information will still appear on
the view page of the flowchart.

Return
bool true Write successfully.

false Write unsuccessfully.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 241

Syntax 3

bool File_LogWrite(
string

)

Parameter

string Content
* The system will use the device and directory settings from the previous execution of Syntax 1.
No file writing if there is no previous execution of Syntax 1, but the information will still appear on
the view page of the flowchart.

Return
bool true Write successfully.

false Write unsuccessfully.

File_LogWrite("text0") // false. Write unsuccessfully for no previous execution of Syntax 1,

File_LogWrite("\USB\TMROBOT", "aaa", "title1", "text1")
// 產出 log 檔在 \USB\TMROBOT\aaa\ProjectName-yyyy-MM-dd.log

// dd/MM/yyyy HH:mm:ss title1=text1

File_LogWrite("\USB\TMROBOT", "aaa", "title2", "text2", "title3", "text3")
// 產出 log 檔在 \USB\TMROBOT\aaa\ProjectName-yyyy-MM-dd.log

// dd/MM/yyyy HH:mm:ss title2=text2
// dd/MM/yyyy HH:mm:ss title3=text3

File_LogWrite("\USB\TMROBOT", "aaa", "title4")
// dd/MM/yyyy HH:mm:ss title4

File_LogWrite("\USB\TMROBOT", "aaa") // Will execute by syntax 2.
// dd/MM/yyyy HH:mm:ss \USB\TMROBOT=aaa

File_LogWrite("title5", "text5")

// dd/MM/yyyy HH:mm:ss title5=text5

File_LogWrite("text6")

// dd/MM/yyyy HH:mm:ss text6

Omron TM Collaborative Robot: TMScript Language Manual (I664) 242

8. Serial Port Functions
8.1 SerialPort Class

Use SerialPort class and declare variables to create a COM port device. The variable name

will be the device name.

Construct 1

SerialPort VariableName = string, int, string, int, float, int, bool, bool, bool

SerialPort VariableName = string, int, string, int, float, int

SerialPort VariableName = string, int, string, int, float

SerialPort VariableName = string, int

Parameter

string connection description

int bits per second, BaudRate

string parity check "none", "odd", "even", "mark", "space" ("none" by default)

int Data Bits 5, 6, 7, 8 (8 by default)

float Stop Bits 1, 1.5, 2 (1 by default)

int read/write timeout in millisecond 0 .. 10000 (10000 ms by default)

bool DTR/DSR true, false (false by default)

bool RTS/CTS true, false (false by default)

bool XON/XOFF true, false (false by default)

Note

SerialPort spd_c1 = "COM2",115200

// construct a device, with Baudrate 115200

SerialPort spd_c2 = "COM2",115200,"none",8,1

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1

SerialPort spd_c3 = "COM2",115200,"none",8,1,10000

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

⚫ In a flow project, it will create a device from the serial port list and connect to it

actively.

⚫ In a script project, after creating a device by the syntax content, it will not connect to

the device. It takes the open device function to connect.

⚫ Whether using the device to read or write, it will ask for confirmation of connecting to

the device.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 243

8.2 com_open()

Open a Serial Port device.

Syntax 1

bool com_open(

string

)

Parameter

string Serial Port device name

Return

bool True Open successfully.

False Open unsuccessfully. (The project reports error.)

Note

SerialPort spd_dev = "COM2",115200

com_open("spd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 244

8.3 com_close()

Close a Serial Port device.

Syntax 1

bool com_close(

string

)

Parameter

string Serial Port device name

Return

bool True Close successfully.

False Close unsuccessfully.

Note

SerialPort spd_dev = "COM2",115200

com_open("spd_dev")

com_close("spd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 245

When the project starts running as going from the start node, it opens the serial port for

connections and receives the data from the serial port consistently. For data received in the

received buffer, users can use the function com_read to read data in the buffer.

Once opened the Serial Port, it receives data from it continuously and puts them in the

receiving buffer. Users can use the function com_read or associatd functions to get data from the

buffer. When the project stops running, it closes the opened Serial Port and clears the receiving

buffer.

The receiving buffer comes with a capacity limitation. If there is data coming to the buffer and

the buffer is out of space, it removes the earliest data automatically for the latest data coming into

the buffer.

8.4 com_read()

Read data in the Serial Port received buffer and return an array byte[].

Syntax 1

byte[] com_read(

string

)

Parameters

string The name of the device on the Serial Port

Return

byte[] Return all the data content. If the content is empty, it returns byte[0].

Note

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] value = com_read("spd")

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// ReceivedBuffer = {}

*This function reads all data in the received buffer and clears the received buffer.

Syntax 2

byte[] com_read(

string,

int,

int

)

Parameters

string The name of the device on the Serial Port

int The number of the elements to read (based on the length of byte[])

<= 0 Read all elements

> 0 Read a specified number of the elements (Data is available when the

specified number fulfills.)

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 246

byte[] Return the specified number of the elements with byte[]. If the elements is

insufficient, it returns byte[0].

Syntax 3

byte[] com_read(

string,

int

)

Note

The syntax is the same as syntax 2. The default length of time to read is 0.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", 6)

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}

// ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", 100)

// value byte[] = {}

// Insufficient elements for no more than 100 elements in the received buffer and return byte[0].

// ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", 0)

// value byte[] = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // Read all elements

// ReceivedBuffer = {}

value = com_read("spd", 4, 100)

// value byte[] = {}

// Insufficient elements for no more than 4 elements in the received buffer and return byte[0].

// But the length of time to read is set to 100 ms, the process stays in the function until there is data or

the time is up and exits the function.

// ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38}

// Supposed it receives data after 50ms,

// value byte[] = {0x31,0x32,0x33,0x34} // it reads 4 element and exits the function.

// ReceivedBuffer = {0x35,0x36,0x37,0x38}

Syntax 4

byte[] com_read(

string,

byte[] or string,

byte[] or string,

int,

int

)

Parameters

string The name of the device on the Serial Port

byte[] or string

Terms of the prefix to read. If the input is byte[0] or "", an empty string, it means

no prefix terms.

byte[] or string

Terms of the suffix to read. If the input is byte[0] or "", an empty string, it means

no suffix terms.

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 247

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

Return

byte[] Return with byte[] in the first matched terms of the prefix and the suffix.

It retrieves data with the content matches the first of all terms, and the rest will

be reserved and not retrieved.

If there is no match, it returns byte[0].

Syntax 5

byte[] com_read(

string,

byte[] or string,

byte[] or string,

int

)

Note

The syntax is the same as syntax 4. The default length of time to read is 0.

Syntax 6

byte[] com_read(

string,

byte[] or string,

byte[] or string

)

Note

The syntax is the same as syntax 4. The default is not to remove the prefix and the suffix

from the read content and the length of time to read is 0.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", "He", newline) // prefix "He", suffix \u0D0A

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\u0D0A

//vReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// retrieve the first match and reserve the rest

value = com_read("spd", "", newline, 1) // prefix "", suffix \u0D0A. Remove both the prefix and the

suffix.

// value byte[] = {0x57,0x6F,0x72,0x6C,0x64} // World

// ReceivedBuffer = {}

value = com_read("spd", "", newline, 1, 100)

// prefix "", suffix \u0D0A. Remove both the prefix and the suffix. The length of time to read is 100ms.

// value byte[] = {}

// No matched terms to read. Read byte[0]. Wait for 100 ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 248

value = com_read("spd", "lo", newline) // prefix "lo", suffix \u0D0A

// value byte[] = {0x6C,0x6F,0x2C,0x0D,0x0A} // lo,\u0D0A

// The data before the first matched term, {0x48,0x65,0x6C}, will be removed.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// retrieve the first match and reserve the rest

byte[] bb = {}

value = com_read("spd", bb, newline) // prefix byte[0], suffix \u0D0A

// value byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // World\u0D0A

// ReceivedBuffer = {}

value = com_read("spd", bb, newline, 0, 100) // prefix byte[0], suffix \u0D0A, 100ms

// value byte[] = {}

// No matched terms to read. Read byte[0]. Wait for 100 ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, // #Hi

0x24,0x54,0x4D,0x0D,0x0A, // $TM

0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

value = com_read("spd", "#", newline, 2) // prefix "#" suffix \u0D0A

// value byte[] = {} // # not in the start. Return an empty array.

// ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read("spd", "$", newline, 2) // prefix "$" suffix \u0D0A

// value byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A}

// It must be in the start to retrieve the first match.

// ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read("spd", "#", newline, 2) // prefix "#" suffix \u0D0A

// value byte[] = {0x23,0x48,0x69,0x0D,0x0A} // It must be in the start to retrieve the first match.

// ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read("spd", "$", newline, 3) // prefix "$" suffix \u0D0A

// value byte[] = {0x54,0x4D}

// ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read("spd", "#", newline, 3) // prefix "#" suffix \u0D0A

// value byte[] = {0x52,0x6F,0x62,0x6F,0x74}

// ReceivedBuffer = {}

Syntax 7

byte[] com_read(

string,

byte[] or string,

int,

int

)

Parameters

string The name of the device on the Serial Port

byte[] or string

Omron TM Collaborative Robot: TMScript Language Manual (I664) 249

Terms of the suffix to read. If the input is byte[0] or "", an empty string, it means

no suffix terms.

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

* No terms of the prefix to read.

Return

byte[] Return with byte[] in the first matched terms of the prefix and the suffix.

It retrieves data with the content matches the first of all terms, and the rest will

be reserved and not retrieved.

If there is no match, it returns byte[0].

Syntax 8

byte[] com_read(

string,

byte[] or string,

int

)

Note

The syntax is the same as syntax 7. The default length of time to read is 0.

Syntax 9

byte[] com_read(

string,

byte[] or string

)

Note

The syntax is the same as syntax 7. The default is not to remove the prefix and the suffix

from the read content and the length of time to read is 0.

Note

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", newline) // suffix \u0D0A

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\u0D0A

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// retrieve the first match and reserve the rest

value = com_read("spd", newline) // suffix \u0D0A

// value byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // World\u0D0A

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read("spd", newline, 1) // suffix \u0D0A

// value byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C} // Hello,

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// retrieve the first match and reserve the rest

Omron TM Collaborative Robot: TMScript Language Manual (I664) 250

value = com_read("spd", newline, 1) // suffix \u0D0A

// value byte[] = {0x57,0x6F,0x72,0x6C,0x64} // World

// ReceivedBuffer = {}

value = com_read("spd", newline, 1, 100) // suffix \u0D0A, 100ms

// value byte[] = {}

// No matched terms to read. Read byte[0]. Wait for 100 ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x0D,0x0A}

// value byte[] = {0x31,0x32,0x33,0x34,0x35,0x36}

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 251

8.5 com_read_string()

Read the data in the Serial Port buffer, and convert the data to a UTF8 string.

Syntax 1

string com_read_string(

string

)

Parameters

string The name of the device on the Serial Port

Return

string Return all the data content. If the content is empty, it returns an empty string.

Syntax 2

string com_read_string(

string,

int,

int

)

Parameters

string The name of the device on the Serial Port

int The number of characters to read (based on the number of characters of the

string)

<= 0 Read all characters

> 0 Read a specified number of the characters (Data is available when the

specified number fulfills.)

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

Return

string Returns the specified number of characters as a string. If the characters are

insufficient, it returns an empty string.

Syntax 3

string com_read_string(

string,

int

)

Note

The syntax is the same as syntax 2. The default length of time to read is 0.

Syntax 4

string com_read_string(

string,

byte[] or string,

byte[] or string,

int,

int

)

Parameters

string The name of the device on the Serial Port

byte[] or string

Omron TM Collaborative Robot: TMScript Language Manual (I664) 252

Terms of the prefix to read. If the input is byte[0] or "", an empty string, it means

no prefix terms.

byte[] or string

Terms of the suffix to read. If the input is byte[0] or "", an empty string, it means

no suffix terms.

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

Return

string It retrieves data with the content matches the first of all terms

It retrieves data with the content matches the first of all terms, and the rest will

be reserved and not retrieved.

If there is no match, it returns an empty string.

Syntax 5

string com_read_string(

string,

byte[] or string,

byte[] or string,

int

)

Note

The syntax is the same as syntax 4. The default length of time to read is 0.

Syntax 6

string com_read_string(

string,

byte[] or string,

byte[] or string

)

Note

The syntax is the same as syntax 4. The default is not to remove the prefix and the suffix

from the read content and the length of time to read is 0.

Syntax 7

string com_read_string(

string,

byte[] or string,

int,

int

)

Parameters

string The name of the device on the Serial Port

byte[] or string

Terms of the suffix to read. If the input is byte[0] or "", an empty string, it means

Omron TM Collaborative Robot: TMScript Language Manual (I664) 253

no suffix terms.

int Remove options

0 The 1st matched not in the start of the input string, and not remove the prefix and the suffix. (default)

1 The 1st matched not in the start of the input string, and remove the prefix and the suffix.

2 The 1st matched in the start of the input string, and not remove the prefix and the suffix.

3 The 1st matched in the start of the input string, and remove the prefix and the suffix.

int The length of time to read in millisecond

<= 0 Read once only

> 0 Read many times until there is data or the time is up.

* No terms of the prefix to read.

Return

string Returns as a string with the first matched terms of the prefix and the suffix.

Retrieves data in the content matches to the first of all terms, and the rest will

be reserved and not retrieved.

If there is no match, it returns an empty string.

Syntax 8

string com_read_string(

string,

byte[] or string,

int

)

Note

The syntax is the same as syntax 7. The default length of time to read is 0.

Syntax 9

string com_read_string(

string,

byte[] or string

)

Note

The syntax is the same as syntax 7. The default is not to remove the prefix and the suffix

from the read content and the length of time to read is 0.

Note

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

string value = com_read_string("spd")

// value string = "Hello, World\u0D0A"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

value = com_read_string("spd", 4)

// value string = "TM達明" // {0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E}

//Retrieve 4 characters based on the length of the string.

// var _ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

value = com_read_string("spd", 5, 100)

// value string = ""

// Insufficient characters for no more than 5 characters in the received buffer based on the length of the

Omron TM Collaborative Robot: TMScript Language Manual (I664) 254

string. Wait for 100 ms.

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0x0A}

// value string = "機器人\u0D0A"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read_string("spd", "He", newline) // prefix "He", suffix \u0D0A

// value string = "Hello,\u0D0A"

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // retrieve the first match and reserve the

rest

value = com_read_string("spd", "", newline, 1)

// prefix "", suffix \u0D0A. Remove both the prefix and the suffix.

// value string = "World"

// ReceivedBuffer = {}

value = com_read_string("spd", "", newline, 1, 100)

// value string = "" // No matched terms to read. Read an empty string. Wait for 100 ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0x0A}

// value string = "機器人"

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

value = com_read_string("spd", "lo", newline) // prefix "lo", suffix \u0D0A

// value string = "lo,\u0D0A"

// The data before the first matched term, "Hel", will be removed.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// retrieve the first match and reserve the rest

value = com_read_string("spd", newline, 1) // suffix \u0D0A

// value string = "World"

// ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, // #Hi

0x24,0x54,0x4D,0x0D,0x0A, // $TM

0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

value = com_read_string("spd", "#", newline, 2) // prefix "#" suffix \u0D0A

// value string = "" // # not in the start. Return an empty array.

// ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read_string("spd", "$", newline, 2) // prefix "$" suffix \u0D0A

// value string = "$Hello\u0D0A" // It must be in the start to retrieve the first match.

// ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read_string("spd", "#", newline, 2) // prefix "#" suffix \u0D0A

// value string = "#Hi\u0D0A" // It must be in the start to retrieve the first match.

// ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 255

value = com_read_string("spd", "$", newline, 3) // prefix "$" suffix \u0D0A

// value string = "TM"

// ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

value = com_read_string("spd", "#", newline, 3) // prefix "#" suffix \u0D0A

// value string = "Robot"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64}

value = com_read_string("spd", newline) // suffix \u0D0A

// value string = "Hello,\u0D0A"

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64} // retrieve the first match and reserve the rest

value = com_read_string("spd", newline, 0) // suffix \u0D0A

// value string = "" // No matched terms to read. Read an empty string.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

value = com_read_string("spd", newline, 1, 100) // suffix \u0D0A

// value string = ""

// No matched terms to read. Read an empty string. Wait for 100 ms.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x31,0x32,0x33,0x0D,0x0A}

// value string = "World"

// ReceivedBuffer = {0x31,0x32,0x33,0x0D,0x0A} // retrieve the first match and reserve the rest

value = com_read_string("spd", newline, 2) // suffix \u0D0A

// value string = "123\u0D0A"

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 256

8.6 com_write()

Write data to the Serial Port

Syntax 1

bool com_write(

string,

?,

int,

int

)

Parameters

string The name of the device on the Serial Port

? The value to write. Available types: int, float, , bool, string, and array.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

Boo l True write successfully

False write unsuccessfully

1. The value to write is an empty string or an empty array.

2. Unable to send to the serial port correctly.

Syntax 2

bool com_write(

string,

?,

int,

int

)

Parameters

string The name of the device on the Serial Port

? The value to write. Available types: int, float, , bool, string, and array.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

int The starting index of the data to write. (valid for strings or arrays)

0 The length of the string

- 1

Legal value

< 0 Illegal value, and the starting index will be 0.

>= The length of the string Illegal value, and the starting index will be 0.

int The length of the data to write. (valid for strings or arrays)

<=

0

 From the start of the index to the end of the

data

Omron TM Collaborative Robot: TMScript Language Manual (I664) 257

> 0 From the start of the index, write the specified

length of the data until the data ends.

Return

bool True write successfully

False write unsuccessfully

1. The value to write is an empty string or an empty array.

2. Unable to send to the serial port correctly.

Syntax 3

bool com_write(

string,

?

)

Note

The syntax is the same as syntax 2. The default length of data to write is 0.

flag = com_write("spd", 100) // write 0x64

flag = com_write("spd", 1000) // write 0xE8 0x03 0x00 0x00 (int, Little Endian)

flag = com_write("spd", (float)1.234) // write 0xB6 0xF3 0x9D 0x3F (float, Little Endian)

flag = com_write("spd", (double)123.456)

// write 0x77 0xBE 0x9F 0x1A 0x2F 0xDD 0x5E 0x40 (double, Little Endian)

flag = com_write("spd", "Hello, World"+newline)

// write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 0x6F 0x72 0x6C 0x64 0x0D 0x0A (string, UTF8)

flag = com_write("spd", 1000, 1, 2) //Invalid in the value, the starting index, and the length

// write 0xE8 0x03 0x00 0x00 (int, Little Endian)

byte[] bb = {100, 200}

flag = com_write("spd", bb) // write 0x64 0xC8

flag = com_write("spd", bb, 1, 1) // write 0xC8

// Array. Retrieve 1 element from the index 1. [1]=200

flag = com_write("spd", bb, -1, 1) // write 0x64

// Array. Retrieve 1 element from the index 0. [0]=100

flag = com_write("spd", "達明機器人", 2)

// String. Retrieve from the index 2 until the index ends. "機器人"

// write 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA (string, UTF8)

string[] ss = {"TM", "", "達明機器人" }

flag = com_write("spd", ss)

// write 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

flag = com_write("spd", Byte_Concat(GetBytes(ss), GetBytes(newline)))

// write 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

0x0D 0x0A

flag = com_write("spd", ss, 2, 100)

// Array. Retrieve 100 elements (to the end) from the index 2. [2]=達明機器人

// write 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

Omron TM Collaborative Robot: TMScript Language Manual (I664) 258

8.7 com_writeline()

Write data to the Serial Port and add line break symbols, 0x0D 0x0A, in the end of the data

automatically

Syntax 1

bool com_writeline(

string,

?,

int,

int

)

Parameters

string The name of the device on the Serial Port

? The value to write. Available types: int, float, , bool, string, and array.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

bool True write successfully

False write unsuccessfully

1. The value to write is an empty string or an empty array.

2. Unable to send to the serial port correctly.

Syntax 2

bool com_writeline(

string,

?,

int,

)

Note

The syntax is the same as syntax 1. The default length of data to write is 0.

Syntax 3

bool com_writeline(

string,

?,

)

Note

The syntax is the same as syntax 1. The default starting index of the data to write is 0.

The default length of data to write is 0.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 259

flag = com_writeline("spd", 100) // write 0x64 0x0D 0x0A

flag = com_writeline("spd", 1000) // write 0xE8 0x03 0x00 0x00 0x0D 0x0A (int, Little

Endian)

flag = com_writeline("spd", (float)1.234) // write 0xB6 0xF3 0x9D 0x3F 0x0D 0x0A (float,

Little Endian)

flag = com_writeline("spd", (double)123.456)

// write 0x77 0xBE 0x9F 0x1A 0x2F 0xDD 0x5E 0x40 0x0D 0x0A (double, Little Endian)

flag = com_write("spd", "Hello, World"+newline)

// write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 0x6F 0x72 0x6C 0x64 0x0D 0x0A (string, UTF8)

flag = com_writeline("spd", "Hello, World")

// write 0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57 0x6F 0x72 0x6C 0x64 0x0D 0x0A (string, UTF8)

flag = com_writeline("spd", 1000, 1, 2) // Invalid in the value, the starting index, and the length

// write 0xE8 0x03 0x00 0x00 0x0D 0x0A (int, Little Endian)

byte[] bb = {100, 200}

flag = com_writeline("spd", bb) // write 0x64 0xC8 0x0D 0x0A

flag = com_writeline("spd", bb, 1, 1) // write 0xC8 0x0D 0x0A

// Array. Retrieve 1 element from the index 1. [1]=200

flag = com_writeline("spd", bb, -1, 1) // write 0x64 0x0D 0x0A

// Array. Retrieve 1 element from the index 0. [0]=100

flag = com_writeline("spd", "達明機器人", 2)

// String. Retrieve from the index 2 until the index ends. "機器人"

// write 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA 0x0D 0x0A (string, UTF8)

string[] ss = {"TM", "", "達明機器人" }

flag = com_writeline("spd", ss)

// write 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

0x0D 0x0A

flag = com_write("spd", Byte_Concat(GetBytes(ss), GetBytes(newline)))

// write 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

0x0D 0x0A

flag = com_writeline("spd", ss)

// write 0x54 0x4D 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA

0x0D 0x0A

flag = com_writeline("spd", ss, 2, 100)

// Array. Retrieve 100 elements (to the end) from the index 2. [2]=達明機器人

// write 0xE9 0x81 0x94 0xE6 0x98 0x8E 0xE6 0xA9 0x9F 0xE5 0x99 0xA8 0xE4 0xBA 0xBA 0x0D

0x0A

Omron TM Collaborative Robot: TMScript Language Manual (I664) 260

9. Socket Functions
9.1 Socket Class

Use Socket class and declare variables to create a TCP/IP communication device. The

variable name will be the device name.

Construct

Socket VariableName = string, int, int

Socket VariableName = string, int

Parameter

string the IP address of the remote host

int the connection port of the remote host

int read/write timeout in millisecond 0 .. 10000 (10000ms by default)

Note

Socket ntd_d1 = "192.168.1.10", 12345

// construct a device, with IP 192.168.1.10, Port 12345, Timeout 10000ms

Socket ntd_d2 = "192.168.1.11", 9999, 8000

// construct a device, with IP 192.168.1.10, Port 9999, Timeout 8000ms

⚫ In a flow project, it will create a device from the network device list and open it.

⚫ In a script project, after creating a device by the syntax content, it will not connect to

the device. It takes the open device function to connect.

⚫ While reading or writing with the device, it confirms if it needs to connect to the

device.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 261

9.2 socket_open()

Open a TCP/IP device.

Syntax 1

bool socket_open(

string

)

Parameter

string TCP/IP device name

Return

bool True Open successfully.

False Open unsuccessfully.

Note

Socket ntd_dev = "192.168.1.10", 12345

socket_open("ntd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 262

9.3 socket_close()

Close a TCP/IP device.

Syntax 1

bool socket_close(

string

)

Parameter

string TCP/IP device name

Return

bool True Open successfully.

False Open unsuccessfully.

Note

Socket ntd_dev = "192.168.1.10", 12345

socket_open("ntd_dev")

socket_close("ntd_dev")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 263

When a flow project starts running as the Start node initiates, it launches the TCP/IP Socket

Client to connect to the specified IP and port. However, as to the script project, users have to use

the socket_open function to open and connect to the assigned device.

After connecting to the TCP/IP device, the system keeps receiving the data in the connection,

brings the received data to the Received Buffer, and uses respective functions such as

Socket_read to read the data. When the project stops running, the existing TCP/IP Socket

connection will be closed with the Received Buffer cleared.

The Received Buffer comes with a capacity limit. If the buffer capacity is insufficient when the

data comes in, it automatically deletes the oldest data and adds the latest.

9.4 socket_read()

Read data in the Received Buffer and return in a byte array.

Syntax 1

byte[] socket_read(

string

)

Parameters

string Network device name

Return

byte[] Return all data in the Received Buffer. Return byte[0] if buffer empty.

Note

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a")

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// ReceivedBuffer = {}

*This function reads all data in the Received Buffer and clear the buffer.

Syntax 2

byte[] socket_read(

string,

int,

int

)

Parameters

string Network device name

int Retrieve the fixed amount of byte (by the length of byte[])

<= 0 Get all

> 0 Get a specified amount (the specified amount required to get the data)

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

byte[] Return the specified amount of data in the Received Buffer with a byte array.

Return byte[0] if insufficient amount.

Syntax 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 264

byte[] socket_read(

string,

int

)

Note

Same as syntax 2. Fill 0 as the read time by default.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", 6)

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C}

// ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

var_value = socket_read("ntd_a", 100)

// byte[] = {} // The number is insufficient for less than 100 bytes in the Received Buffer. Byte[0] will return.

// ReceivedBuffer = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

var_value = socket_read("ntd_a", 0)

// byte[] = {0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // Retrieve all data

// ReceivedBuffer = {}

var_value = socket_read("ntd_a", 4, 100)

// byte[] = {} // The number is insufficient for less than 4 bytes in the Received Buffer. Byte[0] will return.

//But the read time is set to 100㎳, it stays in the function still waiting for data or the read times

fulfilled before exiting.

// ReceivedBuffer = {0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38}

//Supposed data received in 50㎳ later

// byte[] = {0x31,0x32,0x33,0x34} // Retrieve 4 bytes and exit the function.

// ReceivedBuffer = {0x35,0x36,0x37,0x38}

Syntax 4

byte[] socket_read(

string,

byte[] or string,

byte[] or string,

int,

int

)

Parameters

string Network device name

byte[] or string

The prefix condition to read. Input byte[0] or "" as the empty string to denote no

prefix condition.

byte[] or string

The suffix condition to read. Input byte[0] or "" as the empty string to denote no

suffix condition.

int Fetch option

0 The 1st match not required in the beginning and not removing the prefix

and the suffix (default)

1 The 1st match not required in the beginning and removing the prefix

and the suffix

2 The 1st match required in the beginning and removing the prefix and

the suffix

Omron TM Collaborative Robot: TMScript Language Manual (I664) 265

3 The 1st match required in the beginning and removing the prefix and

the suffix

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

byte[] Return the 1st array in byte that matches the prefix condition and the suffix

condition.

Fetch the first data that matches the conditions in the Received Buffer.only. The

following data remains in the Received Buffer.

If the prefix condition and the suffix condition are byte[0] or an empty string, it

fetches all data in the Received Buffer.

If unable to find the data matches the condition, it returns byte[0].

Syntax 5

byte[] socket_read(

string,

byte[] or string,

byte[] or string,

int

)

Note

Same as syntax 4. Fill 0 as the read time by default.

Syntax 6

byte[] socket_read(

string,

byte[] or string,

byte[] or string

)

Note

Same as syntax 4. Fill 0 as the fetch option and the read time by default.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", "", "") // No prefix. No suffix. Fetch all data.

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", "He", newline) // Prefix "He" Suffix \u0D0A

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\u0D0A

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// Fetch the 1st match. Remain the following data.

var_value = socket_read("ntd_a", "", newline, 1) // Prefix "" Suffix \u0D0A Remove the prefix

and the suffix.

// byte[] = {0x57,0x6F,0x72,0x6C,0x64} // World

// ReceivedBuffer = {}

var_value = socket_read("ntd_a", "", newline, 1, 100)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 266

// Prefix "" Suffix \u0D0A Remove the prefix and the suffix. 100ms

// byte[] = {}

// Read byte[0] for fetch option unfulfilled. Wait for 100ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// Supposed data received in 50ms later

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C} // Hello,

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", "lo", newline) // Prefix "lo" Suffix \u0D0A

// byte[] = {0x6C,0x6F,0x2C,0x0D,0x0A} // lo,\u0D0A

// The data before the 1st match, {0x48,0x65,0x6C}, will be removed.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_bb = {}

var_value = socket_read("ntd_a", var_bb, newline) // Prefix byte[0] Suffix \u0D0A

// byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // World\u0D0A

// ReceivedBuffer = {}

var_value = socket_read("ntd_a", var_bb, newline, 0, 100)

// Prefix byte[0] Suffix \u0D0A，100ms

// byte[] = {} //Read byte[0] for fetch option unfulfilled. Wait for 100ms.

// ReceivedBuffer = {}

// ReceivedBuffer = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// Supposed data received in 50ms later

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A}

// ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, // #Hi

0x24,0x54,0x4D,0x0D,0x0A, // $TM

0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

byte[] var_value = socket_read("ntd_a", "#", newline, 2) // Prefix "#" Suffix \u0D0A

// byte[] = {}

//Return an empty string for # not in the prefix.

// ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", "$", newline, 2) // Prefix "$" Suffix \u0D0A

// byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A} // Fetch the 1st match in the prefix required.

// ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", "#", newline, 2) // Prefix "#" Suffix \u0D0A

// byte[] = {0x23,0x48,0x69,0x0D,0x0A} // Fetch the 1st match in the prefix required.

// ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", "$", newline, 3) // Prefix "$" Suffix \u0D0A

// byte[] = {0x54,0x4D}

// ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", "#", newline, 3) // Prefix "#" Suffix \u0D0A

// byte[] = {0x52,0x6F,0x62,0x6F,0x74}

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 267

Syntax 7

byte[] socket_read(

string,

byte[] or string,

int,

int

)

Parameters

string Network device name

byte[] or string

The suffix condition to read. Input byte[0] or "" as the empty string to denote no

suffix condition.

int Fetch option

0 The 1st match not required in the beginning and not removing the prefix

and the suffix (default)

1 The 1st match not required in the beginning and removing the prefix

and the suffix

2 The 1st match required in the beginning and removing the prefix and

the suffix

3 The 1st match required in the beginning and removing the prefix and

the suffix

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

byte[] Return the 1st array in byte that matches the suffix condition. (No prefix condition

restricted)

Fetch the first data that matches the condition in the Received Buffer.only. The

following data remains in the Received Buffer.

If the suffix condition is byte[0] or an empty string, it fetches all data in the

Received Buffer.

If unable to find the data matches the condition, it returns byte[0].

Syntax 8

byte[] socket_read(

string,

byte[] or string,

int

)

Note

Same as syntax 7. Fill 0 as the read time by default.

Syntax 9

byte[] socket_read(

string,

byte[] or string

)

Note

Omron TM Collaborative Robot: TMScript Language Manual (I664) 268

Same as syntax 7. Fill 0 as the fetch option and the read time by default.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", "") // Empty Suffix. Fetch all data.

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

byte[] var_value = socket_read("ntd_a", newline) // Suffix \u0D0A

// byte[] = {0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A} // Hello,\u0D0A

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // Fetch the 1st match. Remain the following

data.

var_value = socket_read("ntd_a", newline) // Suffix \u0D0A

// byte[] = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A} // World\u0D0A

// ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, // #Hi

0x24,0x54,0x4D,0x0D,0x0A, // $TM

0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

byte[] var_value = socket_read("ntd_a", newline, 0) // Suffix \u0D0A

// byte[] = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A} // $Hello\u0D0A

// ReceivedBuffer =

{0x23,0x48,0x69,0x0D,0x0A,0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", newline, 1) // Suffix \u0D0A

// byte[] = {0x23,0x48,0x69} // #Hi

// ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", newline, 2) // Suffix \u0D0A

// byte[] = {0x24,0x54,0x4D,0x0D,0x0A} // $TM\u0D0A

// ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read("ntd_a", newline, 3) // Suffix \u0D0A

// byte[] = {0x23,0x52,0x6F,0x62,0x6F,0x74} // #Robot

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 269

9.5 socket_read_string()

Read data in the Received Buffer and convert the byte array to string text in UTF8

Syntax 1

string socket_read_string(

string

)

Parameters

string Network device name

Return

string Return all data in the Received Buffer. Return an empty string if buffer empty.

Syntax 2

string socket_read_string(

string,

int,

int

)

Parameters

string Network device name

int Retrieve the fixed amount of string (by the length of string)

<= 0 Get all

> 0 Get a specified amount (the specified amount required to get the data)

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

string Return the specified amount of data in the Received Buffer with a string. Return

an empty string if insufficient amount.

Syntax 3

string socket_read_string(

string,

int

)

Note

Same as syntax 2. Fill 0 as the read time by default.

Syntax 4

string socket_read_string(

string,

byte[] or string,

byte[] or string,

int,

int

)

Parameters

string Network device name

byte[] or string

The prefix condition to read. Input byte[0] or "" as the empty string to denote no

Omron TM Collaborative Robot: TMScript Language Manual (I664) 270

prefix condition.

byte[] or string

The suffix condition to read. Input byte[0] or "" as the empty string to denote no

suffix condition.

int Retrieve the fixed amount of string (by the length of string)

<= 0 Get all

> 0 Get a specified amount (the specified amount required to get the data)

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

string Return the 1st string that matches the prefix condition and the suffix condition.

Fetch the first data that matches the conditions in the Received Buffer.only. The

following data remains in the Received Buffer.

If the prefix condition and the suffix condition are byte[0] or an empty string, it

fetches all data in the Received Buffer.

If unable to find the data matches the condition, it returns an empty string.

Syntax 5

string socket_read_string(

string,

byte[] or string,

byte[] or string,

int

)

Note

Same as syntax 4. Fill 0 as the read time by default.

Syntax 6

string socket_read_string(

string,

byte[] or string,

byte[] or string

)

Note

Same as syntax 4. Fill 0 as the fetch option and the read time by default.

Syntax 7

string socket_read_string(

string,

byte[] or string,

int,

int

)

Parameters

string Network device name

byte[] or string

The suffix condition to read. Input byte[0] or "" as the empty string to denote no

suffix condition.

int Retrieve the fixed amount of string (by the length of string)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 271

<= 0 Get all

> 0 Get a specified amount (the specified amount required to get the data)

int Read time (millisecond)

<= 0 Read once

> 0 Read multiple times until there is data or the times fulfill.

Return

string Return the 1st string that matches the suffix condition. (No prefix condition

restricted)

Fetch the first data that matches the condition in the Received Buffer.only. The

following data remains in the Received Buffer.

If the suffix condition is byte[0] or an empty string, it fetches all data in the

Received Buffer.

If unable to find the data matches the condition, it returns an empty string.

Syntax 8

string socket_read_string(

string,

byte[] or string,

int

)

Note

Same as syntax 7. Fill 0 as the read time by default.

Syntax 9

string socket_read_string(

string,

byte[] or string

)

Note

Same as syntax 7. Fill 0 as the fetch option and the read time by default.

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

string var_value = socket_read_string("ntd_a")

// string = "Hello, World\u0D0A"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

string var_value = socket_read_string("ntd_a", 4)

// string = "TM達明" // {0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E} // Fetch 4 by the string length.

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

var_value = socket_read_string("ntd_a", 5, 100)

// string = ""

// The amount to read data in the Received Buffer is less than 5. (by the string length). Wait for 100 ㎳.

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA, 0x0D, 0x0A}

// string = "機器人\u0D0A"

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 272

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

string var_value = socket_read_string("ntd_a", "", "")

// string = "Hello,\u0D0AWorld\u0D0A"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

string value = socket_read_string("ntd_a", "He", newline) // Prefix "He" Suffix \u0D0A

// string = "Hello,\u0D0A"

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "", newline, 1)

// Prefix "" Suffix \u0D0A Remove the prefix and the suffix.

// string = "World"

// ReceivedBuffer = {}

var_value = socket_read_string("ntd_a", "", newline, 1, 100)

// string = ""

// Read a empty string for the fetch option unfulfilled. Wait for 100㎳.

// ReceivedBuffer = {}

// ReceivedBuffer = {0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A}

// string = "機器人"

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

string var_value = socket_read_string("ntd_a", "lo", newline) // Prefix "lo" Suffix \u0D0A

// string = "lo,\u0D0A"

// The data before the 1st match, "Hel", will be removed.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A}

var_value = socket_read_string("ntd_a", newline, 1) // Suffix \u0D0A

// string = "World"

// ReceivedBuffer = {}

ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A, // $Hello

0x23,0x48,0x69,0x0D,0x0A, // #Hi

0x24,0x54,0x4D,0x0D,0x0A, // $TM

0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A} // #Robot

string var_value = socket_read_string("ntd_a", "#", newline, 2) // Prefix "#" Suffix \u0D0A

// string = "" // Return an empty string for # not in the prefix.

// ReceivedBuffer = {0x24,0x48,0x65,0x6C,0x6C,0x6F,0x0D,0x0A,0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "$", newline, 2) // Prefix "$" Suffix \u0D0A

// string = "$Hello\u0D0A"

// Fetch the 1st match in the prefix required.

// ReceivedBuffer = {0x23,0x48,0x69,0x0D,0x0A,

0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "#", newline, 2) // Prefix "#" Suffix \u0D0A

// string = "#Hi\u0D0A" // Fetch the 1st match in the prefix required.

// ReceivedBuffer = {0x24,0x54,0x4D,0x0D,0x0A,0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "$", newline, 3) // Prefix "$" Suffix \u0D0A

// string = "TM"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 273

// ReceivedBuffer = {0x23,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A}

var_value = socket_read_string("ntd_a", "#", newline, 3) // Prefix "#" Suffix \u0D0A

// string = "Robot"

// ReceivedBuffer = {}

ReceivedBuffer =

{0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x0D,0x0A,0x57,0x6F,0x72,0x6C,0x64}

string var_value = socket_read_string("ntd_a", newline) // Suffix \u0D0A

// string = "Hello,\u0D0A"

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

var_value = socket_read_string("ntd_a", newline, 0) // Suffix \u0D0A

// string = ""

// Read a empty string for the fetch option unfulfilled.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

var_value = socket_read_string("ntd_a", newline, 1, 100) // Suffix \u0D0A

// string = ""

// Read a empty string for the fetch option unfulfilled. Wait for 100㎳.

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64}

// ReceivedBuffer = {0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x31,0x32,0x33,0x0D,0x0A}

// Supposed the data comes in and fulfills the fetch option.

// string = "World"

// ReceivedBuffer = {0x31,0x32,0x33,0x0D,0x0A}

var_value = socket_read_string("ntd_a", newline, 2) // Suffix \u0D0A

// string = "123\u0D0A"

// ReceivedBuffer = {}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 274

9.6 socket_send()

Send the data value to a remote device.

Syntax 1

int socket_send(

string,

?,

int,

int

)

Parameters

string Network device name

? The value to write. Available types: int, float, , bool, string, and array.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

int Send result

1 Sent successfully.

0 Unable to send the data value as an empty string or an empty array.

-1 Socket exception occurred during sending.

-2 Unable to connect to the remote device.

-3 The device name does not exist, or IP or port is incorrect.

Syntax 2

int socket_send(

string,

?,

int

)

Note

Same as syntax 1. Fill 0 as the length of the value to write by default.

Syntax 3

int socket_send(

string,

?

)

Note

Same as syntax 1. Fill 0 as the starting index and the length of the value to write by

default.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 275

int var_re = socket_send("ntd_a", 100) // send 0x64

var_re = socket_send("ntd_a", 1000) // send 0xE8,0x03,0x00,0x00 (int, Little Endian)

var_re = socket_send("ntd_a", (float)1.234)

//send 0xB6,0xF3,0x9D,0x3F (float, Little Endian)

var_re = socket_send("ntd_a", (double)123.456)

// send 0x77,0xBE,0x9F,0x1A,0x2F,0xDD,0x5E,0x40 (double, Little Endian)

var_re = socket_send("ntd_a", "Hello, World"+newline)

// send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A (string, UTF8)

int[] var_ii = {100, 200, 300, 400}

var_re = socket_send("ntd_a", var_ii)

// send 0x64,0x00,0x00,0x00,0xC8,0x00,0x00,0x00,0x2C,0x01,0x00,0x00,0x90,0x01,0x00,0x00 (int[],

Little Endian)

string[] var_ss = {"TM", "", "Robot"}

var_re = socket_send("ntd_a", var_ss)

// send 0x54,0x4D,0x52,0x6F,0x62,0x6F,0x74 (string[], UTF8)

// var_ss[1] is an empty string. The conversion value is still empty.

var_re = socket_send("ntd_a", 1000, 1, 2)

// Invalid in the value, the starting index, and the length

// send 0xE8,0x03,0x00,0x00 (int, Little Endian)

var_re = socket_send("ntd_a", "Hello, World"+newline, 0, 7)

// send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20 (string, UTF8)

byte[] var_bb = {100, 200}

var_re = socket_send("ntd_a", var_bb) // send 0x64,0xC8

var_re = socket_send("ntd_a", var_bb, 1, 1) // send 0xC8

// Array. Read 1 from address 1, [1]=200

var_re = socket_send("ntd_a", var_bb, -1, 1) // send 0x64

// Array. Read 1 from address 0. [0]=100

var_re = socket_send("ntd_a", "達明機器人", 2)

// Array. Read from address 2 till the end. "機器人"

// send 0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA (string, UTF8)

var_ss = {"TM", "", "達明機器人"}

var_re = socket_send("ntd_a", var_ss)

// send

0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA

re = socket_send("ntd_a", Byte_Concat(GetBytes(var_ss), GetBytes(newline)))

// send

0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x

0A

var_re = socket_send("ntd_a", var_ss, 2, 100)

// Array. Read 100 from address 2. (till the end) [2]=達明機器人

// send 0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA

Omron TM Collaborative Robot: TMScript Language Manual (I664) 276

9.7 socket_sendline()

Send the data value and add line break symbols, 0x0D 0x0A, to a remote device.

Syntax 1

int socket_sendline(

string,

?,

int,

int

)

Parameters

string Network device name

? The value to write. Available types: int, float, , bool, string, and array.

Numeric values will be conversed in Little Endian, and string values will be

converse in UTF8.

int The starting index of the value to write (eligible for strings and arrays)

0 .. length-1 Legitimate value

< 0 Illegitimate value. The starting index will be set to 0.

>= length Illegitimate value. The starting index will be set to 0.

int The length of the value to write (eligible for strings and arrays)

<= 0 Write from the starting index to the end of the data.

> 0 Write from the staring index for a specified number of the

length up to the data ends.

Return

int Send result

1 Sent successfully.

0 Unable to send the data value as an empty string or an empty array.

-1 Socket exception occurred during sending.

-2 Unable to connect to the remote device.

-3 The device name does not exist, or IP or port is incorrect.

Syntax 2

int socket_sendline(

string,

?,

int

)

Note

Same as syntax 1. Fill 0 as the length of the value to write by default.

Syntax 3

int socket_sendline(

string,

?

)

Note

Same as syntax 1. Fill 0 as the starting index and the length of the value to write by

default.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 277

int var_re = socket_sendline("ntd_a", 200) // send 0xC8,0x0D,0x0A

var_re = socket_sendline("ntd_a", 2000) // send 0xD0,0x07,0x00,0x00,0x0D,0x0A (int,

Little Endian)

var_re = socket_sendline("ntd_a", (float)0.234) // send 0xB2,0x9D,0x6F,0x3E,0x0D,0x0A

(float, Little Endian)

var_re = socket_sendline("ntd_a", (double)0.234)

// send 0xC1,0xCA,0xA1,0x45,0xB6,0xF3,0xCD,0x3F,0x0D,0x0A (double, Little Endian)

var_re = socket_sendline("ntd_a", "Hello, World"+newline)

// send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x57,0x6F,0x72,0x6C,0x64,0x0D,0x0A,0x0D,0x0A

(string, UTF8)

int[] var_ii = {100, 200, 300}

var_re = socket_sendline("ntd_a", var_ii)

// send 0x64,0x00,0x00,0x00,0xC8,0x00,0x00,0x00,0x2C,0x01,0x00,0x00,0x0D,0x0A (int[], Little

Endian)

string[] var_ss = {"TM", "", "Robot"}

var_re = socket_sendline("ntd_a", var_ss)

// send 0x54,0x4D,0x52,0x6F,0x62,0x6F,0x74,0x0D,0x0A (string[], UTF8)

//var_ss[1] is an empty string. The conversion value is still empty.

var_re = socket_sendline("ntd_a", 1000, 1, 2)

// Invalid in the value, the starting index, and the length

// send 0xE8,0x03,0x00,0x00,0x0D,0x0A (int, Little Endian)

var_re = socket_sendline("ntd_a", "Hello, World"+newline, 0, 7)

// send 0x48,0x65,0x6C,0x6C,0x6F,0x2C,0x20,0x0D,0x0A (string, UTF8)

byte[] var_bb = {123, 234}

var_re = socket_sendline("ntd_a", var_bb) // send 0x7B,0xEA,0x0D,0x0A

var_re = socket_sendline("ntd_a", var_bb, 1, 1) // send 0xEA,0x0D,0x0A

//Array. Read 1 from address 1.

var_re = socket_sendline("ntd_a", var_bb, -1, 1) // send 0x7B,0x0D,0x0A

// Array. Read 1 from address 0.

var_re = socket_sendline("ntd_a", "達明機器人", 2)

//" Array. Read from address 2 till the end. "機器人"

// send 0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A (string, UTF8)

var_ss = {"TM", "", "達明機器人"}

var_re = socket_sendline("ntd_a", var_ss)

// send

0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,

0x0A

var_re = socket_sendline("ntd_a", Byte_Concat(GetBytes(var_ss),

GetBytes(newline)))

// send

0x54,0x4D,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A,0x0D,

0x0A

var_re = socket_sendline("ntd_a", var_ss, 2, -1)

// Array. Read from address 2 till the end. [2]=達明機器人

// send

0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA,0x0D,0x0A

Omron TM Collaborative Robot: TMScript Language Manual (I664) 278

10. Manual Decision Functions
10.1 MDecision Class

Use the MDecision class with variable declaration to allow users to configure M-Decision

nodes for conditional judgments or to display pop-up messages.

Construct 1

MDecision VariableName

MDecision VariableName = string, string

Parameter

string Headline
string Text

Note

MDecision md1 // Headline and text are empty strings.
MDecision md2 = "Test1", "MDecision Test"
// The headline is "Test1", and the text, "MDecision Test".

Member Methods

Name Default Description

Reset() - Reset all MDecision parameters to the default.

Title() "" The pop-up headline

Description() "" The pop-up text

Timeout() -1 Timeout

TimeoutDefaultCase() 0 The default index after the timeout

Case() - Add, delete, or modify the conditional judgement

Show() Check the conditional judgement

Omron TM Collaborative Robot: TMScript Language Manual (I664) 279

Reset()

Reset all MDecision parameters to the default.

Syntax 1

void Reset(
)
Parameters

void No input value
Return

void No return

10.1.2 Title()

Set the pop-up headline

Syntax 1

void Title(
string

)
Parameters

string The headline
Return

void No return

10.1.3 Description()

Set the pop-up text

Syntax 1

void Description(
string

)
Parameters

string The text
Return

void No return

10.1.4 Timeout()

Set the stop condition of timeout.

Syntax 1

void Timeout(
int,
int

)
Parameters

int Timeout in millisecond
< 0 Disable
>= 0 Timeout duration

Omron TM Collaborative Robot: TMScript Language Manual (I664) 280

int The default index after timeout
Return

void No return

Syntax 2

void Timeout(
int

)

Note

Same as Syntax 1. For setting the timeout duration.

Syntax 3

void Timeout(
)
Parameters

void No input value for cancelling the timeout.
Return

void No return

10.1.5 TimeoutDefaultCase()

Set the default index after the timeout

Syntax 1

void TimeoutDefaultCase(
int

)
Parameters

int The default index after the timeout.
Return

void No return

10.1.6 Case()

Add, delete, or modify the conditional judgment. It creates a new index if none exists, updates
an existing index, or deletes an index if only the index parameter is available.

Syntax 1

void Case(
int,
string,
string,
string,
bool

)
Parameters

int The condition or the index of the button in the pop-up
< 0 Error
>= 0 Legal index value

string Text to display of the button
string Text color of the button

Omron TM Collaborative Robot: TMScript Language Manual (I664) 281

"Red" Set the text color to red.
"Green" Set the text color to green.
"Blue" Set the text color to blue.
"Yellow" Set the text color to yellow.
"Black" Set the text color to black.
"White" Set the text color to white.
"Gray" Set the text color to gray.

string Background color of the button

"Red" Set the background color to red.
"Green" Set the background color to green.
"Blue" Set the background color to blue.
"Yellow" Set the background color to yellow.
"Black" Set the background color to black.
"White" Set the background color to white.
"Gray" Set the background color to gray.

bool The conditional can be true/false or a bool return of the statement.

Return

void No return

Syntax 2

void Case(
int,
string,
string,
string

)
Parameters

int The condition or the index of the button in the pop-up
string Text to display of the button

string Text color of the button

string Background color of the button

Note

Same as syntax 1. The condition is set to false meaning the condition of the index does

not meet.

Syntax 3

void Case(
int,
string

)
Parameters

int The condition or the index of the button in the pop-up
string Text to display of the button

Note

Same as syntax 1. The condition is set to false, with the default text color as white and the

default background color as blue.

Syntax 4

void Case(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 282

int,
string,
bool

)
Parameters

int The condition or the index of the button in the pop-up
string Text to display of the button
bool The conditional can be true/false or a bool return of the statement.

Note

Same as syntax 1 with the default text color as white and the default background color as

blue.

Syntax 5

void Case(
int

)
Parameters

int The condition or the index of the button in the pop-up
< 0 Error
>= 0 Legal index value

Note

Delete the set conditional judgment.

10.1.7 Show()

Check the condition. If it is true, it returns the index value without prompting a pop-up window.
If the condition is false, it prompts a pop-up window and continues to loop it concurrently. It
returns the respective index value if the condition meets, or the button index value when a user
clicks it. If there is a set timeout, it returns the default index value after the timeout.

Syntax 1

int Show(
)
Parameters

void No input value
Return

int The index value to return
Note

int var_count = 0
MDecision md1 = "TM", "Techman Robot?"
md1.Case(1, "Yes") // Add index 1, button text "Yes"
md1.Case(2, "OK") // Add index 2
md1.Case(3, "No") // Add index 3
md1.Case(4, "If", var_count > 100)
// Add index 4, button text "If", and a condition of var_count > 100 for judgment.
md1.Timeout(10000) // Timeout for 10000ms
md1.TimeoutDefaultCase(2)
md1.Case(2) // Delete index 2
int re = md1.Show() // Return the index that meets the condition or the index where the

button was clicked. If there is a timeout, it returns index 2.

Display(re)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 283

MDecision md2 = "TM", "Techman Robot?"
md2.Case(6, "YES") // Add index 6, button text "YES"
md2.Case(2, "OK") // Add index 2
md2.Case(1, "NO") // Add index 1
md2.Case(2, "OK-2") // Modify index 2
int re2 = md2.Show()
Display(re2)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 284

11. Parameterized objects
Using parameterized objects is the same as using user defined variables. Parameterized

objects can be used without declarations to get or modify point data through the syntaxes in the

project operations and make the robot go with more flexibility. The expression comes with 3 parts,

item, index, and attribute, and the syntax is shown as below.

 parameterized item[index].attribute

The supported parameterized items include:

1. Point

2. Base

3. TCP

4. VPoint

5. IO

6. Robot

7. FT

Definitions of the indexes and the attributes vary from parameterized items.

Take the reading and writing of the coordinate (attribute) of the Point (item) "P1" (index) as a

example. The index is defined as the name of the point, and the attribute, as the data type of

float (the same usage as the array’s) with modes of reading and writing.

Read values

 float[] f = Point["P1"].Value // In the item Point, the index is defined as the name of the

point and the data type of string.

 float f1 = Point["P1"].Value[0] // The x value of "P1" can be obtained solely

Write values

 Point["P1"].Value = {0, 0, 90, 0,

90, 0}

// Replace to the coordinate of "P1" with {0,0,90,0,90,0}

 Point["P1"].Value[2] = 120 // or replace the z value of "P1" with 12 solely

Value float[] R/W point coordinate{X,Y,Z,RX,RY,RZ}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 285

11.1 Point

Syntax

Base

Point[string].attribute

Item

Point

Index

string The name of the point in the point manager

Attribute

Name Type Mode Description Format

Value float[] R/W The coordinate of the point {X, Y, Z, RX, RY, RZ}, Size = 6

Joint float[] R/W The joint angle {J1, J2, J3, J4, J5, J6}, Size = 6

Pose int[] R/W The pose of the robot
{Config1, Config2, Config3}, Size =

3

Flange float[] R
The coordinate of the

flange's center
{X, Y, Z, RX, RY, RZ}, Size = 6

BaseName string R The name of the base "Base Name"

TCPName string R The name of the TCP "TCP Name"

TeachValue float[] R
The original coordinate of

the teaching point
{X, Y, Z, RX, RY, RZ}, Size = 6

TeachJoint float[] R
The joint angle (the original

angle at the teach point)
{J1, J2, J3, J4, J5, J6}, Size = 6

TeachPose int[] R
The original pose of the

robot on the teaching point

{Config1, Config2, Config3}, Size =

3

*It recalcutes the the Joint and Flange when setting the Value, and it recalcutates the Value and Flange
when setting the Joint. Therefore, it reports an error if it cannot calculate the set value.

Note

// Read values

float[] f = Point["P1"].Value / Obtain the coordinate {X, Y, Z, RX, RY, RZ} of "P1"

float f1 = Point["P1"].Value[0] // or retrieve the x value of "P1" solely

float f1 = Point["P1"].Value[6] // Return error, exceeding the array’s access range

string s =Point["P1"].BaseName // s ="RobotBase"

// Write values

Point["P1"].Value = {0, 0, 90, 0, 90, 0} // Replace the coordinate of "P1" with {0,0,90,0,90,0}

Point["P1"].Value[2] = 120 // or replace the z value of "P1" with 120 solely

Point["P1"].Flange = {0, 0, 90, 0, 90, 0} // Read only, invalid operation

Point["P1"].Value = {0, 0, 90, 0, 90} // Return error, writing elements to the array do not match to 6

(writing 5 elements)

Point["P1"].Pose = {1, 2, 4, 0} // Return error, writing elements to the array do not match to 3

(writing 4 elements)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 286

11.2 Base

Syntax

Base

Base[string].attribute or

Base[string, int].attribute

Item

Base

Index

string The name of the base in the base manager

*The name of the base comes with the attribute of the mode in reading

without writing only.

"RobotBase"

int The index of the base, available to assign with multiple bases built by vision

one shot get all, ranging from 0 as the default to N.

Attribute

Name Type Mode Description Format

Value float[] R/W The base value {X, Y, Z, RX, RY, RZ}, Size = 6

Type string R The type of the base

"R": Robot Base

"V": Vision Base

"C": Custom Base

TeachValue float[] R
The original teach base

value
{X, Y, Z, RX, RY, RZ}, Size = 6

Note

// Read values

float[] f = Base["RobotBase"].Value // Obtain the base value {0,0,0,0,0,0} of the base

"RobotBase"

float f1 = Base["base1"].Value[0] // or retrieve the x value of "base1" solely

string s =Base["base1"].Type // s ="C"

s =Base[Point["P1"].BaseName].Type // s ="R" // Given the type of "P1" is "RobotBase"

float[] f = Base["vision_osga",1].Value // Obtain the 2nd value of the "vision_osga"

// Write values

Base["RobotBase"].Value = {0, 0, 90, 0, 90, 0} // Read only, invalid operation, because

"RobotBase" is the system base

Base["base1"].Value = {0, 90, 0, 0, 90, 0} // Replace the value of "base1" with {0,90,0,0,90,0}

Base["base1"].Value[4] = 120 // or replace the RY value of "base1" with 120 solely

Base["base1"].Value[6] = 120 // Return error, exceeding the array’s access range

Base["base1"].Type = "C" // Read only, invalid operation

Base["base1"].Value = {0, 0, 90, 0, 90} // Return error, writing elements to the array do

not match to 6 (writing 5 elements)

Base["base1"].Value = {0, 0, 90, 0, 90, 0, 100} // Return error, writing elements to the array do

not match to 6 (writing 7 elements)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 287

11.3 TCP

Syntax

TCP

TCP[string].attribute

Item

TCP

Index

string The name of the TCP in the TCP list

*The name of the TCP comes with the attribute of the mode in reading

without writing only.

"RobotEndFlange"

"HandCamera"

"HandCamera2"

Attribute

Name Type Mode Description Format

Value float[] R/W The value of the TCP {X, Y, Z, RX, RY, RZ}, Size = 6

Mass float R/W The value of mass Mass in kg

MOI float[] R/W
The value of the Principal

Moments of Inertia
{Ixx, Iyy, Izz}, Size = 3

MCF float[] R/W

The value of Mass center frame

with principle axes w.r.t tool

frame

{X, Y, Z, RX, RY, RZ}, Size = 6

TeachValue float[] R The original value of the TCP {X, Y, Z, RX, RY, RZ}, Size = 6

TeachMass float R The original value of mass Mass in kg

TeachMOI float[] R
The original value of the

Principal Moments of Inertia
{Ixx, Iyy, Izz}, Size = 3

TeachMCF float[] R

The original value of Mass

center frame with principle axes

w.r.t tool frame

{X, Y, Z, RX, RY, RZ}, Size = 6

Note

// Read values

float[] f = TCP["RobotEndFlange "].Value

// Obtain the value {0,0,0,0,0,0} of the TCP " RobotEndFlange "

float f1 = TCP["RobotEndFlange "].Value[0]

// or retrieve the x value of " RobotEndFlange " solely

float mass = TCP["T1"].Mass // mass = 2.0

float[] moi = TCP["T1"].MOI // moi = {0,0,0}

float[] mcf = TCP["T1"].MCF // mcf = {0,0,0,0,0,0}

// Write values

TCP["RobotEndFlange "].Value = {0, -10, 0, 0, 0, 0}

// Read only, invalid operation, because " RobotEndFlange " is the system TCP

TCP["T1"].Value = {0, -10, 0, 0, 0, 0} // Replace the value of "T1"with {0,-10,0,0,0,0}

TCP["T1"].Value[0] = 10 // or replace the X value of "T1" with 10 solely

TCP["T1"].Mass = 2.4 // Replace the mass value of "T1" with 2.4 kg

TCP["T1"].MOI = {0, 0, 0, 1, 2} // Return error, writing elements to the array do not match

to 3 (writing 5 elements)

TCP["T1"].MCF = {0, -20, 0, 0, 0, 0, 0} // Return error, writing elements to the array do not match

to 6 (writing 7 elements)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 288

11.4 VPoint

Syntax

VPoint

VPoint[string].attribute

Item

VPoint Initial position of the vision job

Index

string The name of the VPoint

Attribute

Name Type Mode Description Format

Value float[] R/W
The initial coordinate of

VPoint
{X, Y, Z, RX, RY, RZ}, Size = 6

BaseName string R The name of the VPoint "Base Name"

TeachValue float[] R
The original job initial

coordinate of VPoint
{X, Y, Z, RX, RY, RZ}, Size = 6

Note

// Read values

float[] f = VPoint["Job1"].Value // Obtain the initial coordinate {X, Y, Z, RX, RY, RZ} of VPoint

"Job1"

float f1 = VPoint["Job1"].Value[0] // or retrieve the x value of "Job1"

float f1 = VPoint["Job1"].Value[6] // Return error, exceeding the array’s access range

string s = VPoint["Job1"].BaseName // s ="RobotBase"

// Write values

VPoint["Job1"].Value = {0, 0, 90, 0, 90, 0} // Replace the initial coordinate of VPoint "Job1" with

{0,0,90,0,90,0}

VPoint["Job1"].Value[2] = 120 // or replace the Z value of "Job1" with 120 solely

VPoint["Job1"].BaseName = "base1" // Read only, invalid operation

VPoint["Job1"].Value = {0, 0, 90, 0, 90} // Return error, writing elements to the array do

not match to 6 (writing 5 elements)

VPoint["Job1"].Value = {0, 0, 90, 0, 90, 0, 100} // Return error, writing elements to the array do

not match to 6 (writing 7 elements)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 289

11.5 IO

Syntax

IO

IO[string].attribute

Item

IO Input/Output

Index

string The name of the control module

ControlBox the control box

EndModule the end module

ExtModuleN the external module (N = 0 .. n)

Safety the safety module

Attribute

ControlBox / EndModule / ExtModuleN

Name Type Mode Description Format

DI byte[] R Digital input

[0] = DI0 0: Low, 1: High

[1] = DI1

[n] = DIn

DO byte[] R/W Digital output

[0] = DO0 0: Low, 1: High

[1] = DO1

[n] = DOn

AI float[] R Analog input

[0] = AI0 -10.24V .. +10.24V (Voltage)

[1] = AI1

[n] = AIn

AO float[] R/W Analog output

[0] = AO0 -10.00V .. + 10.00V (Voltage)

[1] = AO1

[n] = AOn

InstantDI byte[] R
Digital input (Instant

Command)

[0] = DI0 0: Low, 1: High

[1] = DI1

[n] = DIn

InstantDO byte[] R/W
Digital output (Instant

Command)

[0] = DO0 0: Low, 1: High

[1] = DO1

[n] = DOn

InstantAI float[] R
Analog input (Instant

Command)

[0] = AI0 -10.24V .. +10.24V (Voltage)

[1] = AI1

[n] = AIn

InstantAO float[] R/W
Analog output (Instant

Command)

[0] = AO0 -10.00V .. + 10.00V (Voltage)

[1] = AO1

[n] = AOn

* The sets of DI[n]/DO[n]/AI[n]/AO[n] vary from the actual hardware device identification.

Safety

Name Type Mode Description Format

SI byte[] R Safety function input

0: Low, 1: High

SI[0] = SF1 User Connected ESTOP input

SI[1] = SF3 User Connected External Safeguard

Input

SI[2] According to Safety Input Ports Assign

Omron TM Collaborative Robot: TMScript Language Manual (I664) 290

Name Type Mode Description Format

SI[3] According to Safety Input Ports Assign

..

SI[7] According to Safety Input Ports Assign

SO byte[] R
Safety function

output

0: Low, 1: High

SO[0] According to Safety Output Ports Assign

SO[1] According to Safety Output Ports Assign

SO[2] According to Safety Output Ports Assign

SO[3] According to Safety Output Ports Assign

..

SO[7] According to Safety Output Ports Assign

The differences between DI/DO/AI/AO and InstantDI/InstantDO/InstantAI/InstantAO

DI/DO/AI/AO is the queue command with reservations in the main flow of the project. If a

DI/DO/AI/AO is after the robot motion function such as a point node with the mixture of

trajectories, the DI/DO/AI/AO will be operated after the point node is finished. If using an

InstantDI/InstantDO/InstantAI/InstantAO command, It will be operated while the point node is

on the run and without waiting for the point node to finish.

In addition, if DI/DO/AI/AO turns to an instant command automatically in the thread page

of a project as going without waiting for the point node to finish before running along, the result

is the same as using InstantDI/InstantDO/InstantAI/InstantAO.

Note

// Read values

byte[] di = IO["ControlBox"].DI // Obtain the digital input status of ControlBox

int dilen = Length(di) // Obtain the amount of digital PINs with the size of the array

byte di0 = IO["ControlBox"].DI[0] // Obtain the status of ControlBox DI[0]

byte di32 = IO["ControlBox"].DI[32]// Return error, exceeding the array’s access range (given DI is

an array with the length of 16 where the indexes start with 0

and end with 15.

float[] ai = IO["ControlBox"].AI // Obtain the analog input status of ControlBox

float[] ao = IO["ControlBox"].AO // Obtain the analog output status of ControlBox

byte si0 = IO["Safety"].SI[0] // Obtain the safety input status of Safety SI[0]

byte so4 = IO["Safety"].SO[4] // Obtain the safety output status of Safety SO[4]

byte si1 = IO["ControlBox"].SI[1] // Return error, ControlBox does not support SI attribute.

byte di2 = IO["Safety"].DI[2] // Return error, Safety does not support DI attribute.

byte di7 = IO["ControlBox"].InstantDI[7]// Obtain the status of ControlBox" DI[7] (instant execution)

// Write values

IO["ControlBox"].DI = {1,1,0,0} // Read only, invalid operation

IO["ControlBox"].DI[0] = 0 // Read only, invalid operation

IO["ControlBox"].DO[2] = 1 // Set DO 2 to High

IO["ControlBox"].AO[0] = 3.3 // Set AO0 to 3.3V

IO["ControlBox"].DO = {1,1,0,0} // Return error, elements to write mismatch to array’s size

(given DI is an array with the length of 16 which covers 16

elements)

IO["ControlBox"].InstantDO[0] = 1 // Set DO 0 to High (Instant Execution)

IO["Safety"].SI[0] = 0 // Read only, invalid operation

IO["Safety"].SO[4] = 1 // Read only, invalid operation

IO["ControlBox"].SO[1] = 1 // Return error, ControlBox does not support SO attribute.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 291

IO["Safety"].DO[2] = 1 // Return error, Safety does not support DO attribute.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 292

11.6 Robot

Syntax

Robot

Robot[int].attribute

Item

Robot

Index

int The index of the robot fixed at 0

Attribute

Name Type Mode Description Format

CoordRobot float[] R

The TCP coordinate of the

robot end point opposite to the

RobotBase of the robot

{X, Y, Z, RX, RY, RZ}, Size =

6

CoordBase float[] R

The TCP coordinate of the

robot end point opposite to the

current base of the robot.

{X, Y, Z, RX, RY, RZ}, Size =

6

Joint float[] R The current robot joint angle
{J1, J2, J3, J4, J5, J6}, Size

= 6

BaseName string R The name of the current base "Base Name"

TCPName string R The name of the current TCP "TCP Name"

Payload float R
The current compensatory

payload
kg

CameraLight byte R/W
The lighting of the robot’s

camera
0: Low (Off), 1: High (On)

InstantCameraLight byte R/W
The lighting of the robot’s

camera (Instant Command)
0: Low (Off), 1: High (On)

TCPForce3D float R

The current TCP force as the

composite force of the robot

base x, y, and z.

N

TCPSpeed3D float R

The current TCP speed as a

composite speed of the robot

base x, y, and z.

mm/s

Note

// Read values

float[] rtool = Robot[0].CoordRobot // Obtain the current TCP coordinate of the robot end

point opposite to the RobotBase of the robot

float[] ftool = Robot[0].CoordBase // Obtain the current TCP coordinate of the robot end point

opposite to the current base of the robot.

float f = Robot[0]. CoordBase[0] // or retrieve the X value of the current TCP coordinate of the

robot end point opposite to the current base of the robot solely.

f = Robot[0]. CoordBase[6] // Return error, exceeding the array’s access range

float[] joint = Robot[0].Joint // Obtain the current robot joint angle

float j = Robot[0].Joint[0] // or retrieve the current angle of the robot’s 1st joint solely

string b = Robot[0].BaseName // b = "RobotBase"

string t = Robot[0].TCPName // t = "RobotEndFlange"

float load = Robot[0].Payload // 0

byte light = Robot[0].CameraLight // light = 0 (OFF)

float tf3d = Robot[0].TCPForce3D // tf3d = 1.234

Omron TM Collaborative Robot: TMScript Language Manual (I664) 293

float ts3d = Robot[0].TCPSpeed3D // ts3d = 1.234

// Write values

Robot[0].CoordRobot = {0, 90, 0, 0, 0, 0} // Read only, invalid operation

Robot[0].CoordBase = {0, 0, 90, 0, 90, 0} // Read only, invalid operation

Robot[0].BaseName = "Base1" // Read only, invalid operation

Robot[0].TCPName = "Tool1" // Read only, invalid operation

Robot[0].Payload= 3.4 // Read only, invalid operation

Robot[0].CameraLight = 1 // Turn on the lighting of the robot’s camera

Robot[0].CameraLight = 0 // Turn off the lighting of the robot’s camera

Robot[0].TCPSpeed3D = 1.234 // Read only, invalid operation

Omron TM Collaborative Robot: TMScript Language Manual (I664) 294

11.7 FT

Syntax

FT

FT[string].attribute

Item

FT Force Torque sensor status

Index

string The name of F/T sensor in the F/T sensor list

Attribute

Name Type Mode Description Format

X float R The force value of the X axis

Y float R The force value of the y axis

Z float R The force value of the z axis

TX float R The torque value of the X axis

TY float R The torque value of the y axis

TZ float R The torque value of the z axis

F3D float R The XYZ resultant force value

T3D float R The XYZ torque value

Value float[] R
The XYZ resultant force value

and torque value array.

{X, Y, Z, TX, TY, TZ},

Size = 6

ForceValue float[] R
The XYZ resultant force value

array
{X, Y, Z}, Size = 3

TorqueValue float[] R The XYZ torque value array {TX, TY, TZ}, Size = 3

RefCoordX float R

The X-axis force value

measured based on the

reference base set in the node

RefCoordY float R

The Y-axis force value

measured based on the

reference base set in the node

RefCoordZ float R

The Z-axis force value

measured based on the

reference base set in the node

RefCoordTX float R

The X-axis torque value

measured based on the

reference base set in the node

RefCoordTY float R

The Y-axis torque value

measured based on the

reference base set in the node

RefCoordTZ float R

The Z-axis torque value

measured based on the

reference base set in the node

RefCoordF3D float R

The XYZ resultant force value

measured based on the

reference base set in the node

RefCoordT3D float R

The XYZ torque measured

based on the reference base set

in the node

Omron TM Collaborative Robot: TMScript Language Manual (I664) 295

Name Type Mode Description Format

RefCoordForceValue float[] R

The XYZ resultant force value

matrix measured based on the

reference base set in the node

{RefCoordX,

RefCoordY,

RefCoordZ}, Size = 3

RefCoordTorqueValue float[] R

The XYZ torque value matrix

measured based on the

reference base set in the node

{RefCoordTX,

RefCoordTY,

RefCoordTZ}, Size = 3

Model string R
The Model name of the F/T

sensor

Zero byte R/W Turn on or off F/T sensor offset 0: Zero OFF, 1: Zero ON

Attributes associated with RefCoord come with values when in Force Control.

Note

// Read values

float x = FT["fts1"].X // Obtain the current X-axis force value of F/T sensor "fts1"

float tx = FT["fts1"].TX // Obtain the current X-axis torque value of F/T sensor "fts1"

float f3d = FT["fts1"].F3D // Obtain the current XYZ resultant force value of F/T sensor "fts1"

float[] force = FT["fts1"].ForceValue // Obtain the current XYZ resultant force value array of

F/T sensor "fts1"

string mode = FT["fts1"].Model // Obtain the model name of F/T sensor "fts1"

// Write values

FT["fts1"].Y = 3.14 // Read only, invalid operation

FT["fts1"].TY = 1.34 // Read only, invalid operation

FT["fts1"].T3D = 4.13 // Read only, invalid operation

FT["fts1"].TorqueValue = {1.1, 2.2, 3.3} // Read only, invalid operation

FT["fts1"].Zero = 1 // Book the current offset of F/T sensor

Omron TM Collaborative Robot: TMScript Language Manual (I664) 296

12. Robot Teach Class
12.1 TPoint Class

Use TPoint Class and declare variables to create the point names and the point values. The

variable name will be the point name. *It takes calculations for the values of the coordinates

and the angles to construct points. It returns an error if it fails to calculate tthe values of the

coordinates and the angles with the parameter values.

Construct 1

TPoint VariableName = float[]

TPoint VariableName = float, float, float, float, float, float

Parameters

float[] The Robot End TCP Coordinate: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

recorded by RobotBase and RobotEndFlange TCP.

Note

TPoint p1 = {0,-282.75,1094.9,90,0,0}

// the coordinate value 0,-282.75,1094.9,90,0,0 by RobotBase and

RobotEndFlange

TPoint p2 = 517.5,-147.8,442.45,180,0,90

// the coordinate value 517.5,-147.8,442.45,180,0,90 by RobotBase and

RobotEndFlange

Construct 2

TPoint VariableName = string, float[]

TPoint VariableName = string, float, float, float, float, float, float

Parameters

string Point Definitions. Default to "C".

"C" Point coordinate. When the project operation ends, it does not write

the values back to the record file. It uses the declared values with

the next project operation.(Same as Construct 1)

"D" Point coordinate. When the project operation ends, it writes the

values back to the record file. It prioritizes using the record file with

the next project operation. If the record file comes empty, it uses the

declared values.

"J" Joint angle. When the project operation ends, it does not the values

back to the record file. It uses the declared values with the next

project operation.

"JD" Joint angle. When the project operation ends, it writes the values

back to the record file. It prioritizes using the record file with the next

project operation. If the record file comes empty, it uses the

declared values.

float[] If expressed in coordinates, this is the six elements of the TCP coordinates

at the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°); if expressed in

angles, the six elements of the robot joints: Joint 1(°), Joint 2(°), Joint 3(°),

Joint 4(°), Joint 5(°), Joint 6(°) by the RobotBase base and RobotEndFlange

TCP records.

Note

TPoint p3 = "D",{522.07,130.75,442.45,180,0,120}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 297

TPoint p4 = "D",134.95,-147.8,1094.9,90,0,90 // Return error，unable to calculate the angle

value by the coordinate value

TPoint p5 = "J",0,0,90,0,90,0

// the angle value 0,0,90,0,90,0 by RobotBase and RobotEndFlange

TPoint p6 = "JD",{30,0,90,0,90,0}

// the angle value 30,0,90,0,90,0 by RobotBase and RobotEndFlange

Construct 3

TPoint VariableName = string, float[], string, string

TPoint VariableName = string, float, float, float, float, float, float, string, string

TPoint VariableName = float[], string, string

TPoint VariableName = float, float, float, float, float, float, string, string

Parameters

string Point Definitions. Default to "C".

"C" Point coordinate. When the project operation ends, it does not write

the values back to the record file. It uses the declared values with

the next project operation.

"D" Point coordinate. When the project operation ends, it writes the

values back to the record file. It prioritizes using the record file with

the next project operation. If the record file comes empty, it uses the

declared values.

"J" Joint angle. When the project operation ends, it does not the values

back to the record file. It uses the declared values with the next

project operation.

"JD" Joint angle. When the project operation ends, it writes the values

back to the record file. It prioritizes using the record file with the next

project operation. If the record file comes empty, it uses the

declared values.

float[] If expressed in coordinates, this is the six elements of the TCP coordinates

at the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°); if expressed

in angles, the six elements of the robot joints: Joint 1(°), Joint 2(°), Joint

3(°), Joint 4(°), Joint 5(°), Joint 6(°). Record by the base name and the

TCP name.

string Base name. Use the current base name in the record if an empty string.

string TCP name. Use the current TCP name in the record if an empty string.

Note

TBase base1 = 0,0,90,0,0,0

TTCP tcp1 = 0,0,10,0,0,0

TPoint p7 = "D",{0,-282.75,1094.9,90,0,0},"RobotBase"," RobotEndFlange "

TPoint p8 = "J",0,0,90,0,90,0,"base1"," RobotEndFlange "// by base1 and RobotEndFlange

TPoint p9 = "JD",{30,0,90,0,90,0},"RobotBase","tcp1" // by RobotBase and tcp1

TPoint p0 = "C",{517.5,-147.8,342.45,180,0,90},"base1","tcp1" // by base1 and tcp1

// The syntax below is in the non-define section.

ChangeBase("base1")

TPoint p00 = {517.5,-147.8,342.45,180,0,90},"","tcp1" // by the current base1 and the

assigned tcp1

Construct 4

TPoint VariableName = string, float[], float[], string, string

TPoint VariableName = string, float[], float[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 298

TPoint VariableName = float[], float[], string, string

TPoint VariableName = float[], float[]

Parameters

string Point Definitions. Default to "C".

"C" When the project operation ends, it does not write the values back

to the record file. It uses the declared values with the next project

operation.

"D" When the project operation ends, it writes the values back to the

record file. It prioritizes using the record file with the next project

operation. If the record file comes empty, it uses the declared values.

float[] Expressed in coordinates, this is the six elements of the TCP coordinates at

the robot end: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°).

float[] Expressed in angles, the six elements of the robot joints: Joint 1(°), Joint

2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°). Record by the base name

and the TCP name.

string Base name. Use the current base name in the record if an empty string.

string TCP name. Use the current TCP name in the record if an empty string.

Note

TBase base1 = 0,0,90,0,0,0

TTCP tcp1 = 0,0,10,0,0,0

TPoint tp1 = "C",{0,-282.75,1094.9,90,0,0},{0,0,0,0,0,0},"RobotBase"," RobotEndFlange

"

TPoint tp2 = "D",{517.5,-147.8,442.45,180,0,90},{0,0,90,0,90,0}

// by RobotBase and RobotEndFlange

TPoint tp3 = {0,-292.75,1004.9,90,0,0},{0,0,0,0,0,0},"base1","tcp1" // by base1 and tcp1

TPoint tp4 = {134.95,-147.8,1094.9,90,0,90},{0,0,0,0,90,0}

// by RobotBase and RobotEndFlange

// The syntax below is in the non-define section.

ChangeBase("base1")

ChangeTCP("tcp1")

TPoint tp5 = {0,-292.75,1004.9,90,0,0},{0,0,0,0,0,0},"","" // by the current base1 and the

current tcp1

Member Attibutes

Name Type Mode Description Format

Value float[] R/W Point coordinate {X, Y, Z, RX, RY, RZ}, Size = 6

Joint float[] R/W Joint angle {J1, J2, J3, J4, J5, J6}, Size = 6

Pose int[] R/W Robot pose {Config1, Config2, Config3}, Size = 3

Flange float[] R Flange center coordinate {X, Y, Z, RX, RY, RZ}, Size = 6

BaseName string R Base name "Base Name"

TCPName string R TCP name "TCP Name"

TeachValue float[] R
Point coordinate (the original

teach point coordinate)
{X, Y, Z, RX, RY, RZ}, Size = 6

TeachJoint float[] R
Joint angle (the original teach

point angle)
{J1, J2, J3, J4, J5, J6}, Size = 6

TeachPose int[] R
Robot pose (the original teach

point pose)
{Config1, Config2, Config3}, Size = 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 299

* It recalculates the Joint and the Flange while setting the Value, and it recalculates the Value and the Flange

while setting the Joint. Therefore, it returns an error if failed to calculate.

Note

TPoint P1 = {0,-282.75,1094.9,90,0,0}

// "P1"Coordinate value 0,-282.75,1094.9,90,0,0 by RobotBase and

RobotEndFlange

// Read values

float[] f = P1.Value // Get the point coordinate of the point "P1" {0,-282.75,1094.9,90,0,0}

float f1 = P1.Value[1] // or get the Y value along of point "P1"

float f2 = P1.Value[6] // Return error. Exceeding the array’s access range

float[] f3 = P1.Joint // Get the angle value of the point "P1" {0,0,0,0,0,0}

string s = P1.BaseName // s = "RobotBase"

// Write values

P1.Value = {517.5,-147.8,442.45,180,0,90} // Modify the point coordinate of the point "P1" to

{517.5,-147.8,442.45,180,0,90}

P1.Value[2] = 450 // or modify the z value along of point "P1" to 450

P1.Flange = {0,0,90,0,90,0} // Read only, invalid operation

P1.Value = {0,0,90,0,90} // Return error. The amount of the array elements to wirte does not matach

to 6. (5)

P1.Pose = {1,2,4,0} // Return error. The amount of the array elements to wirte does not matach to 3.

(4)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 300

12.2 TBase Class

Use TBase Class and declare variables to create the point names and the point values. The

variable name will be the point name.

*The system base name comes with the attribute of the read-only mode and without the write

mode.

"RobotBase"

Once the variable name is the system base name, it is for variable declaration only. The input

value is invalid in the construct.

Construct 1

TBase VariableName = float[]

TBase VariableName = float, float, float, float, float, float

Parameters

float[] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Note

TBase base1 = {0,0,90,0,0,0} // Name: base1, Type: C, Value: 0,0,90,0,0,0

TBase base2 = 0,90,90,0,0,0 // Name: base2, Type: C, Value: 0,90,90,0,0,0

TBase RobotBase = 0,0,90,0,0,90

// Since RobotBase is the system base, the input values are void but variable

declarations.

Construct 2

TBase VariableName = string, float[]

TBase VariableName = string, float, float, float, float, float, float

Parameters

string Base Types. Default to "C".

"C" When the project operation ends, it does not write the values back

to the record file. It uses the declared values with the next project

operation.(Same as Construct 1)

"D" When the project operation ends, it writes the values back to the

record file. It prioritizes using the record file with the next project

operation. If the record file comes empty, it uses the declared values.

"V" Defined the same as type "D." This type goes with vision jobs mainly.

The name must comply with the naming rule beginning with vision_.

* Only in the define variable section will the variable declaration come with the

write back to the record file mechanism.

float[] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Note

TBase base5 = "C",{0,0,90,0,0,0} // Name: base5, Type: C, Value: 0,0,90,0,0,0

TBase base6 = "D",0,90,90,0,0,0 // Name: base6, Type: D, Value: 0,90,90,0,0,0

TBase vision_base7 = "V",90,90,90,0,0,0 // Name: vision_base7, Type: V, Value:

90,90,90,0,0,0

TBase base8 = "V",90,90,90,0,0,0

// Return error. The name, base8 , does not comply the naming rule of the type

V.

Member Attibutes

Name Type Mode Description Format

Value float[] R/W Base value {X, Y, Z, RX, RY, RZ}, Size = 6

Type string R Base type "R": Robot Base

Omron TM Collaborative Robot: TMScript Language Manual (I664) 301

Name Type Mode Description Format

"C": Custom Base

"D": Custom Base with write-back

"V": Vision Base

TeachValue float[] R
Base value (the original teach

point base value)
{X, Y, Z, RX, RY, RZ}, Size = 6

Member Methods

Name Description

GetValue() Retrieve the base value

SetValue() Set the base value

ConShift()
Convert a new base value (the original teach value) with the base

value and the shift value.

12.2.1 GetValue()

Retrieve the base value. (applicable to multiple bases created in the vision jobs)

Syntax 1

float[] GetValue(

int

)

Parameters

int Base Index. Users can assign from multiple bases created by vision one shot

get all. The index is 0 to N and defaulted to 0.Base Index. Users can assign

from multiple bases created by vision one shot get all. The index is 0 to N

and defaulted to 0.

Return

float[] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

If the base index value is larger than the number of multiple bases, it returns

an empty array.

12.2.2 SetValue()

Set the base value. (applicable to multiple bases created in the vision jobs)

Syntax 1

bool SetValue(

int,

float[]

)

Parameters

int Base Index. Users can assign from multiple bases created by vision one shot

get all. The index is 0 to N and defaulted to 0.

float[] Base Value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Return

bool Return True if successful. Return False if failed.

If the base index value is larger than the number of multiple bases, it sets

Omron TM Collaborative Robot: TMScript Language Manual (I664) 302

failed.

Note

TBase base1 = {0,0,90,0,0,0} // Name: base1, Type: C, Value: 0,0,90,0,0,0

TBase RobotBase = 0,0,90,0,0,90

// Since RobotBase is the system base, the input values are void but variable declarations.

TBase base5 = "C",{0,0,90,0,0,0} // Name: base5, Type: C, Value: 0,0,90,0,0,0

TBase base6 = "D",0,90,90,0,0,0 // Name: base6, Type: D, Value: 0,90,90,0,0,0

TBase vision_base8 = "V",90,90,90,0,0,0

// Name: vision_base8, Type: V, Value: 90,90,90,0,0,0

// Read values

float[] b1 = base1.Value // Base: "base1", Value: {0,0,90,0,0,0}

float[] b2 = RobotBase.Value // Base: "RobotBase", Value {0,0,0,0,0,0}

float b3 = base1.Value[2] // Z value of Base "base1": 90

string t1 = base5.Type // "C"

string t2 = base6.Type // "D"

string t3 = vision_base8.Type // "V"

float[] b50 = base5.GetValue(0) // {0,0,90,0,0,0} Obtain the 1st base value in the base "base5".

float[] b51 = base5.GetValue(1) // {} empty array Obtain the 2nd base value in the base "base5".

float[] vb = vision_base8.GetValue(1) // Obtain the 2nd base value in the base"vision_base8".

// Suppose there is a vision job, it creates and updates the base

value of vision_base8.

// Write values

RobotBase.Value = {0,0,90,0,90,0} // Read only, invalid operation for "RobotBase" being the

system base.

base1.Value = {0,90,0,0,90,0} // Modify the base "base1" to {0,90,0,0,90,0}

base1.Value[4] = 120 // or modify the the RY value of the base "base1" alone to 120.

base1.Value[6] = 120 // Return error. Exceeding the array’s access range.

base1.Type = "C" // Read only, invalid operation

base1.Value = {0,0,90,0,90}

// Return error. The amount of the array elements to wirte does not matach to 6. (5)

base1.Value = {0,0,90,0,90,0,100}

// Return error. The amount of the array elements to wirte does not matach to 6. (7)

base6.Value = {30,90,90,0,0,0} // Write back to the record file since "base6" is type D.

base5.SetValue(0, {90,90,90,0,0,0}) // True. Set the 1st coordinate value in the base "base5".

base5.SetValue(1, {0,0,0,90,90,90}) // False. Failed to set.

12.2.3 ConvShift()

Convert a new base value with the base value (the original base teach value) and the shift

value, where the shift depends on the position and direction of the original coordinate.

Syntax 1
float[] ConvShift(

float[]
)

Parameters

float[] Shift value 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 303

float[] the new base value calculated by the given position and direction of the
original base teach value and the shift value.
𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Syntax 2
float[] ConvShift(

float, float, float, float, float, float
)

Note

Same as Syntax 1. It replaces the float[] type with float,float,float,float,float,float parameters.

Syntax 3
float[] ConvShift(

float[],
float[]

)

Parameters

float[] Base value 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

float[] Shift value 𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Return

float[] the new base value calculated by the given position and direction of the
original base teach value and the shift value.
𝑋(𝑚𝑚) 𝑌(𝑚𝑚) 𝑍(𝑚𝑚) 𝑅𝑋(°) 𝑅𝑌(°) 𝑅𝑍(°)

Note

TBase base1 = {200,200,0,0,0,90} // Name: base1, Type: C, Vaule: 200,200,0,0,090

float[] base_shift = {10,20,30,0,0,0}
float[] new_base = {0,0,0,0,0,0}

base1.Value = base1.ConvShift(base_shift) // {180,210,30,0,0,90}

new_base = base1.ConvShift(10,20,30,0,0,0) // {180,210,30,0,0,90}

new_base = base1.ConvShift(base1.Value, {10,20,30,0,0,0}) // {160,220,60,0,0,90}

new_base = base1.ConvShift(base1.TeachValue, {10,20,30,0,0,0}) // {180,210,30,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 304

12.3 TTCP Class

Use TTCP Class and declare variables to create the point names and the point values. The

variable name will be the point name.

*The system TCP name comes with the attribute of the read-only mode and without the write

mode.

"RobotEndFlange"

"HandCamera"

"HandCamera2"

Once the variable name is the system TCP name or is in the tool setting of TMflow, it is for

variable declaration only. The input value is invalid in the construct.

Construct 1

TTCP VariableName = float[], float

TTCP VariableName = float[]

TTCP VariableName = float, float, float, float, float, float, float

TTCP VariableName = float, float, float, float, float, float

Parameters

float[] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

float Tool Mass (㎏). Default to 0.

Note

TTCP tcp1 = {0,0,90,0,0,0} // Name: tcp1, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg

TTCP tcp2 = {0,0,90,0,0,0},2 // Name: tcp2, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg

TTCP tcp3 = 0,0,90,0,0,0 // Name: tcp3, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg

TTCP tcp4 = 0,0,90,0,0,0,2 // Name: tcp4, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg

TTCP RobotEndFlange = 0,0,90,0,0,90

// Since RobotEndFlange is the system tool name, the input values are void but variable

declarations.

Construct 2

TTCP VariableName = string, float[], float

TTCP VariableName = string, float[]

TTCP VariableName = string, float, float, float, float, float, float, float

TTCP VariableName = string, float, float, float, float, float, float

Parameters

string Tool Types. Default to "C".

"C" When the project operation ends, it does not write the values back

to the record file. It uses the declared values with the next project

operation.(Same as Construct 1)

"D" When the project operation ends, it writes the values back to the

record file. It prioritizes using the record file with the next project

operation. If the record file comes empty, it uses the declared values.

"V" Defined the same as type "D." This type goes with vision jobs mainly.

The name must comply with the naming rule beginning with vision_.

* Only in the define variable section will the variable declaration come with the

write back to the record file mechanism.

float[] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

float Tool Mass (㎏). Default to 0.

Note

TTCP tcp5 = "C",{0,0,90,0,0,0} // Name: tcp5, Type: C, Value: 0,0,90,0,0,0, Mass: 0 kg

Omron TM Collaborative Robot: TMScript Language Manual (I664) 305

TTCP tcp6 = "D",{0,90,90,0,0,0},2 // Name: tcp6, Type: D, Value: 0,90,90,0,0,0, Mass: 2 kg

TTCP visionTCP_tcp7 = "V",90,90,90,0,0,0 // Name: visionTCP_tcp7, Type: V, Value:

90,90,90,0,0,0

TTCP tcp7v = "V",90,90,90,0,0,0

// Return error. The name, tcp7v, does not comply the naming rule of the

type V.

TTCP tcp8 = "D",90,90,90,0,0,0,2 // Name: tcp8, Type: D, Value: 90,90,90,0,0,0, Mass: 2 kg

Construct 3

TTCP VariableName = string, float[], float, float[], float[]

TTCP VariableName = float[], float, float[], float[]

Parameters

string Tool Types. Default to "C".

"C" When the project operation ends, it does not write the values back

to the record file. It uses the declared values with the next project

operation.(Same as Construct 1)

"D" When the project operation ends, it writes the values back to the

record file. It prioritizes using the record file with the next project

operation. If the record file comes empty, it uses the declared values.

"V" Defined the same as type "D." This type goes with vision jobs mainly.

The name must comply with the naming rule beginning with vision_.

* Only in the define variable section will the variable declaration come with the

write back to the record file mechanism.

float[] TCP value: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

float Tool Mass (㎏). Default to 0.

float[] Principal Moments of Inertia: Ixx(kg-mm2), Iyy(kg-mm2), Izz(kg-mm2)

float[] Mass Center Frame with Principle Axes w.r.t Tool Frame: X(mm), Y(mm), Z(mm), RX(°),

RY(°), RZ(°)

Note

TTCP tcp9 = {0,0,90,0,0,0},2,{2,0.5,0.5},{0,0,-80,0,0,0}

// Name: tcp9, Type: C, Value: 0,0,90,0,0,0, Mass: 2 kg, Inertia: 2,0.5,0.5, The Reference Coordinate:

0,0,-80,0,0,0

TTCP tcp0 = "D",{0,0,150,0,0,90},1,{1,0.5,0.5},{0,0,-80,0,0,0}

// Name: tcp0, Type: D, Value: 0,0,150,0,0,90, Mass: 1 kg, Inertia: 1,0.5,0.5, The Reference Coordinate:

0,0,-80,0,0,0

Member Attibutes

Name Type Mode Description Format

Value float[] R/W TCP value
{X, Y, Z, RX, RY, RZ}, Size =

6

Mass float R/W Mass Mass in kg

MOI float[] R/W Principal Moments of Inertia {Ixx, Iyy, Izz}, Size = 3

MCF float[] R/W
Mass center frame with principle axes

w.r.t tool frame

{X, Y, Z, RX, RY, RZ}, Size =

6

TeachValue float[] R
TCP value (the original TCP setting

value)

{X, Y, Z, RX, RY, RZ}, Size =

6

TeachMass float R Mass (the original TCP setting value) Mass in kg

TeachMOI float[] R
Principal Moments of Inertia (the original

TCP setting value)
{Ixx, Iyy, Izz}, Size = 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 306

Name Type Mode Description Format

TeachMCF float[] R

Mass center frame with principle axes

w.r.t tool frame (the original TCP setting

value)

{X, Y, Z, RX, RY, RZ}, Size =

6

Note

TTCP tcp1 = {0,0,90,0,0,0},3 // Name: tcp1, Type: C, Value: 0,0,90,0,0,0, Mass: 3 kg

TTCP RobotEndFlange = 0,0,90,0,0,90

// Since RobotEndFlange is the system tool name, the input values are void but variable

declarations.

TTCP tcp9 = "D",{0,0,90,0,0,0},2,{2,0.5,0.5},{0,0,-80,0,0,0}

// Read values

float[] t0 = RobotEndFlange.Value

// Obtain the TCP value of the tool named RobotEndFlange: {0,0,0,0,0,0}

float[] t1 = tcp1.Value // Obtain the TCP value of the tool named tcp1: {0,0,90,0,0,0}

float t2 = tcp1.Value[2] // or obtain the Z value of the tool named tcp1 alone.

float mass = tcp1.Mass // mass = 3

float[] mcf = tcp1.MCF // mcf = {0,0,0,0,0,0}

float mass9 = tcp9.Mass // mass9 = 2 // Obtain 2.1 kg if operate after tcp9.Mass = 2.1

float[] moi9 = tcp9.MOI // moi9 = {2,0.5,0.5}

// Write values

RobotEndFlange.Value = {0, -10, 0, 0, 0, 0}

// Read only, invalid operation for RobotEndFlange being the system TCP.

tcp1.Value = {0, -10, 0, 0, 0, 0} // Modify the TCP named tcp1 to {0,-10,0,0,0,0}

tcp1.Value[0] = 10 // or modify the X value of tcp1 alone to 10

tcp1.Mass = 2.4 // Modify the the mass of the TCP named tcp1 to 2.4 kg.

tcp9.Mass = 2.1 // Modify the the mass of the TCP named tcp9 to 2.1 kg.

tcp1.MOI = {0, 0, 0, 1, 2} // Return error. The amount of the array elements to wirte does not

matach to 3. (5)

tcp1.MCF = {0, -20, 0, 0, 0, 0, 0}

// Return error. The amount of the array elements to wirte does not

matach to 6. (7)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 307

13. Robot Motion & Vision Job Function
For robot motion functions and vision job functions to be available if using flow projects, it

requires the External Script to have the project flow enter the Listen node (external script control

mode) or the script node. If using script project programming, they are available in the project

programming directly.

Calling in the main thread, namely, the main flows or subflows in the flow projects, or the main

functions and the functions to call in the script projects, is mandatory for robot motion functions and

vision job functions moving to the initial position.Calling motion functions is not allowed in other

threads. All the motion processes will be queued temporarily and processed in sequence. Users

can use the queue tag numbers to understand the current motion command process if necessary.

13.1 QueueTag()

Set robot motions with Queue Tag Numbers to denote the current robot motion in process. The

status of each queue tag can be monitored using TMSTA SubCmd 01.

Syntax 1

bool QueueTag(

int,

int

)

Parameters

int The tag number. Valid for integers between 1 and 15.

int Wait for the tagging to continue processing or not.

0 Not wait (default)

1 Wait

When the value is set to 1, the process stays in the function and waits for the

tagging to complete and continue processing.

Return

bool Return True when tagged successfully. Return False when tagged

unsuccessfully.

Syntax 2

bool QueueTag(

int

)

Note

Same as syntax 1. It default to 0 not waiting for the tagging to continue processing.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 308

13.2 WaitQueueTag()

Wait for the Queue Tag Number of the robot motion to complete.

Syntax 1

int WaitQueueTag(

int,

int

)

Parameters

int The tag number

1..15 Valid tag numbers.

0 Invalid tag number, but waits for the timeout. (No waiting for the time

out if set the timeout to infinite.)

<0 Unavailable tag number. No waiting for the time out.

>15 Unavailable tag number. No waiting for the time out.

int Set the time to the timeout

< 0 Wait infinitely. Valid when the tag number is between 1 to 15

legitimately. (default) = 0 Wait to check once

> 0 Wait in milliseconds before timeout

When using waiting in queue, the process stays in the function until the tagging

is completed, the tagging is not existed, or timeout, and then continues

processing.

Return

int Return the result of waiting

1 The tagging is completed

0 The tagging is incomplete or timeout

-1 The tagging is not existed

* Tag numbers can be reused.

* The tag number will retain the status of the final four tags, and if the tag number did not

occur or exceeds them, it returns not existed.

Syntax 2

int WaitQueueTag(

int

)

Note

The syntax is the same as syntax 1. The default is no timeout and required to wait for the

tagging to complete (or not existed)

WaitQueueTag(int, int) => WaitQueueTag(int, 0)

Syntax 3

void WaitQueueTag(

)

Parameters

void No input value

Return

void No return

Note

Omron TM Collaborative Robot: TMScript Language Manual (I664) 309

No tag number is required. It waits for all the robot motions in the current queue to complete

before going forward execution.

13.3 CheckQueueTag()

Check the Queue Tag Number of the robot motion to complete.

Syntax 1

int CheckQueueTag(

int

)

Parameters

int The tag number

1..15 Valid tag numbers.

Return

int Return the result of checking

1 The tagging is completed.

0 The tagging is incomplete.

-1 The tagging is not existed.

* Tag numbers can be reused.

* The tag number will retain the status of the final four tags, and if the tag number did not

occur or exceeds them, it returns not existed.

* Same as WaitQueueTag(int, 0) and denotes the result of one time checking only tag

number.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 310

⚫ Motion Function Queue Tag

Motion function queue tags are used to cooperate with the robot motion functions. Since all

motion functions are queued in the buffer and executed in order, use the cooperative queue

tags, it is possible to know which motion function is in execution currently.

1. < $TMSCT,172,2,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1)\r\n // QueueTag(1) not wait and continue processing

float[] targetP2 = {0,0,90,90,0,0}\r\n

PTP("JPP",targetP2,10,200,10,false)\r\n

QueueTag(2)\r\n // QueueTag(2) not wait and continue processing

,*49\r\n

When executed the script content, since QueueTag() did not wait, after execution, the

process returned

> $TMSCT,4,2,OK,*5F\r\n

When robot motion executed PTP() targetP1, because of QueueTag(1), it will return

> $TMSTA,10,01,01,true,*64\r\n // TMSTA SubCmd 01, TagNumber 01, completed

When robot motion executed PTP() targetP2, because of QueueTag(2) , it will return

> $TMSTA,10,01,02,true,*67\r\n // TMSTA SubCmd 01, TagNumber 02, completed

2. < $TMSCT,174,2,float[] targetP3= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP3,10,200,0,false)\r\n

QueueTag(3,1)\r\n // QueueTag(3) wait and stay in the function until the tagging completed

float[] targetP4 = {0,0,90,90,0,0}\r\n

PTP("JPP",targetP4,10,200,10,false)\r\n

QueueTag(4)\r\n // QueueTag(4) not wait and continue processing

,*56\r\n

When executed the script content, since QueueTag(3,1) is set to wait, after tagging

completed, the process returned

> $TMSTA,10,01,03,true,*66\r\n // TMSTA SubCmd 01, TagNumber 03, completed

When QueueTag(3) completed, the process continues, since QueueTag(4) is not set to wait,

after execution, the process returned

> $TMSCT,4,2,OK,*5F\r\n

When robot motion executed PTP() targetP2, because of QueueTag(4) , it will return

> $TMSTA,10,01,04,true,*61\r\n // TMSTA SubCmd 01, TagNumber 04, completed

* $TMSCT,4,2,OK is returned when the process executed the script. Therefore, if using

QueueTag to wait or WaitQueueTag to wait, it will return after the execution as well.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 311

13.4 StopAndClearBuffer()

Stop the motion of the robot and clear existing commands of the robot in the buffer.

Syntax

bool StopAndClearBuffer(

)

Parameter

void No parameter

Return

bool True Command accepted； False Command rejected

Note

StopAndClearBuffer()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 312

13.5 ChangeBase()

Set the reference base for the consecutive motion.

Syntax 1

bool ChangeBase(
string,
int

)

Parameters

string The base name
int The base index. Users can specify the bases created by the vision task of one

shot get all. The value is 0 N, and the default is 0.

Return

bool True Change successfully.
False Change unsuccessfully.

Syntax 2

bool ChangeBase(
string

)

Note
Same as syntax 1 and fill 0 as the default base index.

ChangeBase("RobotBase") //change the reference base for motion to "RobotBase"

ChangeBase("vision_job1", 1) //change the reference base to the 2nd base value of "vision_job1". If

the name or the index specified of the base does exist, it reports an

error.

ChangeBase("RobotBase", 10) //change the reference base for motion to "RobotBase". Since it is the

name of the base, the base index is invalid.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 313

Syntax 3

bool ChangeBase(
float[]

)

Parameters

float[] Base parameters X, Y, Z, RX, RY, and RZ

Return

bool True Change successfully.
False Change unsuccessfully.

Note
 float[] Base1 = {20,30,10,0,0,90} //declare a floating point array for the base values.

ChangeBase(Base1) //change the reference base for motion to the set base value

Syntax 4

bool ChangeBase(
float, float, float, float, float, float

)

Parameters

float, float, float, float, float, float
Base parameters X, Y, Z, RX, RY, and RZ

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeBase(20,30,10,0,0,90) //change the reference base to {20,30,10,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 314

13.6 ChangeTCP()

Set the end tool parameters for the consecutive motion.

Syntax 1

bool ChangeTCP(
string

)

Parameters

string TCP name

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeTCP("RobotEndFlange") //change the end tool to "RobotEndFlange"

Syntax 2

bool ChangeTCP(
float[]

)

Parameters

float[] TCP parameters X, Y, Z, RX, RY, and RZ

Return

bool True Change successfully.
False Change unsuccessfully.

Note
float[] Tool1 = {0,0,150,0,0,90} // declare a floating point array for the end tool values.

ChangeTCP(Tool1) // change the end tool value to the set end tool value

Syntax 3

bool ChangeTCP(
float[],
float

)

Parameters

float[] TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass

Return

bool True Change successfully.
False Change unsuccessfully.

Note
float[] Tool1 = {0,0,150,0,0,90} // declare a floating point array for the end tool values.

ChangeTCP(Tool1,2) // change the end tool value to the set end tool value.

 The weight of the end tool is 2kg.

Syntax 4

bool ChangeTCP(
float[],
float,
float[]

)

Parameters

float[] TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass

Omron TM Collaborative Robot: TMScript Language Manual (I664) 315

float[] TCP rotation inertia includes nine values: (1) Ixx, (2) Iyy, (3) Izz, along with the mass
center coordinates relative to the tool coordinates, which are (4) X, (5) Y, (6) Z, (7) RX,
(8) RY, (9) RZ.

Return

bool True Change successfully.
False Change unsuccessfully.

Note
float[] Tool1 = {0,0,150,0,0,90} // declare a floating point array for the end tool values.

float[] COM1 = {2,0.5,0.5,0,0,-80,0,0,0} // declare a floating point array for the rotation inertia and

the reference coordinate relative to the tool coordinates.

ChangeTCP(Tool1,2,COM1) // change the end tool value to the set end tool value. The

weight of the end tool is 2kg,.and it applies the rotation

inertia and its reference base.

Syntax 5

bool ChangeTCP(
float, float, float, float, float, float

)

Parameters

float, float, float, float, float, float
 TCP parameters X, Y, Z, RX, RY, and RZ

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeTCP(0,0,150,0,0,90) // change the end tool value to {0,0,150,0,0,90}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 316

Syntax 6

bool ChangeTCP(
float, float, float, float, float, float,
float

)

Parameters

float, float, float, float, float, float
 TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass

Return
bool True Change successfully.

False Change unsuccessfully.

Note
ChangeTCP(0,0,150,0,0,90,2) // change the end tool value to {0,0,150,0,0,90}. The weight of

the end tool is 2kg.

Syntax 7

bool ChangeTCP(
float, float, float, float, float, float,
float,
float, float, float, float, float, float, float, float, float

)

Parameters

float, float, float, float, float, float
 TCP parameters X, Y, Z, RX, RY, and RZ
float TCP mass
float, float, float, float, float, float, float, float, float

TCP rotation inertia includes nine values: (1) Ixx, (2) Iyy, (3) Izz, along with the mass
center coordinates relative to the tool coordinates, which are (4) X, (5) Y, (6) Z, (7) RX,
(8) RY, (9) RZ.

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeTCP(0,0,150,0,0,90,2, 2,0.5,0.5,0,0,-80,0,0,0) // change the end tool value to

{0,0,150,0,0,90}. The weight of the end tool is 2kg. The rotation

inertia is {2,0.5,0.5} and its reference coordinate is {0,0,-

80,0,0,0}.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 317

13.7 ChangeLoad()

Set the load weight to compensate.

Syntax 1

bool ChangeLoad(
float

)

Parameters

float Load weight in kilograms

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeLoad(2.3) // Set the load weight to 2.3 ㎏.

Syntax 2

bool ChangeLoad(
float,
float

)

Parameters

float Load weight in kilograms
float Weight Conversion Estimated Distance in millimeters

Return

bool True Change successfully.
False Change unsuccessfully.

Note
ChangeLoad(2.3, 100) // Set the load weight to 2.3 ㎏.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 318

Syntax 3

bool ChangeLoad(
string,
int,
float

)

Parameters

string the name of the sensor
int the sensing condition

0 Picking up unknown load
1 Releasing unknown load

float Weight Conversion Estimated Distance in millimeters

Return

bool True Change successfully.
False Change unsuccessfully.

Note
FTSensor fts1 = " TMFT300"
ChangeLoad("fts1", 0, 100) // Use sensor fts1 to pick up an unknown load and change the load weight

by the detected weight.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 319

13.8 PTP()

Define and send PTP motion command into buffer for execution.

Syntax 1

bool PTP(

string,

float[],

int,

int,

int,

bool

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed in Cartesian coordinate

"J" expressed in joint angles

#2: Speed format:

"P" expressed as a percentage

#3: Blending format

"P" expressed as a percentage

float[] Motion target. If defined with coordinate, it includes the coordinate of tool center point

at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°). If defined with joint

angle, it includes the angles of six joints: Joint1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint

5(°), Joint 6(°).

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes: (1) "CPP", (2) "JPP"

float[] target1 = {0,0,90,0,90,0}
PTP("JPP",target1,10,200,0,false) // variable ingress available
PTP("JPP",{0,0,90,0,90,0},10,200,0,false) // array constant ingress available
PTP("CPP",Point["P2"].Value,10,200,0,false) // point coordinate retrieving with point

parameterization available (robot posture attention
required)

PTP("JPP",Point["P2"].Joint,10,200,0,false) // joint angle retrieving with point parameterization
available

// move to target with PTP, speed = 10%, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (I664) 320

Syntax 2

bool PTP(

string,

float[],

int,

int,

int,

bool,

int[]

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed in Cartesian coordinate

#2: Speed format:

"P" expressed as a percentage

#3: Blending format

"P" expressed as a percentage

float[] Motion target. If defined with coordinate, it includes the coordinate of tool center point

at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°).

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

int[] The pose of robot : [Config1, Config2, Config3], please find more information in

appendix

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes: (1) "CPP"

float[] targetP1 = {417.50,-122.30,343.90,180.00,0.00,90.00}

float[] pose = {0,2,4}

PTP("CPP", target1,50,200,0,false, pose) // variable ingress available

PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,pose)

// array constant ingress available

PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,{0,2,4})

// array constant ingress available

PTP("CPP",Point["P2"].Value,10,200,0,false,{0,2,4}) // point coordinate retrieving with point
parameterization available
// move to target with PTP, speed = 10%, time
to top speed = 200ms, and pose configuration
= 024.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 321

⚫ Pose Configuration Parameters: [Config1, Config2, Config3]

Cable

Top
View

V
ec

to
r

B

V
ec

to
r

A

V
ec

to
r

C

Vector D

Vector D projects
on X-Y plane

(Vector A + Vector B + Vector C)
projects on X-Y plane

Config: config1, config2, config3

config1=0:
 if [(Vector A + Vector B + Vector C) projects on X-Y plane] cross [Vector D
projects on X-Y plane] is on negative-Z
config1=1:
if [(Vector A + Vector B + Vector C) projects on X-Y plane] cross [Vector D
projects on X-Y plane] is on positive-Z

config2=2:
if (config1=0 and J3 is positive) or (config1=1 and J3 is negative)
config2=3:
if (config1=0 and J3 is negative) or (config1=1 and J3 is positive)

config3=4:
if (config1=0 and J5 is positive) or (config1=1 and J5 is negative)
config3=5:
if (config1=0 and J5 is negative) or (config1=1 and J5 is positive)

X

Y

J1

J2

J3

J4

J5
J6

R
o

b
o

t

Omron TM Collaborative Robot: TMScript Language Manual (I664) 322

TM25S/TM30S

Syntax 3

bool PTP(

string,

float[],

int,

int,

int,

bool,

float[],

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed in coordinate

#2: Speed format:

"P" expressed as a percentage

#3: Blending format:

"P" expressed as a percentage

float[] Motion target expressed in coordinate, It is six elements of the TCP coordinate at the

robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°).

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

Omron TM Collaborative Robot: TMScript Language Manual (I664) 323

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

float[] Motion target expressed in reference joint angles. It is six elements of the robot joints:

Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°).

Return

bool True Command accepted; False Command rejected

Note

Data format parameter includes: (1) "CPP"

float[] target1 = {417.50,-122.30,343.90,180.00,0.00,90.00}

float[] joint6 = {3.53,-13.26,116.3,-13.04,90,3.53}

PTP("CPP",target1,10,200,0,false,joint6) // variable ingress available

PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,joint6)

// array constant ingress available

PTP("CPP",{417.50,-122.30,343.90,180.00,0.00,90.00},10,200,0,false,{3.53,-13.26,116.3,-

13.04,90,3.53})

PTP("CPP",Point["P2"].Value,10,200,0,false,Point["P2"].Joint)
// point coordinate retrieving with point
parameterization available
// move to target with PTP, speed = 10%,
time to top speed = 200ms, and attempt to
reach the closest assigned joint target.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 324

13.9 Move_PTP()

Define and send PTP relative motion commands for execution.

Syntax 1

bool Move_PTP(

string,

float[],

int,

int,

int,

bool

)

Parameters

string Definition of data format made of three letters

#1: Relative motion target format:

"C": expressed with the current robot base

"T": expressed with the tool coordinate

"J": expressed in joint angles

#2: Speed format:

"P": expressed as a percentage

#3: Blending format:

"P": expressed as a percentage

float[] relative motion parameters. If expressed in coordinate, it includes the robot end TCP

relative motion value with respect to the specified coordinate: X (mm), Y (mm), Z (mm),

RX(°), RY(°), RZ(°); If defined with joint angle, it includes the angles of six joints:

Joint1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°)

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

bool Disable precise positioning

true Disable precise positioning

false Enable

Return

bool True Command accepted; False Command rejected (format error)

Note

Motion command parameter includes: (1) "CPP", (2) "TPP" or (3) "JPP"

float[] relmove = {0,0,10,45,0,0}

Move_PTP("TPP",var_rel,10,200,0,false) // variable ingress available

Move_PTP("TPP",{0,0,10,45,0,0},10,200,0,false) // array constant ingress available

// Move 0,0,10,45,0,0, with respect to tool coordinate, with PTP, velocity = 10%, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (I664) 325

13.10 Line()

Define and send Line motion command into buffer for execution.

Syntax 1

bool Line(

string,

float[],

int,

int,

int,

bool

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed with Cartesian coordinate

#2: Speed format:

"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P" expressed by percentage

"R" expressed by radius

float[] Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%) or in radius (mm)

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes:

float[] target1 = {417.50,-122.30,343.90,180.00,0.00,90.00}
Line("CAR",target1,100,200,50,false) // variable ingress available
Line("CAR",{417.50,-122.30,343.90,180.00,0.00,90.00},100,200,50,false)

// array constant ingress available

Line("CAR",Point["P2"].Value,100,200,50,false)
// point coordinate retrieving with point parameterization available
// move to target with Line, speed = 10%, time to top speed = 200ms, and blending value = 50

Omron TM Collaborative Robot: TMScript Language Manual (I664) 326

// Opt for the singularity handling mechanism set by LineSingularity().

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)

// Disable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)

// Disable, through singularity

LineSingularity(1) // Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
// Enable

Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)
// Enable, path avoidance

Syntax 2

bool Line(

string,

float[],

int,

int,

int,

bool,

int

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed with Cartesian coordinate

#2: Speed format:

"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P" expressed by percentage

"R" expressed by radius

float[] Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%) or in radius (mm)

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

Omron TM Collaborative Robot: TMScript Language Manual (I664) 327

int Singularity handling.

0 Disbale

1 Path avoidance

2 Speed change (TM25S, TM30S)

* After exiting from the function, the singularity handling mechanism returns to what it

was before entering.

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes:

(1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6) "CDR"

Line("CAR", 417.50,-122.30,343.90,180.00,0.00,90.00,100,200,50,false)

// Move to 417.50,-122.30,343.90,180.00,0.00,90.00 with Line, velocity = 100mm/s, time to top speed =

200ms, blending radius = 50mm

Omron TM Collaborative Robot: TMScript Language Manual (I664) 328

13.11 Move_Line()

Define and send Line relative motion commands for execution.

Syntax 1

bool Move_Line(

string,

float[],

int,

int,

int,

bool

)

Parameters

string Definition of data format made of three letters

#1: Relative motion target format:

"C": expressed with w.r.t. current base

"T": expressed with w.r.t. tool coordinate

#2: Speed format:

"P": expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P": expressed by percentage

"R": expressed by radius

float[] Relative motion parameters. It includes the coordinate of tool center point at the robot

end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%) or in radius (mm)

bool Disable precise positioning

true Disable precise positioning

false Enable

Return

bool True Command accepted; False Command rejected (format error)

Note

Motion command parameter includes: (1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6)

"CDR", (7) "TPP", (8) "TPR", (9) "TAP", (10) "TAR", (11) "TDP", (12) "TDR"

float[] var_rel= {0, 0, 10, 25, 0, 0}
Move_Line("TAP",var_rel,125,200,0,false) // variable ingress available

Move_Line("TAP",{0,0,10,25,0,0},125,200,0,false) // array constant ingress available
// move to target with Line, velocity = 125mm/s, time to top speed = 200ms

// Opt for the singularity handling mechanism set by LineSingularity().

Omron TM Collaborative Robot: TMScript Language Manual (I664) 329

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) // Disable

Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Disable, through singularity

LineSingularity(1) // Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
// Enable
Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Enable, path avoidance

Syntax 2

bool Move_Line(

string,

float[],

int,

int,

int,

bool,

int

)

Parameters

string Definition of data format made of three letters

#1: Relative motion target format:

"C": expressed with w.r.t. current base

"T": expressed with w.r.t. tool coordinate

#2: Speed format:

"P": expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P": expressed by percentage

"R": expressed by radius

float[] Motion target. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%) or in radius (mm)

bool Disable precise positioning

true Disable precise positioning

false Enable

int Singularity handling.

0 Disbale

1 Path avoidance

2 Speed change (TM25S, TM30S)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 330

* After exiting from the function, the singularity handling mechanism returns to what it

was before entering.

Return

bool True Command accepted； False Command rejected (format error)

Note

Motion command parameter includes: (1) "CPP", (2) "CPR", (3) "CAP", (4) "CAR", (5) "CDP", (6)

"CDR", (7) "TPP", (8) "TPR", (9) "TAP", (10) "TAR", (11) "TDP", (12) "TDR"

// Opt for the singularity handling mechanism set by LineSingularity().

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) // Disable

Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Disable, through singularity

LineSingularity(1) // Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)
// Enable
Move_Line("CPP", {0,-300,0,0,0,0}, 100, 500, 0, false) // Enable, path avoidance

Omron TM Collaborative Robot: TMScript Language Manual (I664) 331

13.12 Circle()

Define and send Circle motion command into buffer for execution.

Syntax 1

bool Circle(

string,

float[],

float[],

int,

int,

int,

int,

bool

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed with Cartesian coordinate

#2: Speed format:

"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P" expressed by percentage

float[] A point on arc. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

float[] The end point of arc. It includes the coordinate of tool center point at the robot end: X

(mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

int Arc angle(°), If non-zero value is given, the TCP will keep the same pose and move

from current point to the assigned arc angle via the given point and end point on arc; If

zero is given, the TCP will move from current point and pose to end point and pose via

the point on arc with linear interpolation on pose.

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes: (1) "CPP", (2) "CAP", (3) "CDP"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 332

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)

float[] targetPass= {417.50,-122.30,343.90,180.00,0.00,90.00}
float[] targetEnd= {381.70,208.74,343.90,180.00,0.00,135.00}
Circle("CAP",targetPass,targetEnd,100,200,50,270,false) // variable ingress available

Circle("CAP",targetPass,{381.7,208.74,343.9,180,0,135},100,200,50,270,false)
// array constant ingress available

Circle("CAP",Point["P1"].Value,{381.7,208.74,343.9,180,0,135},100,200,50,270,false)
// point coordinate retrieving with point parameterization available

// Move on 270° arc, velocity = 100mm/s, time to top speed = 200ms, blending value = 50%

Syntax 2

bool Circle(

string,

float[],

float[],

int,

int,

int,

int,

int,

bool

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"C" expressed with Cartesian coordinate

#2: Speed format:

"P" expressed by percentage

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P" expressed by percentage

float[] A point on arc. It includes the coordinate of tool center point at the robot end: X (mm), Y

(mm), Z (mm), RX(°), RY(°), RZ(°)

float[] The end point of arc. It includes the coordinate of tool center point at the robot end: X

(mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as a percentage (%) or an absolute

speed (mm/s)

 ≥0 Percentage of speed (%) or absolute speed (mm/s)

-1 Using the Acceleration Table (supported on TM Robot S series models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the Acceleration

Table.

int Blending value, expressed as a percentage (%)

int Arc angle(°), If non-zero value is given, the TCP will keep the same pose and move

from current point to the assigned arc angle via the given point and end point on arc; If

zero is given, the TCP will move from current point and pose to end point and pose via

the point on arc with linear interpolation on pose.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 333

int Rotation
0 Linear Interpolation
1 Keep Rotation

bool Disable precise positioning

true Disable precise positioning

false Enable precise positioning

Return

bool True Command accepted; False Command rejected (format error)

Note

Data format parameter includes: (1) "CPP", (2) "CAP", (3) "CDP"

float[] targetPass= {417.50,-122.30,343.90,180.00,0.00,90.00}
float[] targetEnd= {381.70,208.74,343.90,180.00,0.00,135.00}

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP",targetPass,targetEnd,100,200,50,270,false)
Circle("CAP",targetPass,targetEnd,100,200,50,270,1,false)

// Move on 270° arc, rotation = keep rotation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP",targetPass,targetEnd,100,200,50,0,false)
Circle("CAP",targetPass,targetEnd,100,200,50,0,0,false)
// Move on the reach end point arc, rotation = linear interpolation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP",targetPass,targetEnd,100,200,50,270,0,false)

// Move on 270° arc, rotation = linear interpolation

PTP("JPP", {0, 0, 90, 0, 90, 0}, -1, 500, 0, false)
Circle("CAP",targetPass,targetEnd,100,200,50,0,1,false)
// Move on the reach end point arc, rotation = keep rotation

Omron TM Collaborative Robot: TMScript Language Manual (I664) 334

13.13 PLine()

Define and send PLine motion command into buffer for execution.

Syntax 1

bool PLine(

string,

float[],

int,

int,

int

)

Parameters

string Definition of data format, combines three letters

#1: Motion target format:

"J": expressed with joint angles

"C": expressed with Cartesian coordinate

#2: Speed format:

"A" expressed with absolute speed and in synchronization with the project speed

"D" expressed with absolute speed and not in synchronization with the project

speed

#3: Blending format:

"P": expressed by percentage

float[] Motion target. If expressed in joint angles, it includes the angles of six joints: Joint1(°),

Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), Joint 6(°)；If expressed in coordinate, it

includes the the coordinate of tool center point at the robot end: X (mm), Y (mm), Z

(mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as an absolute speed (mm/s)

int The time interval to accelerate to top speed (ms)

int Blending value, expressed as a percentage (%)

Return

bool True Command accepted； False Command rejected (format error)

Note

Data format parameter includes: (1) "CAP", (2) "CDP", (3) "JAP", (4) "JDP"

float[] targetP1 = {417.50,-122.30,343.90,180.00,0.00,90.00}

PLine("CAP",target1,100,200,50) // variable ingress available

PLine("CAP",{417.50,-122.30,343.90,180.00,0.00,120.00},100,200,50)

// array constant ingress available

PLine("CAP",Point["P1"].Value,100,200,50)
// point coordinate retrieving with point parameterization available
// move to target with PLine, speed = 100mm/s, time to top speed = 200ms, and blending value = 50

Omron TM Collaborative Robot: TMScript Language Manual (I664) 335

13.14 Move_PLine()

Define and send PLine relative motion commands for execution.

Syntax 1

bool Move_PLine(

string,

float[],

int,

int,

int

)

Parameters

string Definition of data format made of three letters

#1: Relative motion target format:

"C": expressed with w.r.t. current base

"T": expressed with w.r.t. tool coordinate

"J": expressed with joint angles

#2: Speed format:

"A" expressed with absolute speed and in synchronization with the project

speed

"D" expressed with absolute speed and not in synchronization with the

project speed

#3: Blending format:

"P": expressed by percentage

float[] Relative motion parameters expressed in coordinate. It includes the coordinate of tool

center point at the robot end: X (mm), Y (mm), Z (mm), RX(°), RY(°), RZ(°)

int The robot end moving speed setting, expressed as an absolute speed (mm/s)

int The time interval to accelerate to top speed (ms)

int Blending value, expressed as a percentage (%)

Return

bool True Command accepted; False Command rejected (format error)

Note

Motion command parameter includes:

(1) "CAP", (2) "CDP", (3) "TAP", (4) "TDP", (5) "JAP", (6) "JDP"

float[] var_rel= {0, 0, 10, 25, 0, 0}
Move_PLine("CAP",var_rel,125,200,0) // variable ingress available

Move_PLine("CAP",{0,0,10,25,0,0},125,200,0) // array constant ingress available
// move relatively to target with PLine, speed = 125mm/s, time to top speed = 200ms

Omron TM Collaborative Robot: TMScript Language Manual (I664) 336

13.15 LineSingularity()

Set the line motion control with singularity handling or not.

Syntax 1

bool LineSingularity(
int

)

Parameters

int Singularity handling.

0 Disbale

1 Path avoidance

2 Speed change (TM25S, TM30S)

Return

bool True Command accepted; False Command rejected

Note
When the project is running, it defaults to 0 to disable. Once configured, it will affect the line
motion control used later.

LineSingularity(0) // Disable singularity handling.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false)

// Disable
Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)

// Disable, through singularity

LineSingularity(1) // Enable singularity handling: path avoidance.

PTP("JPP", {45,-20,125,-100,-15,0}, 100, 500, 0, false)
Line("CPP", {307.8192,-100.8191,436.7351,90.1633,-0.4788,0.4848}, 100, 500, 0, false) // Enable
Line("CPP", {138.0930,-411.4636,438.1152,89.5760,-0.3520,0.4868}, 100, 500, 0, false)
// Enable, path avoidance

Omron TM Collaborative Robot: TMScript Language Manual (I664) 337

13.16 CollisionCheck()

Pre-collision checks help prevent robots from interfering with self-testing and avoid collisions between
the gripper and the box. By adjusting and modifying the exported scene from TMstudio or using the built-in
box container in TMvision, users can simulate robot motions using robot parts, tools, and virtual boxes.
This simulation allows for early detection of potential issues during motions, reducing collisions in
applications like box picking, using large hardware, and executing critical poses.

Syntax 1

string CollisionCheck(
float,
string

)

Parameter
float Safety distance (mm)
string The subflow name. For use in flow projects only. Returns errors if using in script

projects.

Return
string the result of checking

== "" The value returned is an empty string, and there was no collision
detected.

!= "" The value returned is a non-empty string, and there was a collision
detected. The contest will indicate which node.

Syntax 2

string CollisionCheck(
float,
?

)

Parameter
float Safety distance (mm)
? The target motion to check. It can be a statement or a self-defined function.

Return
string the result of checking

== "" The value returned is an empty string, and there was no collision
detected.

!= "" The value returned is a non-empty string, and there was a collision
detected. The contest will indicate which line number.

* Check motion functions PTP(), Move_PTP(), Line(), Move_Line(), and Circle() only.

* Support variable operations, general functions, math functions, and parameterized objects (read

only) only. Does not operate with other functions.

* The result of the variable operation is vaild only during the pre-checking. The values revert to the

default after checking.

* All statements within the conditional expression will be checked.

* All statements within the loop expression will be checked only once and will not repeat.

Note

(1)
string result = CollisionCheck(15, "CCheck0")
// Check subflow CCheck0 (use only in Flow projects)

(2)
define
{

TPoint P2 = {516.65,-147.75,445.37,179.44,-0.32,89.91},{0,0,90,0,90,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 338

TPoint P3 = {516.14,156.17,443.43,179.59,0.30,111.24},{32.92,0.26,89.95,0,89.30,11.58}
TPoint P4 = {446.79,-313.56,435.31,-179.58,0.24,90.22},{-19.17,1.39,89.79,-0.32,89.31,-
19.49}
ModbusTCP localhost = 127.0.0.1,502
int count = 0

}
main
{

Display(count) // count = 0

Pause()
string re = CollisionCheck(15, TargetMotion())
// Set safety distance to 15 mm for TargetMotion() function to check
if (re == "") TargetMotion() // No collision detected. Call TargetMotion() for the real operation.
else Display("Collision: " + re) // Collistion detected.
Display(count) // count = 0 or 1

// +1 during pre-checking. Revert to the default, 0, after checking. If no collision detected, it calls the function
TargetMotion(), and the the count value is 1. If collision detected, it does not call the function TargetMotion(), and
the the count value is 0.

}
void TargetMotion()
{

count++ // count = 1 // Support variable operation during pre-checking.
while (true) // The loop expression will be checked once only during pre-checking.
{

PTP("CPP",Point["P2"].Value,50,200,100,false) // check

// check only during pre-checking without motion
PTP("JPP",Point["P3"].Joint,50,200,100,false) // check
Move_PTP("JPP",{0,0,0,0,0,60},50,200,100,false) // check
Line("CPP",Point["P4"].Value,50,200,100,false) // check
Move_Line("CPP", {20,20,20,0,0,0},50,200,100,false) // check
Circle("CPP", Point["P2"].Value, Point["P3"].Value, 50, 200, 100, 100, false) // check
WaitQueueTag() // ignore // Do not support to this function during pre-checking.
byte[] bb = modbus_read("localhost", 1, "DO", 0, 10)
// ignore // Do not support to this function during pre-checking.
string ss = GetString(bb) // General function. The operation result is ss = "{}".

}
}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 339

13.17 PVTEnter()

Set PVT mode to start with Joint/Cartesian command

Syntax 1

bool PVTEnter(

int

)

Parameter

int PVT Mode

0 Joint

1 Cartesian

Return

bool True Command accepted; False Command rejected

Note

Syntax 2

bool PVTEnter(

)

Parameter

Void No parameter. Use PVT mode with Joint Command by default.

Return

bool True Command accepted; False Command rejected

Note

 PVTEnter(1)

* Before switching to PVT mode, it waits for other robot motion instructions to

complete.

* When the PVT mode begins, it only supports to functions tied to PVT, QueueTag,

IO, and Payload.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 340

13.18 PVTExit()

Set PVT mode motion to exit

Syntax 1

bool PVTExit(

)

Parameter

void No parameter

Return

bool True Command accepted; False Command rejected

Note

 PVTExit()

* After exiting PVT mode, it waits for PVT function motion instructions to

complete.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 341

13.19 PVTPoint()

Set the PVT mode parameters of motion in position, velocity, and duration.

Syntax 1

bool PVTPoint(

float[],

float[],

float,

bool

)

Parameter

float[] Target position

{J1, J2, J3, J4, J5, J6} in PVT mode with Joint

{X, Y, Z, RX, RY, RZ} in PVT mode with Cartesian

float[] Target velocity

{J1, J2, J3, J4, J5, J6}’ in PVT mode with Joint

{X, Y, Z, RX, RY, RZ}’ in PVT mode with Cartesian

float Duration (second), it requires ≧ 0.01 seconds.

bool Synchronize to the project speed or not.

true Synchronize to the project speed

false Not synchronize to the project speed

Return

bool True Command accepted; False Command rejected

Note

Syntax 2

bool PVTPoint(

float[],

float[],

float

)

Note

 Same as Syntax 1. It default true to synchronize to the project speed or not.

Syntax 3

bool PVTPoint(

float, float, float, float, float, float,

float, float, float, float, float, float,

float,

bool

)

Parameter

float, float, float, float, float, float,

Target Position.

{J1, J2, J3, J4, J5, J6} in PVT mode with Joint

{X, Y, Z, RX, RY, RZ} in PVT mode with Cartesian

float, float, float, float, float, float,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 342

Target Velocity.

{J1, J2, J3, J4, J5, J6}’ in PVT mode with Joint

{X, Y, Z, RX, RY, RZ}’ in PVT mode with Cartesian

float Duration (second), it requires ≧ 0.01 seconds.

bool Synchronize to the project speed or not.

true Synchronize to the project speed

false Not synchronize to the project speed

Return

bool True Command accepted; False Command rejected

Note

PVTEnter(1)

PVTPoint(467.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)

PVTPoint(467.5,-72.2,359.7,180,0,90,-50,50,0,0,0,0,0.5)

PVTPoint(417.5,-72.2,359.7,180,0,90,0,0,0,0,0,0,0.5)

PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)

PVTPoint(417.5,-122.2,359.7,180,0,60,50,50,0,0,0,0,3)

PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,3)

PVTExit()

Syntax 4

bool PVTPoint(

float, float, float, float, float, float,

float, float, float, float, float, float,

float

)

Note

 Same as Syntax 3. It default true to synchronize to the project speed or not.

PVTEnter(1)

PVTPoint(467.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5)

PVTPoint(467.5,-72.2,359.7,180,0,90,-50,50,0,0,0,0,0.5)

PVTPoint(417.5,-72.2,359.7,180,0,90,0,0,0,0,0,0,0.5, true)

PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,0.5, false)

PVTPoint(417.5,-122.2,359.7,180,0,60,50,50,0,0,0,0,3, false)

PVTPoint(417.5,-122.2,359.7,180,0,90,50,50,0,0,0,0,3)

PVTExit()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 343

13.20 PVTPause()

Set PVT mode motion to pause

Syntax 1

bool PVTPause(

)

Parameter

void No parameter

Return

bool True Command accepted; False Command rejected

Note

 PVTPause()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 344

13.21 PVTResume()

Set PVT mode motion to resume

Syntax 1

bool PVTResume(

)

Parameter

void No parameter

Return

bool True Command accepted; False Command rejected

Note

 PVTResume()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 345

13.22 PathOffset_Set()

Set Path Offset parameters

Syntax 1

bool PathOffset_Set(

bool,

float[],

int,

float

)

Parameter

bool Enable Path Offset or not.

false Disable

true Enable

float[] Offset values in coordinate for the six elements of the robot coordinate: X(mm),

Y(mm), Z(mm), RX(°), RY(°), RZ(°)

int Offset reference base

0 the robot base

1 tool (default)

2 the current base

3 trajectory

float Alpha filter coefficient value ranging from 0 to 1. The lesser the value is, the

slower the offset compensate speed is. In practical use, it is best to start testing

at a lower setting, such as 0.05, and gradually increase it to about 0.1 to

determine the most suitable value. Also, monitor closely for excessively rapid

compensation increases once the setting exceeds 0.5.

* Calling in the flow required.

Return

bool True Command accepted; False Command rejected

Syntax 2

bool PathOffset_Set(

bool,

float[],

int

)

Note

Parameter definition same as Syntax 1. Setting the enable path offset, the offset values,

and the offset reference base without setting the alpha filter coefficient value.

* Calling in the flow required.

Syntax 3

bool PathOffset_Set(

bool,

float[]

)

Note

Parameter definition same as Syntax 1. Setting the enable path offset and the offset values

by the tool reference base without setting the alpha filter coefficient value.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 346

* Calling in the flow required.

Syntax 4

bool PathOffset_Set(

bool,

float

)

Note

Parameter definition same as Syntax 1. Setting the enable path offset and the alpha

coefficient without setting the offset values and the alpha filter coefficient value.

* Calling in process required.

Syntax 5

bool PathOffset_Set(

bool

)

Note

Parameter definition same as Syntax 1. Setting the enable path offset only without setting

the offset values and the alpha filter coefficient value.

* Calling in process required.

Suppose in the Flow page

// Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha

coefficient.

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)

PathOffset_Set(false) // Disable Path Offseting

// Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and without setting the

alpha coefficient.

PathOffset_Set(true, {10,0,0,0,0,0}, 1)

PathOffset_Set(false) // Disable Path Offseting

// Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and without setting the

alpha coefficient.

PathOffset_Set(true, {10,0,0,0,0,0})

PathOffset_Set(false) // Disable Path Offseting

// Enable Path Offset with setting the offset value and the alpha coefficient.

PathOffset_Set(true)

Suppose in the Thread page

PathOffset_Set(true, {10,0,0,0,0,0}) // Return Error. Must be in the Flow page to enable or

disable Path Offset.

PathOffset_Set(false) // Return Error. Must be in the Flow page to enable or

disable Path Offset.

Syntax 6

bool PathOffset_Set(

float[],

int

)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (I664) 347

float[] Offset values in coordinate for the six elements of the robot coordinate:

X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

int Offset reference base

0 the robot base

1 tool (default)

2 the current base

3 trajectory

* Calling and setting the offset value and the reference base in the flow or the thread

available.

Return

bool True Command accepted; False Command rejected

Syntax 7

bool PathOffset_Set(

float[]

)

Note

Parameter definition same as Syntax 6. Setting the offset value by the reference tool base.

Suppose in the Flow page

PathOffset_Set(true) // Enable Path Offset without setting the offset value and the

alpha coefficient.

Suppose in the Thread page

PathOffset_Set({10,0,0,0,0,0}, 0) // Set {10,0,0,0,0,0} as the offset value by the robot base.

PathOffset_Set({5,0,0,0,0,0}) // Set {5,0,0,0,0,0} as the offset value by the tool base.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 348

13.23 PathOffset_Get()

Get the Path Offset values

Syntax 1

float[] PathOffset_Get(

int

)

Parameter

int Get the current offset value.

0 Get by the robot base.

1 Get by the offset reference base. (Default)

Return

float[] Offset values in coordinate for the six elements of the robot coordinate:

X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Syntax 2

float[] PathOffset_Get(

)

Parameter

void No input value

Return

float[] Offset values in coordinate for the six elements of the robot coordinate:

X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

Note

Same as Syntax 1. Get the offset value by the current offset reference base.

// Enable Path Offset with setting {10,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha

coefficient.

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)

// It proceeds with offset compensation, whether the robot is moving, once Path Offset is enabled.

// So the current offset value to read tends to the setting offset value continuously.

PathOffset_Get() // {1.1,0,0,0,0,0}

PathOffset_Get() // {2.4,0,0,0,0,0}

…

PathOffset_Get() // {9.999952,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 349

13.24 PathOffset_IsEnabled()

Check if the Path Offset enabled.

Syntax 1

bool PathOffset_IsEnabled(

)

Parameter

void No input value

Return

bool if the Path Offset enabled

false Disabled

true Enabled

Note

PathOffset_IsEnabled() // false

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)

PathOffset_IsEnabled() // true

Omron TM Collaborative Robot: TMScript Language Manual (I664) 350

13.25 PathOffset_AlphaFilter()

Set the Alpha Filter coefficient to avoid over-acceleration.

Syntax 1

bool PathOffset_AlphaFilter(

float

)

Parameter

Float Alpha filter coefficient value ranging from 0 to 1. The lesser the value is, the

slower the offset compensate speed is. In practical use, it is best to start testing

at a lower setting, such as 0.05, and gradually increase it to about 0.1 to

determine the most suitable value. Also, monitor closely for excessively rapid

compensation increases once the setting exceeds 0.5.

Return

bool True Command accepted; False Command rejected

Note

PathOffset_Set(true, {10,0,0,0,0,0}, 1, 0.005)

PathOffset_AlphaFilter(0.01)

PathOffset_AlphaFilter(1.2) // Return false for out of range.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 351

13.26 PathOffset_MaxOffset()

Set the upper bounds of the distance and the rotation.

Syntax 1

bool PathOffset_MaxOffset(

float,

float

)

Parameter

float the distance upper bound in mm

float the rotation upper bound in degree

Return

bool True Command accepted; False Command rejected

Note

// Set the offet compensation upper bound.

PathOffset_MaxOffset(10, 3)

// Enable Path Offset with setting {20,0,0,0,0,0} as the offset value by the tool base and 0.005 to the alpha

coefficient.

PathOffset_Set(true, {20,0,0,0,0,0}, 1, 0.005)

// It proceeds with offset compensation, whether the robot is moving, once Path Offset is enabled.

// So the current offset value to read tends to the setting offset value continuously.

PathOffset_Get() // {1.1,0,0,0,0,0}

PathOffset_Get() // {2.4,0,0,0,0,0}

…

PathOffset_Get() // {9.999952,0,0,0,0,0}

…

PathOffset_Get() // {9.999952,0,0,0,0,0} // Set the distance upper bound to 10mm

(1) In the Flow project

Omron TM Collaborative Robot: TMScript Language Manual (I664) 352

Flow Thread

Point Node: P1

Point Node: P2

Script Node: Script1

PathOffset_Set(true)

// Enable Path Offset

Point Node: P3

Script Node: Script2

PathOffset_Set(false)

// Disable Path Offsetting

Point Node: P4

… Link To P1 …

Script Node: Script3

// Set the alpha coeffcient

PathOffset_AlphaFilter(0.005)

// Set the offset compensation upper bound

PathOffset_MaxOffset(20, 5)

// Read the required offset compensation

 value from mbus1

var_X = modbus_read("mbus1",

"offsetX")

// Offset to the X coordinate

var_Offset[0] = var_X

// Update the offset value by the tool base

PathOffset_Set(var_Offset, 1)

Goto Node: Goto1

… Link to Script3 …

⚫ It enables Path Offset when it is on the

path of P2 toward P3.

⚫ It disables Path Offset after moving to

P3.

⚫ Since the enable and the disable of the

Path Offset come in the Flow, it is

required to reset the AlphaFilter and the

MaxOffset in the Thread.

⚫ Keep updating the offset value in the

Thread.

(2) In the Script project

define

{

float var_X = 0

float[] var_Offset = {0,0,0,0,0,0}

ModbusTCP mbus1 = "127.0.0.1"

}

main

{

ThreadRun(Offsetting())

while (true)

{

PTP("JPP",{15,0,90,0,90,0},50,200,100,false)

PTP("JPP",{15,0,75,0,90,0},50,200,100,false)

PathOffset_Set(true) // Enable Path Offset

PTP("JPP",{-15,0,75,0,90,0},50,200,100,false)

PathOffset_Set(false) // Disable Path Offset

PTP("JPP",{-15,0,90,0,90,0},50,200,100,false)

Sleep(10)

}

}

void Offsetting()

{

mbus1.Preset("offsetX", 1, "RO", 9000, "float")

while (true)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 353

{

PathOffset_AlphaFilter(0.005) // Set the alpha coeffcient

PathOffset_MaxOffset(20, 5) // Set the offset compensation upper bound

// Read the required offset compensation value from mbus1.

var_X = modbus_read("mbus1", "offsetX")

var_Offset[0] = var_X // Offset to the X coordinate.

PathOffset_Set(var_Offset, 1) // Update the offset value by the tool base.

Sleep(10)

}

}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 354

13.27 Velocity()

Define and activate continuous speed control mode. Under this mode, robot will change

motion instantaneously once the target speed vector changes.

* Syntax 1/2/3/4 is to define the motion parameters, while syntax 5/6, the target speed

vector.

* When the robot is in continuous speed control mode, sending any other types of motion

control commands (such as PTP(), Line(), etc.) will trigger an error stop.

* This function is not affected by the project override speed (%), and the robot will run at

the speed specified in the function within the reachable speed range.

* Users must carefully assess the risk of the trajectory generated by Velocity() before

sending the command. In other words, users or the motion control program must

constantly check whether the robot is moving beyond its working range or nearing a

singularity.

Syntax 1

bool Velocity(
bool,
string,
int,
int

)

Parameter
bool whether to enable the adaptive speed control mode or not

false disable
true enable

string control mode

"C": linear speed control with the current base

"T": linear speed control with the tool base

"J": angular speed control with joint angles

int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
int The control value protection time (millisecond). Valid value >= 0. If users do not

update and it is beyond the protection time, the Velocity(float[]) value will be
adjusted to 0 automatically.

* While disable can be called in the process or threads, enable must be called in the process.

Return

bool True Command accepted; False Command rejected (format error)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 355

Syntax 2

bool Velocity(
bool,
string,
int

)

Parameter
bool whether to enable the adaptive speed control mode or not

false disable
true enable

string control mode

"C": linear speed control with the current base

"T": linear speed control with the tool base

"J": angular speed control with joint angles

int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
* While disable can be called in the process or threads, enable must be called in the process.

Note
Same as syntax 1. It sets a 1000ms to the control value protection time.

Syntax 3

bool Velocity(
bool,
string

)

Parameter
bool whether to enable the adaptive speed control mode or not

false disable
true enable

string control mode

"C": linear speed control with the current base

"T": linear speed control with the tool base

"J": angular speed control with joint angles

* While disable can be called in the process or threads, enable must be called in the process.

Note
Same as syntax 1. It sets a 500 ms to the time interval to accelerate to the top speed and a 1000m

to the control value protection time.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 356

Syntax 4

bool Velocity(
bool

)

Parameter
bool whether to enable the adaptive speed control mode or not

false disable
true enable

* Disable can be called in the process or threads.
* For disable only.

Note

If on the Flow page

Velocity(true, "C", 300, 3000)

// Enable velocity control for the linear speed by the current base, setting a 500 ms time interval to
accelerate to the top speed and a 3000 ms control value protection time.
Velocity(true, "T", 300)

// If continuing from the previous line, the "C" control will be turned off first.

// Enable velocity control for the linear speed by the tool base, setting a 500 ms time interval to accelerate
to the top speed and a 1000 ms control value protection time.

Velocity(true, "J")

// If continuing from the previous line, the "T" control will be turned off first.

// Enable velocity control for the angular speed by the joint angle, setting a 500 ms time interval to
accelerate to the top speed and a 1000 ms control value protection time.

Position(true, "J")

If continuing from the previous line, the "T" control will be turned off first.

// Enable position control // Only one control, Position or Velocity, can be active at a time.

Velocity(false) // Disable velocity control

Velocity(true) // Return error. Control Mode Parameters Required to enable

If on the Thread page
Velocity(true, "J") // Return error. Must be in the Flow page to enable velocity control

Velocity(false) // Disable velocity control

Omron TM Collaborative Robot: TMScript Language Manual (I664) 357

Syntax 5

bool Velocity(
float[]

)

Parameter
float[] Speed control value for the associated applicable control mode

"C" or "T": linear speed control for X,Y,Z (mm/s) RX,RY,RZ (degree/s)

"J": angular speed control for J1,J2,J3,J4,J5,J6 (degree/s)

* Calling available in the process or threads.

Return

bool True Command accepted; False Command rejected

Syntax 6

bool Velocity(
float, float, float, float, float, float

)

Note
Same as syntax 5. It replaces float[] with parameters float,float,float,float,float,float.

PTP("JPP", {90,0,90,0,90,0}, 10, 500, 0, true)
Velocity(true, "J", 150, 5000)
// Enable adaptive speed control for the angular speed by the joint angle

Sleep(1000)
for (int i = 0; i < 30; i++)
{

float[] AngleSpeed = {0, 0, i, 0, 0, 0} // Adjust the speed for angle J3 along with the loop.

Velocity(AngleSpeed) // Set the speed for angle J30

Sleep(100)
}
Velocity(false)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 358

13.28 Position()

Define and activate continuous position control mode. Under this mode, the robot will change

motion instantaneously once the target position vector changes.

* Syntax 1/2/3/4 is to define the motion parameters, while syntax 5/6, the target position

vector.

* When the robot is in continuous position control mode, sending any other types of motion

control commands (such as PTP(), Line(), etc.) will trigger an error stop.

* Users must carefully assess the risk of the trajectory generated by Position() before

sending the command. In other words, users or the motion control program must

constantly check whether the robot is moving beyond its working range or nearing a

singularity.

Syntax 1

bool Position(
bool,
string,
int,
float,
int

)

Parameter
bool whether to enable the position adaptive speed control mode or not

false disable
true enable

string control mode

"C": target coordinate control with the current base

"T": target coordinate control with the tool base

"J": target angle control with the joint angle

int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
float The Motion Control Gain value. Valid range: 1 between 100. The larger the value,

the faster the response to the new control value.
int The expected control value protection time interval (millisecond). Valid value >=

20. In adaptive control mode, Position(float[]) requires updating regularly. If the
difference from the expected time interval varies significantly (less or more than), it
will affect the control speed algorithm.

* While disable can be called in the process or threads, enable must be called in the process.

Return

bool True Command accepted; False Command rejected (format error)

Syntax 2

bool Position(
bool,
string,
int,
float

)

Parameter
bool whether to enable the position adaptive speed control mode or not

false disable

Omron TM Collaborative Robot: TMScript Language Manual (I664) 359

true enable
string control mode

"C": target coordinate control with the current base

"T": target coordinate control with the tool base

"J": target angle control with the joint angle

int The time interval to accelerate to top speed (ms). Valid range: 150 between 2000
float The Motion Control Gain value. Valid range: 1 between 100. The larger the value,

the faster the response to the new control value.
* While disable can be called in the process or threads, enable must be called in the process.

Note
Same as syntax 1. It sets a 1000ms to the expected control value protection time interval.

Syntax 3

bool Position(
bool,
string

)

Parameter
bool whether to enable the position adaptive speed control mode or not

false disable
true enable

string control mode

"C": target coordinate control with the current base

"T": target coordinate control with the tool base

"J": target angle control with the joint angle

* While disable can be called in the process or threads, enable must be called in the process.

Note
Same as syntax 1. It sets a 500 ms to the time interval to accelerate to the top speed, a 4.0 to the

motion control gain value, and a 1000ms to the expected control value protection time.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 360

Syntax 4

bool Position(
bool

)

Parameter
bool whether to enable the adaptive speed control mode or not

false disable
true enable

* Disable can be called in the process or threads.
* For disable only.

Note

If on the Flow page

Position(true, "C", 300, 3, 500)

// Enable position control for the target coordinate control by the current base, setting a 300 ms to the time
interval to accelerate to the top speed, a 3.0 to the motion control gain value, and a 500ms to the expected
control value protection time.

Position(true, "T", 300, 3)

// If continuing from the previous line, the "C" control will be turned off first.

// Enable position control for the target coordinate control by the tool base, setting a 300 ms to the time
interval to accelerate to the top speed, a 3.0 to the motion control gain value, and a 1000ms to the
expected control value protection time.

Position(true, "J")

// If continuing from the previous line, the "T" control will be turned off first.

// Enable position control for the target angle control by the joint angle, setting a 500ms to the time interval
to accelerate to the top speed, a 4.0 to the motion control gain value, and a 1000ms to the expected
control value protection time.

Velocity(true, "J")

// If continuing from the previous line, the Position "J" control will be turned off first.

// Enable velocity control // Only one control, Position or Velocity, can be active at a time.

Position(false) // Disable position control

Position(true) // Return error. Control Mode Parameters Required to enable

If on the Thread page
Position(true, "J") // Return error. Must be in the Flow page to enable position control

Position(false) // Disable position control

Omron TM Collaborative Robot: TMScript Language Manual (I664) 361

Syntax 5

bool Position(
float[]

)

Parameter
float[] Position control value for the associated applicable control mode

"C" or "T": target coordinate control for X,Y,Z (mm) RX,RY,RZ (degree)

"J": target angle control for J1,J2,J3,J4,J5,J6 (degree)

* Calling available in the process or threads.

Return

bool True Command accepted; False Command rejected

Syntax 6

bool Position(
float, float, float, float, float, float

)

Note
Same as syntax 5. It replaces float[] with parameters float,float,float,float,float,float.

PTP("JPP", {90,0,90,0,90,0}, 10, 500, 0, true)
Position(true, "J", 150, 1, 500) // Enable positon control by the angle

Sleep(1000)
for (int i = 0; i < 30; i++)
{

float[] AngleTarget = {90, 0, 90+i, 0, 90, 0}
// Adjust the angle for axix-angle J3 along with the loop.

Position(AngleTarget) // Set the speed for angle J30

Sleep(100)
}
Position(false)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 362

13.29 SetTCPSpeedLimit()

Set Linear Speed Limit and Rotation Speed Limit for Line Motion.

Syntax 1

bool SetTCPSpeedLimit(
bool,
int,
int

)

Parameter
bool whether to enable the line motion speed limit

false disable. Limited by the system default.
true enable. Limited by the input parameters for linear and rotation.

int Linear speed limit, expressed as mm/s. Maximum limit if <= 0.
int Rotation speed limit, expressed as deg/s. Maximum limit if <= 0.

Return

bool True Command accepted; False Command rejected.

Syntax 2

bool SetTCPSpeedLimit(
int,
int

)

Parameter
int Linear speed limit, expressed as mm/s. Maximum limit if <= 0.
int Rotation speed limit, expressed as deg/s. Maximum limit if <= 0.

Note
Same as syntax 1. It sets true to whether to enable the line motion speed limit.

Syntax 3

bool SetTCPSpeedLimit(
bool

)

Parameter
bool whether to enable the line motion speed limit

false disable. Limited by the system default.
true enable. Limited by the input parameters for linear and rotation.

Return

bool True Command accepted; False Command rejected.

Note
When activated, the line motion speed limit uses the existing settings for the Linear Speed Limit

and the Rotation Speed Limit. It defaults the limits to the maximum if never set.

SetTCPSpeedLimit(true, 0, 0)

Display("Default Speed Limit")

Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)

 // Point1

Line("CPP",{517.67505,-131.19205,343.19144,89.83959,89.9993,0},100,600,0,false)

 // Point2

Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)

 // Point1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 363

SetTCPSpeedLimit(true, 0, 30)

Display("Rotational Speed Limit = 30 deg/s")

Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)

 // Point1

Line("CPP",{517.67505,-131.19205,343.19144,89.83959,89.9993,0},100,600,0,false)

 // Point2

Line("CPP",{517.67212,-331.18498,343.19177,179.75342,-0.32395,89.91306},100,600,0,false)

 // Point1

SetTCPSpeedLimit(false) // Disable. Limited by the system default.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 364

13.30 SetAccTable()

Set the acceleration table, and the system will automatically fetch the speed and the time to

top speed from the table by the distance when the robot is in motion control. Currently, it is available

for the TM Robot S series models.

The acceleration table comes with five groups at most and with some rules.

1. There must be two groups at least, and the first and the last group cannot be disabled.

2. The maximum distance of each group must be greater than or equal to the maximum

distance of the previous group.

3. If Speed 2 (%) gets more than Speed 1 (%), it means speed up with distance; if less, it

means speed down with distance.

4. The default values vary from the robot models. The table below exemplifies one of the

default values in the acceleration table.

Distance Min

(mm)

Distance Max

(mm)

Speed 1

(%)

Speed 2

(%)

Time to Top Speed 1

(ms)

Time to Top Speed 2

(ms)

0 50 5 15 172.5 217.5

50 300 15 45 217.5 352.5

300 700 45 65 352.5 442.5

700 1000 65 75 442.5 487.5

1000 1300 75 100 487.5 600

Syntax 1

bool SetAccTable(
)

Parameter

void No input

Return

bool True Command accepted; False Command rejected.

Note

Reset the acceleration table to defaults.

Syntax 2

bool SetAccTable(
int,
float,
float,
float,
float

)

Parameter

int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.

(Configuration disabling is available for intermediate groups.)
float Speed 1 (%)
float Speed 2 (%)
float Time to Top Speed 2 (ms)

Return

bool True Command accepted; False Command rejected.

Note

Time to top speed 1 (ms) is calculated using the following equation:

Omron TM Collaborative Robot: TMScript Language Manual (I664) 365

Syntax 3

bool SetAccTable(
int,
float,
float,
float

)

Parameter

int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.

(Configuration disabling is available for intermediate groups.)
float Speed 1 (%)
float Speed 2 (%)

Note

Time to top speed 1 (ms) and Time to top speed 2 (ms) are calculated using the following equation:

Syntax 4

bool SetAccTable(
int,
float,
float

)

Parameter

int The acceleration table group. Valid from1 to 5.
float Distance Max (mm). A value of <= 0 means the group configuration is disabled.

(Configuration disabling is available for intermediate groups.)
float Speed 2 (%)

Note

Same as syntax 3. It sets Speed 1 (%) the same as Speed 2 (%).

Syntax 5

bool SetAccTable(
int,
bool

)

Parameter

int The acceleration table group. Valid from 2 to 4. Groups 1 and 5 are permanently
enabled.

bool Enable or disable the configuration of the group.

Return

bool True Command accepted; False Command rejected.

Note

The acceleration table requires at least two groups (groups 1 and 5), so the sequence of groups

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑜𝑝 𝑆𝑝𝑒𝑒𝑑 1 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛 +
𝑆𝑝𝑒𝑒𝑑 1 × (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑜𝑝 𝑆𝑝𝑒𝑒𝑑 2 − 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛)

𝑆𝑝𝑒𝑒𝑑 2

* Where Accelerate Time Min is defined based on the robot model.

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑜𝑝 𝑆𝑝𝑒𝑒𝑑 1 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛 +
𝑆𝑝𝑒𝑒𝑑 1 × (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 − 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛)

100

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑇𝑜𝑝 𝑆𝑝𝑒𝑒𝑑 2 = 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛 +
𝑆𝑝𝑒𝑒𝑑 2 × (𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 − 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒 𝑇𝑖𝑚𝑒 𝑀𝑖𝑛)

100

* Where Accelerate Time Min and Accelerate Time Default are defined based on the robot model.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 366

to be enabled or disabled is 2 to 4.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 367

13.31 GetAccTable()

Retrieve the contents of the acceleration table. Available for TM Robot S series models currently.

Syntax 1

float[] GetAccTable(
int

)

Parameter

int The acceleration table group. Valid from1 to 5.

Return
float[] Retrieve the setting of the acceleration table index associated group. The array

length is six and goes by Distance Min, Distance Max, Speed 1, Speed 2, Time to
Top Speed 1, and Time to Top Speed 2. If all the values in the array are 0, the
group configuration is closed.

Note
SetAccTable() // Reset the acceleration table to defaults.

string s1

for (int i = 1; i <= 5; i++)

s1 += GetString(GetAccTable(i)) + newline

Display(s1)

// {0,50,5,15,172.5,217.5}\u0D0A

{50,300,15,45,217.5,352.5}\u0D0A

{300,700,45,65,352.5,442.5}\u0D0A

{700,1000,65,75,442.5,487.5}\u0D0A

{1000,1300,75,100,487.5,600}

Pause()

SetAccTable(1, 50, 10, 20, 220)

SetAccTable(2, 320, 20, 50)

SetAccTable(3, 750, 70)

SetAccTable(4, false)

SetAccTable(5, 1300, 100)

string s2

for (int i = 1; i <= 5; i++)

s2 += GetString(GetAccTable(i)) + newline

Display(s2)

// {0,50,10,20,185,220}\u0D0A

{50,320,20,50,240,375}\u0D0A

{320,750,70,70,465,465}\u0D0A

{0,0,0,0,0}\u0D0A

{750,1300,100,100,600,600}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 368

13.32 Vision_DoJob()

Execute the existing vision jobs in the project but not the ones with vision capture points.

* Must create vision jobs in the project first without checking Vision Capture Point.

* It is required to codify the respective variable definitions in the define segment if using

script projects.

* The respective variable definition values update after the vision job execution.

Syntax 1

bool Vision_DoJob(

string

)

Parameter

string Vision job name.

Return

bool True Vision job completed and the result is pass.

False Vision job failed. 1. The result is fail.

2. Fail to execute.

3. Vision job comes with the initial point.

Note

bool var_result = Vision_DoJob("job1")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 369

13.33 Vision_DoJob_PTP()

Execute the existing vision jobs in the project, move to the vision capture point by the PTP

motion, and queue with the motion commands.

* Must create vision jobs in the project first. Check Vision Capture Point for moving to the

initial position and uncheck for not.

* It is required to codify the respective variable definitions in the define segment if using

script projects.

* The respective variable definition values update after the vision job execution.

Syntax 1

bool Vision_DoJob_PTP(

string,

int,

int,

bool

)

Parameters

string Vision job name.

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series

models)

<0 Invalid value

int The time interval to accelerate to top speed (ms). Invalid when using the

Acceleration Table.

bool Whether to use the smart pose of robot selection mode

true Use the pose of robot by the system.

false Use the pose of robot recorded teaching the vision job.

Return

bool True Vision job completed and the result is pass.

False Vision job failed. 1. The result is fail.

2. Fail to execute.

Syntax 2

bool Vision_DoJob_PTP(

string,

int,

int

)

Note

Same as syntax 1. It defaults false to whether to use the smart pose of robot selection

mode.

bool var_result = Vision_DoJob_PTP("job1", 100, 500)

var_result = Vision_DoJob_PTP("job1", 100, 500, true)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 370

13.34 Vision_DoJob_Line()

Execute the existing vision jobs in the project, move to the initial position by the line motion,

and queue with the motion commands.

*Must create vision jobs in the project first. Check Start at Initial Position for moving to the

initial position and uncheck for not.

*It is required to codify the respective variable definitions in the define segment if using script

projects.

* The respective variable definition values update after the vision job execution.

Syntax 1

bool Vision_DoJob_Line(

string,

int

)

Parameters

string Vision job name

int The robot end moving speed setting, expressed as a percentage (%)

 ≥0 Percentage of speed (%)

-1 Using the Acceleration Table (supported on TM Robot S series

models)

<0 Invalid value

Return

bool True Vision job completed and the result is pass.

False Vision job failed. 1. The result is fail.

2. Fail to execute.

Note

bool var_result = Vision_DoJob_Line("job1", 100)

Syntax 2

bool Vision_DoJob_Line(

string,

int,

int

bool

)

Parameters

string Vision job name

int The robot end moving speed setting, expressed as an absolute speed

(mm/s)

int The time interval to accelerate to top speed (㎳)

bool Whether to link to the project speed.

True Link to the project speed.

false Unlink to the project speed.

Return

bool True Vision job completed and the result is pass.

False Vision job failed. 1. The result is fail.

2. Fail to execute.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 371

Syntax 3

bool Vision_DoJob_Line(

string,

int,

int

)

Note

Same as systax 2. It defaults true to whether to link to the project speed.

bool var_result = Vision_DoJob_Line("job1", 100, 500)

var_result = Vision_DoJob_Line("job1", 100, 500, false)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 372

14. Vision Functions
14.1 Vision_IsJobAvailable()

Check if the vision job in the current project present and valid

Syntax 1

bool Vision_IsJobAvailable(

string

)

Parameter

string Vision job name

Return

bool True the vision present and valid

False the vision absent and invalid

Note

Use this function to check the presence and validity of the visual job before calling to avoid

errors caused by absence or invalidity while calling.

bool var_result = Vision_IsJobAvailable("job1")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 373

14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks
Once the parameters in the output result of the vision job come with more than one

dimensions, or the visual job is created by Flying Trigger/Inspection, it requires function calls for

the relevant information retrieval. The parameter should lead in the variable name, which indicates

the result data of the desired vision job and the module to retrieve. For example,

“Job1_Count_Blob_1_DetectObjectX_TM” is the output variable of the vision job Job1, which is

output by the Counting (Blobs) module 1. If there are multiple object outputs in the vision job, the

output variable values of the Counting (Blobs) module will be a two-dimensional array. Each row

of the array denotes the result of an object (find), and each column signifies the multiple results of

that object.

14.2.1 Vision_GetOutputArraySize()

Retrieve the array size of the 2D output variables after the vision job execution.

⚫ For vision jobs not created by Flying Trigger or Flying Inspection.

Syntax 1

int Vision_GetOutputArraySize(

string

)

Parameter

string The variable name as the output by the vision job

Return

int the object count. (the row count of the 2D array)

Syntax 2

int Vision_GetOutputArraySize(

string,

int

)

Parameter

string The variable name as the output by the vision job

int the object index. (the row index of the 2D array)

Return

int The length of the result array under the object. (row index).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 374

⚫ For vision jobs created by Flying Trigger or Flying Inspection.

Syntax 1

int Vision_GetOutputArraySize(

string

int or string

)

Parameter

string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

Return

int the object count. (the row count of the 2D array)

Syntax 2

int Vision_GetOutputArraySize(

string,

int or string,

int

)

Parameter

string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

int the find object index. (the row index of the 2D array)

Return

int The length of the result array under the object. (row index).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 375

14.2.2 Vision_GetOutputArrayValue()

Retrieve the array values of the 2D output variables after the vision job execution.

⚫ For vision jobs not created by Flying Trigger or Flying Inspection.

Syntax 1

string[] Vision_GetOutputArrayValue(

string,

int

)

Parameter

string The variable name as the output by the vision job with the data type of

string array.

int the object index. (the row index of the 2D array)

Return

?[] The result array under the object. (row index).

Syntax 2

string Vision_GetOutputArrayValue(

string,

int,

int

)

Parameter

string The variable name as the output by the vision job with the data type of

string array.

int the object index. (the row index of the 2D array)

int The output result array value under the object. (column index)

Return

?[] The result value of the column index in the result array under the object.

(row index).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 376

⚫ For vision jobs created by Flying Trigger or Flying Inspection.

Syntax 1

? Vision_GetOutputArrayValue(

string

int or string

)

Parameter

string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

Return

? The result output value

Syntax 2

? Vision_GetOutputArrayValue(
string,
int or string,
int

)

Parameter

string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

int The index value. It can be a result index in a single-object multi-result value
or an object index in a multi-object single-result value.

Return

? The result output value

Omron TM Collaborative Robot: TMScript Language Manual (I664) 377

Syntax 3

? Vision_GetOutputArrayValue(
string,
int or string,
int,
int

)

Parameter

string The variable name as the output by the vision job

int or string The index of the same visual job name or the name of the Flying point in

in Flying Trigger/Inspection.

int the object index. (the row index of the 2D array)

int The output result array value under the object. (column index)

Return

? The result value of the column index in the result array under the object.
(row index).

⚫ For vision jobs not created by Flying Trigger or Flying Inspection.

Suppose that the visual job Job1 has four objects (find). The Counting Blobs result of the first

object is “0”, “1”, and “2”. The Counting Blobs result of the second object is “3” and “4”. The

Counting Blobs result of the third object is “5”, and the Counting Blobs result of the fourth object is

“6” and “7”. Then, the variable Job1_Count_Blob_1_DetectObjectX_TM represents the result as

an array: { {"0", "1", "2"}, {"3", "4"}, {"5"}, {"6", "7"} }.

Row Column 0 1 2

0 "0" "1" "2"

1 "3" "4"

2 "5"

3 "6" "7"

⚫ Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM")
// Retrieve the row count of the variable Job1_Count_Blob_1_DetectObjectX_TM (i.e. the object (find) count)

// 4 // Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 1)
// Retrieve the array length of the output result from row 1, the 2nd object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM

// 2 // Column count of Row[1]

⚫ Get the object (find) result value

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 0)

// Retrieve the array of the output result from row 0, the 1st object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM

// {"0", "1", "2"}

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 2, 0)

// Retrieve the output result from row 2 and column 0, the 3rd object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM

Omron TM Collaborative Robot: TMScript Language Manual (I664) 378

// "5"

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 4, 0)

// Return error. Exceeding the access range. (the object (find) count is 4, and the valid index is 0 to 3.

⚫ For vision jobs not created by Flying Trigger or Flying Inspection.

In Flying Trigger or Flying Inspection, users can select the same vision job for repetitive

execution. Therefore, the added parameter is the index or the flying point name that uses the

same vision job name in Flying Trigger/Inspection. Assume the list of the vision job selected in

Flying Trigger/Inspection is {“Job0”, “Job1”, “Job1”, “Job1”, “Job1”, “Job2”, “Job1”, “Job2”}, and

assume the count of its output objects and the result value is as follows.0

F1 Job0 0

F2 Job1 0

F3 Job1 1

F4 Job1 2

F5 Job2 0

F6 Job1 3

F7 Job2 1

"5"

Row Column 0 1

0 "1" "5"

Row Column 0

0 "1"

1 "5"

Row Column 0 1 2

0 "0" "1" "2"

1 "3" "4"

2 "5"

3 "6" "7"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 379

(1) Suppose the output of the first Job1 is a single object and a single result value.

⚫ Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 0)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F2")

// Retrieve the row count (i.e. the object (find) count) of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the first Job1 (the flying point name is F2.)

// 1 // Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 0, 0)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F2", 0)

// Retrieve the array length of the output result from row 0, the 1st object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the first Job1 (the flying point name is F2.)

// 1 // Column count of Row[1]

⚫ Get the object (find) result value

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 0)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F2")

// Retrieve the output result of the variable Job1_Count_Blob_1_DetectObjectX_TM in the first Job1 (the

flying point name is F2.)

// "5"

"5"

F1 Job0 0

F2 Job1 0

F3 Job1 1

F4 Job1 2

F5 Job2 0

F6 Job1 3

F7 Job2 1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 380

(2) Suppose the output of the second Job1 is a single object and a multiple result value.

⚫ Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 1)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F3")

// Retrieve the row count (i.e. the object (find) count) of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the second Job1 (the flying point name is F3.)

// 1 // Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 1, 0)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F3", 0)

// Retrieve the array length of the output result from row 0, the 1st object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the second Job1 (the flying point name is F3.)

// 2 // Column count of Row[1]

⚫ Get the object (find) result value

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 1, 0)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F3",0)

// Retrieve the index 0 output result of the variable Job1_Count_Blob_1_DetectObjectX_TM in the second

Job1 (the flying point name is F3.)

// "1"

F1 Job0 0

F2 Job1 0

F3 Job1 1

F4 Job1 2

F5 Job2 0

F6 Job1 3

F7 Job2 1

Row Column 0 1

0 "1" "5"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 381

(3) Suppose the output of the third Job1 is a multiple object and a single result value.

⚫ Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 2)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F4")

// Retrieve the row count (i.e. the object (find) count) of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the third Job1 (the flying point name is F4.)

// 2 // Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 2, 1)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F4", 1)

// Retrieve the array length of the output result from row 1, the 2nd object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the third Job1 (the flying point name is F4.)

// 1 // Column count of Row[1]

⚫ Get the object (find) result value

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 2, 1)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F4",1)

// Retrieve the index 1 output result of the variable Job1_Count_Blob_1_DetectObjectX_TM in the third

Job1 (the flying point name is F4.)

// "5"

F1 Job0 0

F2 Job1 0

F3 Job1 1

F4 Job1 2

F5 Job2 0

F6 Job1 3

F7 Job2 1

Row Column 0

0 "1"

1 "5"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 382

(4) Suppose the output of the fourth Job1 is a multiple object and a multiple result value.

⚫ Get the object (find) count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 3)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F6")

// Retrieve the row count (i.e. the object (find) count) of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the fourth Job1 (the flying point name is F6.)

// 4 // Row count

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", 3, 1)

Vision_GetOutputArraySize("Job1_Count_Blob_1_DetectObjectX_TM", "F6", 1)

// Retrieve the array length of the output result from row 1, the 2nd object, of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the fourth Job1 (the flying point name is F6.)

// 2 // Column count of Row[1]

⚫ Get the object (find) result value

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 3, 0, 2)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F6", 0, 2)

// Retrieve the output result in row 0, the 1st object, and column 2, item 3, of the variable

Job1_Count_Blob_1_DetectObjectX_TM in the fourth Job1 (the flying point name is F4.)

// "2"

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 3, 4, 0)

// Return error. Exceeding the access range. (the object (find) count is 4, and the valid index is 0 to 3.)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", 4, 0, 0)

// Return error. Exceeding the access range. (Job1 repeats four times, and the valid index is 0 to 3.)

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F8", 0, 0)

// Return error. The Flying point named “F8” does not exist.

Vision_GetOutputArrayValue("Job1_Count_Blob_1_DetectObjectX_TM", "F7", 0, 0)

// Return error. The vision job associated to the Flying point named “F7” is Job2

F1 Job0 0

F2 Job1 0

F3 Job1 1

F4 Job1 2

F5 Job2 0

F6 Job1 3

F7 Job2 1

Row Column 0 1 2

0 "0" "1" "2"

1 "3" "4"

2 "5"

3 "6" "7"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 383

14.3 Vision_GetTriggerJobOutputCount()

Retrieve the output variable count in the buffer after the vision IO Trigger Job execution.

Syntax 1

int Vision_GetTriggerJobOutputCount(

string

)

Parameter

string The variable name as output by the IO Trigger Job with the data type of

string array.

Return

int The output variable count of the designated variable in the buffer.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 384

14.4 Vision_GetTriggerJobOutputValue()

Retrieve the output variable values after the vision IO Trigger Job execution.. (Retrieve and

remove from the buffer.)

Syntax 1

string[] Vision_GetTriggerJobOutputValue(

string

)

Parameter

string The variable name as output by the IO Trigger Job with the data type of

string array.

Return

string[] The output values of the designated variables in the buffer.

Note

After the vision IO Trigger Job execution (Enabling the IO trigger mode is a must during

vision editing.), the result updates to the variable after each IO trigger. Since the output of the

IO Trigger Job is multiple outputs, to prevent the output data from being overwritten because

of out-of-process, it stores the output data in the buffer one by one (first in, first out), and

users can use the function calls to retrieve the count or the values in the buffer. For example,

job1_Count_Blob_1_DetectObjectX_TM is an output variable of the vision job job1 to be

output by the Counting (Blobs) module 1. After the vision execution, it updates and stores the

result in the buffer at each IO trigger, so users can call the functions to retrieve the count or

the values of the variable job1_Count_Blob_1_DetectObjectX_TM in the buffer.

The buffer comes with a capacity limit. When results are about to enter, if the buffer

capacity is insufficient, it removes the oldest data automatically and adds the latest to the

buffer.

Suppose the current content in the buffer goes by { {"0", "1", "2"}, {"3", "4"}, {"5"} }

Retrieve the output variable count of the vision trigger job in the buffer.

int var_count = Vision_GetTriggerJobOutputCount

("job1_Count_Blob_1_DetectObjectX_TM")

// var_count = 3

Retrieve the output variable values in the buffer.

string[] var_s = Vision_GetTriggerJobOutputValue

("job1_Count_Blob_1_DetectObjectX_TM")

// var_s = {"0", "1", "2"}

// After retrieving, the content in the buffer turns to { {"3","4"}, {"5"} }.

var_count = Vision_GetTriggerJobOutputCount

("job1_Count_Blob_1_DetectObjectX_TM")

// var_count = 2

var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX_TM")

// var_s = {"3","4"}

// After retrieving, the content in the buffer turns to { {"5"} }.

var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX_TM")

// var_s = {"5"}

// After retrieving, the content in the buffer turns to { }.

var_s = Vision_GetTriggerJobOutputValue ("job1_Count_Blob_1_DetectObjectX_TM")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 385

// var_s = {}

var_count = Vision_GetTriggerJobOutputCount

("job1_Count_Blob_1_DetectObjectX_TM")

// var_count = 0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 386

15. External Script
15.1 Listen Node
Users can establish a socket TCPlistener (server site) in the listen node to connect to external

devices and communicate based on the packet format. All features available in

TM_Robot_Function can also be operated in the listen node.

1. Send Message: When entering this node, it will initiate

a message

2. Print Log: Enable Communication Log (shown on the

right)

3. Connection Timeout: When entering this node, if

more than the time (milliseconds) is not connected, it

will be overtime.

If <= 0, no timeout

4. Data Timeout: When connected, the timeout will be

exceeded when there is no communication packet

If <= 0, no timeout

Socket TCPListener is started up after the project being executed, and closed as the project

stopped. The IP and listen port will be shown on the Notice Log window on the right, after the

Socket TCPListener is started up.

IP HMI → System → Network → IP Address

Port 5890

When entering the Listen Node, the flow will keep at Listen Node until either of the two exit

conditions is fulfilled.

Pass: ScriptExit() is executed or the project is stopped

Fail: 1. Connection Timeout

 2. Data Timeout

 3. Before the TCP Listener is started up, the flow has entered this Listen Node

The command received by listen node will be executed in order. If the command is not valid, an

error message will be returned carrying the line number with errors. If the command is valid, it will

be executed.

The command can be divided into two categories. The first category is commands which can be

accomplished in instance, like assigning variable value. The second category is commands needs

to be executed in sequence, like motion command and IO value assigning. The second category

command will be placed in queue and executed in order.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 387

15.2 Communication Protocol

Length

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ Header , Length , Data , * Checksum \r \n

Checksum (XOR of these Bytes)

Name Size ASCII HEX Description

Start Byte 1 $ 0x24 Start Byte for Communication

Header X Header for Communication

Separator 1 , 0x2C Separator between Header and Length

Length Y Length of Data

Separator 1 , 0x2C Separator between Length and Data

Data Z Communication Data

Separator 1 , 0x2C Separator between Data and Checksum

Sign 1 * 0x2A Begin Sign of Checksum

Checksum 2 Checksum of Communication

End Byte 1 1 \r 0x0D

End Byte 2 1 \n 0x0A End Byte of Communication

1. Header

Defines the purpose of the communication package. The data definition could be different with

different Header.

⚫ TMSCT External Script

⚫ TMSTA Acquiring status or properties

⚫ CPERR Communication data error (E.g. Packet error, checksum error, header error,

etc.)

2. Length

Length defines the length in UTF8 byte. It can be represented in decimal, hexadecimal or

binary, the upper limit is int 32bits

Example:

 $TMSCT,100,Data,*CS\r\n // Decimal 100, that is the data length is 100 bytes

 $TMSCT,0x100,Data,*CS\r\n // Hexadecimal 0x100, that is the data length is 256 bytes

 $TMSCT,0b100,Data,*CS\r\n // Binary 0b100, that is the data length is 4 bytes

 $TMSCT,8,1,達明,*58\r\n // The Data length 1,達明 is 8 bytes (UTF8)

3. Data

The content of the communication package. Arbitrary characters are supported (including

0x00 .. 0xFF in UTF8). The data length is defined in Length and the purpose is defined in

Header

4. Checksum

The checksum of the communication package. The checksum is calculated with

XOR(exclusive OR), and the range for checksum computation starts from $ to * ($ and * are

excluded) as shown below:

Omron TM Collaborative Robot: TMScript Language Manual (I664) 388

$TMSCT,100,Data,*CS\r\n

Checksum = Byte[1] ^ Byte[2] … ^ Byte[N-6]

The representation of checksum is fixed to 2 bytes in hexadecimal format (without 0x).

For example:

$TMSCT,5,10,OK,*6D

CS = 0x54 ^ 0x4D ^ 0x53 ^ 0x43 ^ 0x54 ^ 0x2C ^ 0x35 ^ 0x2C ^ 0x31 ^ 0x30 ^ 0x2C ^ 0x4F ^

0x4B ^ 0x2C = 0x6D

CS = 6D (0x36 0x44)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 389

15.3 TMSCT

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ TMSCT , Length , Data , * Checksum \r \n

ID SCRIPT

Script ID , Script Language

TMSCT defines the communication package as External Script Language. In External Script

Language, the data contains two parts and is separated by comma. One is ID and the other is

SCRIPT

ID Script ID, can be arbitrary English character or number (a CPERR 04 error will

be reported when encountering non-alphanumeric byte). The ID is used as

specifying the target SCRIPT of return message.

, Separator

SCRIPT The content defined in Script Language. In a communication package, multi-line

scripts can fit into the SCRIPT section with separator (0x0D 0x0A)

Note

TMSCT is available only when in the external script control mode, otherwise CPEER

error packets will be replied.

Return (Robot→External Device)

1. When it enters Listen Node, the robot will send a message to all the connected

device. The ID is set to 0.

$TMSCT,9,0,Listen1,*4C\r\n

9 The length of 0,Listen1 is 9 bytes

0 The Script ID is 0

, Separator

Listen1 The message to send

2. The OK or ERROR message is replied according to the Script’s content. For

message with ;N, ;N represents the number of line with error or warning. After the

message is received, robot will execute the message, then send back the return

message, if the Script is valid. For invalid Script, the return message will be sent back

immediately without executed.

$TMSCT,4,1,OK,*5C\r\n // Response to ID 1

// OK means valid Script.

$TMSCT,8,2,OK;2;3,*52\r\n // Response to ID 2

// OK;2;3 means valid Script with warnings in line 2 and 3.

$TMSCT,13,3,ERROR;1;2;3,*3F\r\n // Response to ID 3

// ERROR;1;2;3 means invalid Script with errors in line 1, 2 and

3.

Receive (Robot←External Device)

1. When it enters the listen node, the robot will start to receive, check, and execute the

external script. If the robot did not enter the listen node (not in the external script

control mode), the Script received will be disposed and CPEER error packets will be

replied.

2. The message from external device should define the Script ID as a ID used in

messages replied by robot.

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\r\n // Defined as ID 1

> $TMSCT,4,1,OK,*5C\r\n // Response to ID 1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 390

3. In a communication package, multi-line scripts can fit into the SCRIPT section with

separator \r\n

< $TMSCT, 72,2,ChangeBase("RobotBase")\r\n

ChangeTCP("RobotEndFlange")\r\n

ChangeLoad(10.1),* 5A\r\n // Three lines Script in a communication package (Lines

are separated by \r\n)

> $TMSCT,4,2,OK,*5F\r\n

4. In Listen Node, local variables are supported and valid before quitting the Listen

Node.

< $TMSCT,40,3,int var_i = 100\r\n

var_i = 1000\r\n

var_i++,*5A\r\n

> $TMSCT,4,3,OK,*5E\r\n

< $TMSCT,42,4,int var_i = 100\r\n

var_i = 1000\r\n

var_i++\r\n

,*58\r\n

> $TMSCT,9,4,ERROR;1,*02\r\n // Because int var_i has been declared, an error

occurred.

5. In the listen node, it is possible to access or modify the project’s variables, but no new

variable can be declared since the variables created in the listen node are local

variables.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 391

15.4 TMSTA

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ TMSTA , Length , Data , * Checksum \r \n

SubCmd

SubCmd … …

TMSTA defines the communication package as acquiring status or properties. The data section of

the package contains different sub command (SubCmd). The package format could be different

according to different SubCmd. The definitions are listed below.

SubCmd

00 In external script control mode or not

01 Complete the configured QueueTag numbering or not

90..99 Date message to send (the format of data is self-definable)

Note

TMSTA could be executed without entering the Listen Node

SubCmd 00 In external script control mode or not

Format

Response (Robot→External Device)

SubCmd Entry Message

00 , false ,

00 , true , message

Receive (Robot←External Device)

SubCmd

00

Response (Robot→External Device)

1. If not in external script control mode, it will reply false.

$TMSTA,9,00,false,,*37\r\n

9 Indicates the length of 00,false, is 9 bytes

00 Indicates SubCmd as 00

, Separator

false The flow has not entered Listen Node

, Separator

 Empty string (Have not entered Listen Node)

2. If in external script control mode, it will reply true.

$TMSTA,15,00,true,Listen1,*79\r\n

15 Indicates the length of 00,true,Listen1 is 15 bytes

00 Indicates SubCmd as 00

, Separator

true The flow has entered the Listen Node

, Separator

Listen1 The message to be sent as in Listen Node (It indicates the flow is in

Listen1)

Receive (Robot←External Device)

(Based on SubCmd)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 392

1. Send to the robot from the external device

$TMSTA,2,00,*41\r\n

2 Indicates the length of 00 is 2 bytes.

00 Indicates the SubCmd is 00 whether in external script control mode or

not.

SubCmd 01 Complete the configured QueueTag numbering or not

Format

Send (Robot→External Device)

SubCmd Tag Number Status

01 , 01 .. 15 , true/false/none

Receive (Robot←External Device)

SubCmd Tag Number

01 , 01 .. 15

Note

When inquiring with TMSTA 01, users can look up to the status of the last 4 tag numbers.

Send (Robot→External Device)

1. Send to the external device from the robot. Spontaneously sending after QueueTag

numbering completed.

$TMSTA,10,01,08,true,*6D\r\n

10 Indicates the length of 01,00,true is 10 bytes

01 Indicates SubCmd as 01 to send the status of Tag Number

, Separation symbol

08 Tag Number 08

, Separation symbol

true true Indicates Tag Number complete

false Indicates Tag Number incomplete

none Indicates Tag Number not existed

Receive (Robot←External Device)

1. Send from the external device to the robot. Users can look up to the status of the last

4 tag numbers.

$TMSTA,5,01,15,*6F\r\n

5 Indicates the length of 01,88 is 5 bytes

01 Indicates SubCmd as 01 to send the status of Tag Number

, Separation symbol

15 Tag Number 15

> $TMSTA,10,01,15,none,*7D\r\n // TagNumber 15 not existed

2. Tag Number uses the value of integers between 1 and 15. If the value is invalid, it

relies none for not existed.

$TMSTA,5,01,88,*6B\r\n

> $TMSTA,10,01,88,none,*79\r\n // TagNumber 88 not existed

SubCmd 90 .. 99 Send data message

Format

Send (Robot→External Device)

SubCmd Data

90 .. 99 , …

Omron TM Collaborative Robot: TMScript Language Manual (I664) 393

Receive (Robot←External Device)

 None

Note

1. When sending with TMSTA 90 .. 99, users can use their self-defined formats.

2. Self-defined formats denote the formats are defined by both the project flow and the

external device.

3. To enhance the flexibility of usages, users can various SubCmd of 90 .. 99 to define

different formats to send such as

SubCmd 90 defined as string；

SubCmd 91 defined as float[]；

SubCmd 92 defined as byte[]

…

and so on for the external device to analyze and resolve based on the SubCmd with

different methods.

Send (Robot→External Device)

1. Send to the external device from the robot. When the external script executes the

ListenSend() function, it will send data.

string var_s = "Hello World"

float[] var_f = {1,2,3,4}

byte[] var_b = {0x10, 0x11, 0x12, 0x13}

ListenSend(90, var_s)

// the content of communication $TMSTA,14,90,Hello World,*73\r\n

// 0x39,0x30,0x2C,0x48,0x65,0x6C,0x6C,0x6F,0x20,0x57,0x6F,0x72,0x6C,0x64

ListenSend(91, var_f)

// the content of communication $TMSTA,19,91,…,*60\r\n

//

0x39,0x31,0x2C,0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40,0x00,0x00,0x80,0

x40

ListenSend(92, var_b)

// the content of communication $TMSTA,7,92,…,*63\r\n

// 0x39,0x32,0x2C,0x10,0x11,0x12,0x13

Omron TM Collaborative Robot: TMScript Language Manual (I664) 394

15.5 CPERR

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ CPERR , Length , Data , * Checksum \r \n

Error Code

Code (00 .. FF)

CPERR defines the communication package as sending the Communication Protocol Error. The

data section is defined as Error Code.

Error Code Error code, presented in 2 bytes hexadecimal format (without 0x)

00 Packet correct. No error. (The return message usually reply to the

content of packet instead of returning no error)

01 Packet Error.

02 Checksum Error.

03 Header Error.

04 Packet Data Error.

F1 Have not entered Listen Node

Note

Used by robot to response to external device

Response (Robot→External Device)

01 Packet Error

< $TMSCT,-100,1,ChangeBase("RobotBase"),*13\r\n // Length cannot be negative

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,24,1,ChangeBase("RobotBase"),*09\r\n

// Length value is incorrect (should be 25)

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,26,1,ChangeBase("RobotBase"),*0B\r\n

// When sending only the packet mentioned above, it will not bring out a response because its Length

of 26 exceeds the actual data amount, indicating an insufficient number of packets.

< $TMSCT,26,1,ChangeBase("RobotBase"),*0B\r\n

// Length value is incorrect (should be 25)

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*088\r\n

// 088 is not a correct packet ending format.

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*8\r\n

// When sending only the packet mentioned above, it will not bring out a response because of a

Checksum Byte coming short.

< $TMSCT,25,1,ChangeBase("RobotBase"),*8\r\n

Omron TM Collaborative Robot: TMScript Language Manual (I664) 395

// 8 is not a correct packet ending format.

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

01 Packet Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\n

// When sending only the packet mentioned above, it will not bring out a response because of an End

short.

< $TMSCT,25,1,ChangeBase("RobotBase"),*08\n

// \n is not a correct packet ending format.

> $CPERR,2,01,*49\r\n // CPERR Error Code 01

02 Checksum Error

< $TMSCT,25,1,ChangeBase("RobotBase"),*09\r\n // 09 is not a correct Checksum

> $CPERR,2,02,*4A\r\n // CPERR Error Code 02

03 Header Error

< $TMsct,25,1,ChangeBase("RobotBase"),*28\r\n // TMsct is not a correct

Header

> $CPERR,2,03,*4B\r\n // CPERR Error Code 03

04 Packet Data Error

< $TMSTA,4,XXXX,*47\r\n // There is no XXXX SubCmd under

TMSTA

> $CPERR,2,04,*4C\r\n // CPERR Error Code 04

F1 No External Script Mode

< $TMSCT,25,1,ChangeBase("RobotBase"),*0D\r\n

// Suppose currently not in external script control mode

> $CPERR,2,F1,*3F\r\n // CPERR Error Code F1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 396

15.6 ScriptListen()

Enter the external script control mode.

Syntax 1

bool ScriptListen(
string,
bool,
int,
int

)

Parameters
string The message string to send while in the external script control mode.
bool Whether to display the receiving external messages in the notice window.
int After entering external Script control mode, it will time out if not connected within a

specific timeframe (measured in milliseconds).
If <= 0 No timeout

Int After entering external Script control mode and connected, it will time out if no
communication packets received within a specific timeframe (measured in
milliseconds).
If <= 0 No timeout

Return
bool When entering the external Script control mode, it will remain there until meeting

certain conditions and exit by the conditions.
True execute ScriptExit() or stop the project

False 1. Connection Timeout occured

2. Data Timeout occured

3. If the TCP Listener fails to set up, ScriptListen() is invoked.

* Accessible only through the Listen node, the Script node, or Script project

programming.

* Calling in the flow required.

Syntax 2

bool ScriptListen(
string,
bool

)

Note
Same as Syntax 1. Set the message strings to send and whether to show in the notice window.

There is no timeout by default.

Syntax 3

bool ScriptListen(
string

)

Note
Same as Syntax 1. Set the message strings to send. There is no show in the notice window and

no timeout by default.

if (ScriptListen("Listen1", false, 0, 0))
Display("PASS")

else
Display("FAIL")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 397

Omron TM Collaborative Robot: TMScript Language Manual (I664) 398

15.7 ScriptExit()

Exit the external script control mode.

Syntax 1

bool ScriptExit(

)

Parameters

void No parameter

Return

bool True Command accepted; False Command rejected (format error)

Note

Exit the external script control mode and wait for the command to finish, and then quit the

listen node and move on with the pass route, or quit ScriptListen() and return True.

* Execute via TMSCT communication packets required.

* Functions after ScriptExit() will not be executed such as

< $TMSCT,86,2,ChangeBase("RobotBase")\r\n

ChangeTCP("RobotEndFlange")\r\n

ScriptExit()\r\n // Exit the external script control mode.

ChangeLoad(10.1),*58\r\n // ChangeLoad will not be executed.

* After exiting the script mode, it is required to wait for all the commands and the

functions to complete executions until quitting the listen node and moving on with the

pass route. At the time being of waiting for quitting the listen node, it is not in the external

script control mode, so no more external commands will be accepted and CPEER error

packets will be replied.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 399

15.8 Priority Commands
Due to the serial execution nature of the TMscript syntax, if using the queue syntax such as

QueueTag(1, 1) or WaitQueueTag(1) to wait for the tag number to arrive, the program will stay put

until the conditions are comprehended before going on execution. Therefore, if received the

ScriptExit() syntax sent from the outside while waiting, it is impossible to exit the external Script

control mode since the program is still waiting for the condition to meet.

When the program comes to the Listen node (the external Script control mode), other than the

serial execution TMscript syntax, there are also priority commands to use. In Listen nodes, the

priority commands go with a higher execution priority than the syntax execution, and the priority

commands will run at once as defined below.

1. ScriptExit(0)

Stop the robot motion immediately, clear the robot motion instructions in the buffer, and exit the

external Script control mode. Go to the Fail path after leaving the Listen node.

2. ScriptExit(1)

Stop the robot motion immediately, clear the robot motion instructions in the buffer, and exit the

external Script control mode. Go to the Pass path after leaving the Listen node.

3. StopAndClearBuffer(0)

Stop the robot motion immediately and clear the robot motion instructions in the buffer.

4. StopAndClearBuffer(1)

Stop the robot motion immediately, clear the robot motion instructions in the buffer, exit the

current Script program in execution, and continue to the next Script program.

5. StopAndClearBuffer(2)

Stop the robot motion immediately, clear the robot motion instructions in the buffer, exit the

current Script program in execution, and clear all the script programs in the Received Script

buffer.

⚫ Priority commands support the general use of the command definitions only but not the use

with variables and functions such as

< $TMSCT,42,1,int var_st=2\r\n

StopAndClearBuffer(var_st),*3A\r\n

> $TMSCT,9,1,ERROR;2,*04\r\n // Invalid syntax StopAndClearBuffer(var_st)

⚫ Using priority commands with TMscript syntax leads to priority command executions only

but not syntax executions.

< $TMSCT,94,2,float[] targetP1= {0,0,90,0,90,0}\r\n // Will not execute.

PTP("JPP",targetP1,10,200,0,false)\r\n // Will not execute.

StopAndClearBuffer(0),*75\r\n // Priority execution StopAndClearBuffer(0)

> $TMSCT,4,2,OK,*5F\r\n

⚫ The system will handle one priority command only in one external Script packet. If the

packet comes with numerous priority commands, the system will handle ScriptExit(0/1)

before StopAndClearBuffer(0/1/2). If there are numerous ScriptExit and

StopAndClearBuffer respectively, the system will handle the first only.

< $TMSCT,46,3,StopAndClearBuffer(2)\r\n // Will execute.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 400

// There are many of StopAndClearBuffer and the system will

handle the 1st of them.

StopAndClearBuffer(1),*68\r\n // Will not execute.

> $TMSCT,4,3,OK,*5E\r\n

< $TMSCT,61,4,StopAndClearBuffer(2)\r\n // Will not execute.

StopAndClearBuffer(1)\r\n // Will not execute.

ScriptExit(1),*52\r\n // Will execute.

// Due to the higher priority, the system handles ScriptExit

before S topAndClearBuffer.

> $TMSCT,4,4,OK,*59\r\n

1. < $TMSCT,86,1,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1,1),*60\r\n // QueueTag(1,1) waits.

The program will stay put with the command until tag 1 finishes.

< $TMSCT,15,2,ScriptExit(0),*55\r\n

// When receiving the command ScriptExit(0), if tag 1 does not finish,

> $TMSCT,4,1,OK,*5C\r\n // Respond 1 OK

// It does not send out TMSTA tag number for finishing due to the clearing of the

motion command and QueueTag().

> $TMSCT,4,2,OK,*5F\r\n // Respond 2 OK

It will exit the external Script control mode and go to the Fail path after leaving the Listen

node.

2. < $TMSCT,86,1,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1,1),*60\r\n // QueueTag(1,1) waits.

The program will stay put with the command until tag 1 finishes.

< $TMSCT,23,2,StopAndClearBuffer(0),*55\r\n

// When receiving the command StopAndClearBuffer(0), if tag 1 does not

finish

> $TMSCT,4,1,OK,*5C\r\n // Respond 1 OK

// It does not send out TMSTA tag number for finishing due to the clearing of the

motion command and QueueTag().

> $TMSCT,4,2,OK,*5F\r\n // Respond 2 OK

It does not exit the external Script control mode and is still in the Listen node.

3. < $TMSCT,145,1,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1,0)\r\n

WaitQueueTag(0,60000)\r\n // Tag 0 will wait for the 60-seconds timeout.

PTP("JPP",targetP1,40,200,0,false),*64\r\n // It takes a 60-seconds wait before the execution.

< $TMSCT,23,2,StopAndClearBuffer(0),*55\r\n

// If receiving the command StopAndClearBuffer(0) in 60 seconds, it will clear the 1st PTP() function.

> $TMSCT,4,2,OK,*5F\r\n // Respond 2 OK

It waits for the 60-seconds timeout before the 2nd PTP() function execution and responds 1

OK.

> $TMSCT,4,1,OK,*5C\r\n // Respond 1 OK

* StopAndClearBuffer(0) clears the motion commands only but not the function syntax or the

Omron TM Collaborative Robot: TMScript Language Manual (I664) 401

logic operations. While WaitQueueTag(0) sets the number 0, it waits for the timeout and is

impossible to exit with the motion command clearing. It is required to use the command

StopAndClearBuffer(1/2) to exit from the current Script program in execution.

4. < $TMSCT,86,1,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1,1),*60\r\n // QueueTag(1,1) waits.

The program will stay put with the command until tag 1 finishes.

< $TMSCT,86,2,float[] targetP2= {90,0,0,90,0,0}\r\n

PTP("JPP",targetP2,10,200,0,false)\r\n

QueueTag(2,1),*60\r\n // The last packet still waits, and this packet does not execute.

< $TMSCT,23,3,StopAndClearBuffer(1),*55\r\n

// When receiving the command StopAndClearBuffer(1), if tag 1 does not finish

> $TMSCT,4,1,OK,*5C\r\n // Respond 1 OK

// It does not send out TMSTA tag number for finishing due to the clearing of the

motion command and QueueTag().

> $TMSCT,4,3,OK,*5E\r\n // Respond 3 OK

It clears and exits the current Script 1 in execution, and it continues to the next, Script 2.

> $TMSCT,4,2,OK,*5F\r\n // Respond 2 OK

> $TMSTA,10,01,02,true,*67\r\n // Tag 2 finished

5. < $TMSCT,86,1,float[] targetP1= {0,0,90,0,90,0}\r\n

PTP("JPP",targetP1,10,200,0,false)\r\n

QueueTag(1,1),*60\r\n // QueueTag(1,1) waits.

The program will stay put with the command until tag 1 finishes.

< $TMSCT,86,2,float[] targetP2= {90,0,0,90,0,0}\r\n

PTP("JPP",targetP2,10,200,0,false)\r\n

QueueTag(2,1),*60\r\n // The last packet still waits, and this packet does not execute.

< $TMSCT,23,3,StopAndClearBuffer(2),*56\r\n

// When receiving the command StopAndClearBuffer(2), if tag 1 does not

finish

> $TMSCT,4,1,OK,*5C\r\n // Respond 1 OK

// It does not send out TMSTA tag number for finishing due to the clearing of the

motion command and QueueTag().

> $TMSCT,4,3,OK,*5E\r\n // Respond 3 OK

It clears and exits the current Script 1 in execution, and clears all the Script programs in the

Received Script buffer. Therefore, it clears Script 2 without the response to Script 2.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 402

16. Modbus Functions
16.1 ModbusTCP Class

Use Modbus TCP class and declare variables to create a Modbus TCP device. The variable

name will be the device name.

Construct 1

ModbusTCP VariableName = string, int, int

ModbusTCP VariableName = string, int

ModbusTCP VariableName = string

Parameters

string remote host IP address

int remote host connection port (502 by default)

int read/write timeout in millisecond 0 .. 10000 (10000ms by default)

Note

ModbusTCP mtcp1 = "192.168.1.10"

// construct a device, with IP 192.168.1.10

ModbusTCP mtcp2 = "192.168.1.10", 502

// construct a device, with IP 192.168.1.10, Port 502

ModbusTCP mtcp3 = "192.168.1.10", 502, 8000

// construct a device, with IP 192.168.1.10, Port 502, Timeout 8000ms

* After construction, either in flow projects or script projects, the device will not connect

actively until proceeding to read or write.

Member Methods

Name Description

Preset() Configure the preset ModbusTCP parameters.

IODDPreset()
Read IODD file and configure the preset ModbusTCP

parameters.

16.1.1 Preset()
Configure the preset ModbusTCP parameters.

Syntax 1

bool Preset(

string,

byte,

string,

int,

string,

int

)

Parameters

string preset device name

byte Slave ID

string signal type "DO", "DI", "RO", "RI"

int starting address

string type "bool", "byte", "int16", "int32", "float", "double", "string"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 403

int suffix parameter, when type is

"int32" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"float" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"double" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"string" address count (0 by default)

This is invalid for other types.

Return

bool preset successfully True, preset unsuccessfully False

Syntax 2

bool Preset(

string,

byte,

string,

int,

string

)

Note

Same as syntax 1. Fill default to suffix parameter by default.

Note

ModbusTCP mbus1 = "127.0.0.1"

// construct a device, with IP 127.0.0.1, Port 502, Timeout 8000ms

mbus1.Preset("light", 1, "DO", 7206, "bool") // set preset device name to "light"

mbus1.Preset("9000", 1, "RO", 9000, "string") // set preset device name to "9000"

// Return error, naming must be in alphanumeric combination.

mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 0)

// set preset device name to "preset_9000" // Little Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 1)

// set preset device name to "preset_9000" // Big Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "int")

// set preset device name to "preset_9000" // Big Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "string", 5)

// set preset device name to "preset_9000" // string type

// Once the name, preset_9000, exists, it overwrites the content to the configuration of the same

name by the processing sequence.

bool flag = modbus_read("mbus1", "light") // flag = false // suppose camera light is off

modbus_write("mbus1", "light", true) // write true // camera light is on

flag = modbus_read("mbus1", "light") // flag = true

modbus_write("mbus1 ", "preset_9000", Ctrl("\0\0\0\0\0\0\0\0\0\0"))

// clears preset_9000 in string type and occupies five addresses (5 RO = 10 bytes)

modbus_write("mbus1", "preset_9000", 1234) // write "1234" // because preset_9000 is in

string type

int var_i = modbus_read("mbus1", "preset_9000") // var_i = 1234 // it tries to convert

"1234" to integer.

// because preset_9000 is in string type and occupies five addresses, it then reads 10 bytes and converts by strings.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 404

(ends when encountered 0x00.)

modbus_write("mbus1", "preset_9000", "HelloWorld") // write "HelloWorld"

string var_s = modbus_read("mbus1", "preset_9000") // var_s = "HelloWorld"

var_i = modbus_read("mbus1", "preset_9000")

// Return error, unable to convert HelloWorld to integer.

modbus_write("mbus1", "preset_9000", 1234) // write "1234"

// contiune the last piece of data and write "HelloWorld" // therefore, the current data in the address 9000 is

"1234oWorld"

var_i = modbus_read("mbus1", "preset_9000")

// Return error, unable to convert 1234oWorld to integer.

16.1.2 IODDPreset()
Read IODD file and configure the preset ModbusTCP parameters.

Syntax 1

bool IODDPreset(

string,

byte,

int,

int

)

Parameters

string IODD file name (read the IODD file stored in the directory .\XmlFiles\IODD at

local host)

byte Slave ID

int starting address In

int starting address Out

Return

bool preset successfully True, preset unsuccessfully False

Note

ModbusTCP mbus1 = "192.168.1.10"

// construct a device, with IP 192.168.1.10, Port 502, Timeout 10000ms

mbus1.IODDPreset("OMRON-E2EQ-X3B4-IL2-20170301-IODD1.1.xml", 1, 100, 200)

// load the file, .\XmlFiles\IODD\OMRON-E2EQ-X3B4-IL2-20170301-IODD1.1.xml, and add the preset

configuration parameters.

// define preset names in the same way as flow projects rules.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 405

16.2 ModbusRTU Class

Use Modbus TCP class and declare variables to create a Modbus TCP device. The variable

name will be the device name.

Construct

ModbusRTU VariableName = string, int, string, int, float, int, bool, bool, bool

ModbusRTU VariableName = string, int, string, int, float, int

ModbusRTU VariableName = string, int, string, int, float

ModbusRTU VariableName = string, int

Parameters

string connection description

int bits per second, BaudRate

string parity check "none", "odd", "even", "mark", "space" ("none" by default)

int Data Bits 5, 6, 7, 8 (8 by default)

float Stop Bits 1, 1.5, 2 (1 by default)

int read/write timeout in millisecond 0 .. 10000 (10000 ms by default)

bool DTR/DSR true, false (false by default)

bool RTS/CTS true, false (false by default)

bool XON/XOFF true, false (false by default)

Note

ModbusRTU mrtu1 = "COM2",115200

// construct a device with Baudrate 115200

ModbusRTU mrtu2 = "COM2",115200,"none",8,1

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1

ModbusRTU mrtu3 = "COM2",115200,"none",8,1,10000

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

* After construction, either in flow projects or script projects, the device will not connect

actively until proceeding to read or write.

Member Methods

Name Description

Preset() Configure the preset ModbusTCP parameters.

IODDPreset()
Read IODD file and configure the preset ModbusTCP

parameters.

16.2.1 Preset()
Configure the preset ModbusTCP parameters.

Syntax 1

bool Preset(

string,

byte,

string,

int,

string,

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 406

)

Parameters

string preset device name

byte Slave ID

string signal type "DO", "DI", "RO", "RI"

int starting address

string type "bool", "byte", "int16", "int32", "float", "double", "string"

int suffix parameter, when type is

"int32" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"float" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"double" 0 Little Endian (CD AB) 1 Big Endian (AB CD) (default)

"string" address count (0 by default)

This is invalid for other types.

Return

bool preset successfully True，preset unsuccessfully False

Syntax 2

bool Preset(

string,

byte,

string,

int,

string

)

Note

Same as syntax 1. Fill default to suffix parameter by default.

Note

ModbusRTU mbus1 = "COM2",115200

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

mbus1.Preset("light", 1, "DO", 7206, "bool") // set preset device name to "light"

mbus1.Preset("9000", 1, "RO", 9000, "string") // set preset device name to "9000"

// Return error, naming must be in alphanumeric combination.

mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 0)

// set preset device name to "preset_9000" // Little Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "int", 1)

// set preset device name to "preset_9000" // Big Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "int")

// set preset device name to "preset_9000" // Big Endian

mbus1.Preset("preset_9000", 1, "RO", 9000, "string", 5)

// set preset device name to "preset_9000" // string type

// Once the name, preset_9000, exists, it overwrites the content to the configuration of the same

name by the processing sequence.

bool flag = modbus_read("mbus1", "light")// flag = false // suppose camera light is off

modbus_write("mbus1", "light", true) // write true // camera light is on

flag = modbus_read("mbus1", "light") // flag = true

Omron TM Collaborative Robot: TMScript Language Manual (I664) 407

modbus_write("mbus1 ", "preset_9000", Ctrl("\0\0\0\0\0\0\0\0\0\0"))

// clears preset_9000 in string type and occupies five addresses (5 RO = 10 bytes)

modbus_write("mbus1", "preset_9000", 1234) // write "1234" // because preset_9000 is in

string type

int var_i = modbus_read("mbus1", "preset_9000") // var_i = 1234 // it tries to convert

"1234" to integer.

// because preset_9000 is in string type and occupies five addresses, it then reads 10 bytes and converts by strings.

(ends when encountered 0x00.)

modbus_write("mbus1", "preset_9000", "HelloWorld") // write "HelloWorld"

string var_s = modbus_read("mbus1", "preset_9000") // var_s = "HelloWorld"

var_i = modbus_read("mbus1", "preset_9000")

// Return error, unable to convert HelloWorld to integer.

modbus_write("mbus1", "preset_9000", 1234) // write "1234"

// contiune the last piece of data and write "HelloWorld" // therefore, the current data in the address 9000 is

"1234oWorld"

var_i = modbus_read("mbus1", "preset_9000")

// Return error, unable to convert 1234oWorld to integer.

16.2.2 IODDPreset()
Read IODD file and configure the preset ModbusTCP parameters.

Syntax 1

bool IODDPreset(

string,

byte,

int,

int

)

Parameters

string IODD file name (read the IODD file stored in the directory .\XmlFiles\IODD at

local host)

byte Slave ID

int starting address In

int starting address Out

Return

bool preset successfully True, preset unsuccessfully False

Note

ModbusRTU mbus1 = "COM2",115200

// construct a device with Baudrate 115200, Parity none, DataBits 8, StopBits 1, Timeout 10000ms

mbus1.IODDPreset("OMRON-E2EQ-X3B4-IL2-20170301-IODD1.1.xml", 1, 100, 200)

// load the file, .\XmlFiles\IODD\OMRON-E2EQ-X3B4-IL2-20170301-IODD1.1.xml, and add the preset

configuration parameters.

// define preset names in the same way as flow projects rules.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 408

16.3 modbus_open()

Open the connection to the Modbus TCP/RTU device.

Syntax 1

bool modbus_open(

string

)

Parameters

string TCP/RTU device name

Return

bool True Open successfully.

False Open unsuccessfully.

Note

ModbusTCP mbus1 = "127.0.0.1" // construct a device, with IP 127.0.0.1, Port 502, Timeout

10000ms

modbus_open("mbus1") // connect to the device with IP: 127.0.0.1 and port: 502.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 409

16.4 modbus_close()

Close the connection from the Modbus TCP/RTU device.

Syntax 1

bool modbus_close(

string

)

Parameters

string TCP/RTU device name

Return

bool True close successfully

False close unsuccessfully

Note

ModbusTCP mbus1 = "127.0.0.1" // construct a device, with IP 127.0.0.1, Port 502, Timeout

10000ms

modbus_open("mbus1") // connect to the device with IP: 127.0.0.1 and port: 502.

modbus_close("mbus1") // close the connection.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 410

16.5 modbus_read()

Modbus TCP/RTU read function

Syntax 1 (TCP/RTU)

? modbus_read(

string,

string

)

Parameters

string TCP/RTU device name

string The predefined parameters belong to TCP/RTU device

Return

? The return data type is decided by the predefined parameters

Signal Type Function

Code

Type Num Of

Addr

Return data type

Digital Output 01 byte 1 byte (H: 1)(L: 0)

 bool 1 bool (H: true)(L:

false)

Digital Input 02 byte 1 byte (H: 1)(L: 0)

 bool 1 bool (H: true)(L:

false)

Register

Output

03 byte 1 byte

 int16 1 int

 int32 2 int

 float 2 float

 double 4 double

 string ? string

 bool 1 bool

Register Input 04 byte 1 byte

 int16 1 int

 int32 2 int

 float 2 float

 double 4 double

 string ? string

 bool 1 bool

* According to the Little Endian (CD AB) or Big Endian (AB CD) setting, the int32,

float, double data will transformed automatically.

* string will follows the UTF8 data format transformation (Stop at 0x00)

Note

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the default values are applied in Preset Setting

preset_800 DO 800 byte

preset_7202 DI 7202 bool

preset_9000 RO 9000 string 4

Omron TM Collaborative Robot: TMScript Language Manual (I664) 411

preset_7001 RI 7001 float Big-Endian (AB CD)

value = modbus_read("TCP_1", "preset_800") // value = 1 // DO 1 address = 1 bit

value = modbus_read("TCP_1", "preset_7202") // value = true // DI 1 address = 1 bit

value = modbus_read("TCP_1", "preset_9000") // value = ab1234cd // RO 4 address = 8

bytes size

value = modbus_read("TCP_1", "preset_7001") // value = -314.1593 // RI 2 address = 4 bytes

size (float)

Syntax 2 (TCP/RTU)

byte[] modbus_read(

string,

byte,

string,

int,

int

)

Parameters

string TCP/RTU Device Name

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

Return

byte[] The returned byte array from Modbus server

 *User defined modbus_read only follows Big-Endian (AB CD) format to read

byte[]

Note

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 DI 7202 3

TCP device 0 RO 9000 6

TCP device 0 RI 7001 12

TCP device 0 RI 7301 6

value = modbus_read("TCP_1", 0, "DO", 800, 4)

// value = {0,0,0,0} // DO 4 address = 4 bit to byte array

value = modbus_read("TCP_1", 0, "DI", 7202, 3)

// value = {1,0,0} // DI 3 address = 3 bit to byte array

value = modbus_read("TCP_1", 0, "RO", 9000, 6)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 412

// value = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

// RO 6 address = 12 bytes size

value = modbus_read("TCP_1", 0, "RI", 7001, 12)

// value =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,

0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00} // RI 12 address = 24 bytes size

value = modbus_read("TCP_1", 0, "RI", 7301, 6)

// value = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x0A,0x00,0x39}

// RI 6 address = 12 bytes size

Omron TM Collaborative Robot: TMScript Language Manual (I664) 413

16.6 modbus_read_int16()

Modbus TCP/RTU read function, and transform Modbus address data array to int16 array

Syntax 1 (TCP/RTU)

int[] modbus_read_int16(

string,

byte,

string,

int,

int,

int

)

Parameters

string TCP/RTU Device Name

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address

data to int16 array. *Invalid Parameter. Only support int32, float, double

0 Little Endian

1 Big Endian (Default)

Return

int[] The returned int array from Modbus server

Syntax 2 (TCP/RTU)

int[] modbus_read_int16(

string,

byte,

string,

int,

int

)

Note

Similar to Syntax1 with Big Endian (AB CD) setting

modbus_read_int16("TCP_1", 0, "DI", 7200, 2) => modbus_read_int16("TCP_1", 0,

"DI", 7200, 2, 1)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 414

TCP device 0 RO 9000 6

TCP device 0 RI 7001 12

TCP device 0 RI 7301 6

value = modbus_read_int16("TCP_1", 0, "DO", 800, 4)

// byte[] = {0,0,0,0} to int16[] value = {0,0} // byte[0][1] , byte[2][3]

value = modbus_read_int16("TCP_1", 0, "DI", 7202, 3)

// byte[] = {1,0,0} to int16[] value = {256,0}

// byte[0][1] , byte[2][3] // Fill up to [3] automatically

value = modbus_read_int16("TCP_1", 0, "RO", 9000, 6)

// byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

// to int16[] value = {21605,25448,28001,28393,-32364,-6504}

value = modbus_read_int16("TCP_1", 0, "RI", 7001, 12)

// byte[] =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,

0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// to int16[] value = {10544,-24756,-15492,-26214,17502,-4915,17076,0,-32768,0,0,0}

value = modbus_read_int16("TCP_1", 0, "RI", 7301, 6)

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}

// to int16[] value = {2018,5,18,15,49,35}

value = modbus_read_int16("TCP_1", 0, "RI", 7301, 6, 0)

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}

// to int16[] value = {2018,5,18,15,49,35}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 415

16.7 modbus_read_int32()

Modbus TCP/RTU read function, and transform Modbus address data array to int32 array

Syntax 1 (TCP/RTU)

int[] modbus_read_int32(

string,

byte,

string,

int,

int,

int

)

Parameters

string TCP/RTU DEVICE NAME

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address

data to int32 array.

0 Little Endian

1 Big Endian (Default)

Return

int[] The returned int array from Modbus server

Syntax 2 (TCP/RTU)

int[] modbus_read_int32(

string,

byte,

string,

int,

int

)

Note

Similar to Syntax1 with Big Endian (AB CD) setting.

modbus_read_int32("TCP_1", 0, "DI", 7200, 2) => modbus_read_int32("TCP_1", 0,

"DI", 7200, 2, 1)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 DI 7202 3

TCP device 0 RO 9000 6

Omron TM Collaborative Robot: TMScript Language Manual (I664) 416

TCP device 0 RI 7001 12

TCP device 0 RI 7301 6

value = modbus_read_int32("TCP_1", 0, "DO", 800, 4)

// byte[] = {0,0,0,0} to int32[] value = {0} // byte[0][1][2][3]

value = modbus_read_int32("TCP_1", 0, "DI", 7202, 3)

// byte[] = {1,0,0} to int32[] value = {16777216}

// byte[0][1][2][3] // Fill up to [3] automatically.

value = modbus_read_int32("TCP_1", 0, "RO", 9000, 6)

// byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

// to int32[] value = {1415930728,1835101929,-2120948072}

value = modbus_read_int32("TCP_1", 0, "RI", 7001, 12)

// byte[] =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,

0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// to int32[] value = {691052364,-1015244390,1147071693,1119092736,-2147483648,0}

value = modbus_read_int32("TCP_1", 0, "RI", 7301, 6)

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}

// to int32[] value = {132251653,1179663,3211299}

value = modbus_read_int32("TCP_1", 0, "RI", 7301, 6, 0) // byte[2][3][0][1]

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x31,0x00,0x23}

// to int32[] value ={0x000507E2,0x000F0012,0x00230031} = {329698,983058,2293809}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 417

16.8 modbus_read_float()

Modbus TCP/RTU read function, and transform Modbus address data array to float array

Syntax 1 (TCP/RTU)

float[] modbus_read_float(

string,

byte,

string,

int,

int,

int

)

Parameters

string TCP/RTU DEVICE NAME

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address

data to float array.

0 Little Endian

1 Big Endian (Default)

Return

float[] The returned float array from Modbus server

Syntax 2 (TCP/RTU)

float[] modbus_read_float(

string,

byte,

string,

int,

int

)

Note

Similar to Syntax1 with Big Endian (AB CD) setting.

modbus_read_float("TCP_1", 0, "DI", 7200, 2) => modbus_read_float("TCP_1", 0,

"DI", 7200, 2, 1)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 418

TCP device 0 RO 9000 6

TCP device 0 RI 7001 12

TCP device 0 RI 7301 6

value = modbus_read_float("TCP_1", 0, "DO", 800, 4)

// byte[] = {0,0,0,0} to float[] value = {0} // byte[0][1][2][3]

value = modbus_read_float("TCP_1", 0, "DI", 7202, 3)

// byte[] = {1,0,0} to float[] value = {2.350989E-38} // byte[0][1][2][3]

// Fill up to [3] automatically.

value = modbus_read_float("TCP_1", 0, "RO", 9000, 6)

// byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

// to float[] value = {3.940861E+12,4.360513E+27,-5.46975E-38}

value = modbus_read_float("TCP_1", 0, "RI", 7001, 12)

// byte[] =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,

0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// to float[] value = {3.921802E-14,-252.6,891.7,90,0,0}

value = modbus_read_float("TCP_1", 0, "RI", 7001, 12, 0) // byte[2][3][0][1]

// to float[] value =

{0x9F4C2930,0x999AC37C,0xECCD445E,0x000042B4,0x00008000,0x00000000}

= {-4.323275E-20,-1.600218E-23,-1.985221E+27,2.392857E-41,4.591775E-

41,0}

value = modbus_read_float("TCP_1", 0, "RI", 7301, 6)

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x0F,0x00,0x3A,0x00,0x26}

// to float[] value = {3.400471E-34,1.65306E-39,5.326512E-39}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 419

16.9 modbus_read_double()

Modbus TCP/RTU read function, and transform Modbus address data array to double array.

Syntax 1 (TCP/RTU)

double[] modbus_read_double(

string,

byte,

string,

int,

int,

int

)

Parameters

string TCP/RTU DEVICE NAME

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address

data to double array.

0 Little Endian

1 Big Endian (Default)

Return

double[] The returned double array from Modbus server

Syntax 2 (TCP/RTU)

double[] modbus_read_double(

string,

byte,

string,

int,

int

)

Note

Similar to Syntax1 with Big Endian (AB CD) setting.

modbus_read_double("TCP_1", 0, "DI", 7200, 2) => modbus_read_double("TCP_1",

0, "DI", 7200, 2, 1)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 DI 7202 3

Omron TM Collaborative Robot: TMScript Language Manual (I664) 420

TCP device 0 RO 9000 6

TCP device 0 RI 7001 12

TCP device 0 RI 7301 6

value = modbus_read_double("TCP_1", 0, "DO", 800, 4)

// byte[] = {0,0,0,0} to double[] value = {0} // byte[0][1][2][3][4][5][6][7]

value = modbus_read_double("TCP_1", 0, "DI", 7202, 3)

// byte[] = {1,0,0} to double[] value = {7.2911220195564E-304}

// byte[0][1][2][3][4][5][6][7]

value = modbus_read_double("TCP_1", 0, "RO", 9000, 6)

// byte[] = {0x54,0x65,0x63,0x68,0x6D,0x61,0x6E,0xE9,0x81,0x94,0xE6,0x98}

// to double[] value = {3.65481260356117E+98,-4.87647898854073E-301}

value = modbus_read_double("TCP_1", 0, "RI", 7001, 12)

// byte[] =

{0x29,0x30,0x9F,0x4C,0xC3,0x7C,0x99,0x9A,0x44,0x5E,0xEC,0xCD,0x42,0xB4,0x00,0x00,

0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// to double[] value = {2.76472410615396E-110,2.2818627604613E+21,0}

value = modbus_read_double("TCP_1", 0, "RI", 7001, 12, 0) // byte[6][7][4][5][2][3][0][1]

// to double[] value = {0x999AC37C9F4C2930,0x000042B4ECCD445E,0x0000000000008000}

= {-2.4604103205376E-185,3.62371629877526E-310,1.6189543082926E-319}

value = modbus_read_double("TCP_1", 0, "RI", 7301, 6)

// byte[] = {0x07,0xE2,0x00,0x05,0x00,0x12,0x00,0x10,0x00,0x0B,0x00,0x29}

// to double[] value = {1.06475148078395E-270,1.52982527955113E-308}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 421

16.10 modbus_read_string()

Modbus TCP/RTU read function, and convert Modbus address data array to string text in

UTF8

Syntax 1 (TCP/RTU)

string modbus_read_string(

string,

byte,

string,

int,

int,

int

)

Parameters

string TCP/RTU DEVICE NAME

byte Slave ID

string Read type

DO Digital Output (FC 01 Read Coil Status)

DI Digital Input (FC 02 Read Input Status)

RO Register Output (FC 03 Read Holding Registers)

RI Register Input (FC 04 Read Input Registers)

int Starting address

int Data length

int Follows Little Endian (CD AB) or Big Endian (AB CD) to transform the address

data to string. *Invalid Parameter. Only support int32, float, double. String

follows UTF8 and is sequentially transferred according to address.

0 Little Endian

1 Big Endian (Default)

Return

string The returned UTF8 string from Modbus server (Stop at 0x00)

Syntax 2 (TCP/RTU)

string modbus_read_string(

string,

byte,

string,

int,

int

)

Note

Similar to Syntax1 with Big Endian (AB CD) setting.

modbus_read_string("TCP_1", 0, "RO", 9000, 2) => modbus_read_string("TCP_1",

0, "RO", 9000, 2, 1)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

Omron TM Collaborative Robot: TMScript Language Manual (I664) 422

TCP device 0 RO 9000 12

modbus_write("TCP_1", 0, "RO", 9000) = "1234達明机器手臂"

// Undefined numbers of addresses to write, the default value 0 denotes to write the complete

data length of 22 bytes.

// Write byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,

0xE6,0x9C,0xBA,0xE5,0x99,0xA8,0xE6,0x89,0x8B,0xE8,0x87,0x82}

value = modbus_read_string("TCP_1", 0, "RO", 9000, 3)

// byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81} // RO 3 address = 6 bytes size

// to string = 1234�

value = modbus_read_string("TCP_1", 0, "RO", 9000, 6)

// byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0x9C}

// to string = 1234達明�

value = modbus_read_string("TCP_1", 0, "RO", 9000, 12)

// byte[] = {0x31,0x32,0x33,0x34,0xE9,0x81,0x94,0xE6,0x98,0x8E,

0xE6,0x9C,0xBA,0xE5,0x99,0xA8,0xE6,0x89,0x8B,0xE8,0x87,0x82, 0x41,0x42}

// to string = 1234達明机器手臂 AB // UTF8 format conversion

// The ending, 0x00, will not be included when writing data. When reading 12 addresses, it will

read beyond the range.

modbus_write("TCP_1", 0, "RO", 9000) = "1234"+Ctrl("\0")

// Write byte[] = {0x31,0x32,0x33,0x34,0x00} // Needs to write 3 Register address

value = modbus_read_string("TCP_1", 0, "RO", 9000, 5)

// byte[] = {0x31,0x32,0x33,0x34,0x00,0x00, 0x94,0xE6,0x98,0x8E} // The last 4 values are the

original data at those addresses

// to string = 1234 // UTF8 format conversion stops at 0x00

Omron TM Collaborative Robot: TMScript Language Manual (I664) 423

16.11 modbus_write()

Modbus TCP/RTU write function

Syntax 1 (TCP/RTU)

bool modbus_write(

string,

string,

?,

int

)

Parameters

string TCP/RTU Device Name

string TCP/RTU The predefined parameters belong to TCP/RTU device

? The input data. The predefined parameters will be applied according to the table

below.

Signal Type Function

Code

Type Input type Input value

Digital Output 05 byte byte (H: 1)(L: 0)

 bool bool (H: true)(L:

false)

Register

Output

06 byte byte

 bool bool

 int16 int

Register

Output

16 int32 int

 float float

 double double

 string string

* int32, float, double will be transferred with Little Endian (CD AB) or Big Endian (AB

CD) according to user’s setting.

 * string will be transferred with UTF8 format

* Writing array value is not supported with predefined parameters. To write with the

array value, user defined method should be applied (Syntax 3/4)

int The maximum number of addresses to be write, only effective to string type

data

> 0 Valid address length. Write with defined address length

<= 0 Invalid address length. Write all the data

When this parameter is skipped (As shown in Syntax2), the predefined address

length will be applied.

Return

bool True Write success

False Write failed 1. If the input data ? is empty string or array

2. If an error occurred in Modbus communication

Syntax 2 (TCP/RTU)

bool modbus_write(

string,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 424

string,

?,

)

Note

Similar to Syntax1 with predefined address length to write. If the predefined address

length <= 0, it will write all the data.

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

preset_800 DO 800 bool

preset_9000 RO 9000 string 4

modbus_write("TCP_1", "preset_800", 1) // write 1 (true)

modbus_write("TCP_1", "preset_800", 0) // write 0 (false)

bool flag = true

modbus_write("TCP_1", "preset_800", flag) // write 1 (true)

modbus_write("TCP_1", "preset_800", false) // write 0 (false)

string ss = "ABCDEFGHIJKLMNOPQRST" // With no number of address, the predefined

address length, 4, is applied. That is 4 RO = 8 bytes size

can be written.

modbus_write("TCP_1", "preset_9000", ss) // write ABCDEFGH // The exceeding part will be

skipped

// With no number of address, the predefined address

length, 4, is applied. That is 4 RO = 8 bytes size can be

written.

modbus_write("TCP_1", "preset_9000", "1234567") // write 1234567\0 // Use 0x00 to fill up

4 address

// With address length = 0, write all the data.

"09AB123" needs 4 addresses.

modbus_write("TCP_1", "preset_9000", "09AB123", 0) // write 09AB123\0 // Use 0x00 to

fill up 4 address

// With address length = 5, write data in 5

addresses. That is 5 RO = 10 bytes size can

be wrote.

modbus_write("TCP_1", "preset_9000", "09AB1234", 5) // write 09AB1234 // The input

data needs only 4 addresses.

Syntax 3 (TCP/RTU)

bool modbus_write(

string,

byte,

string,

int,

?,

int

)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 425

Parameters

string TCP/RTU DEVICE NAME

byte Slave ID

string Write type

DO Digital Output (FC 05/15 Write Single/Multiple Coil(s))

RO Register Output (FC 06/16 Write Single/Multiple Register(s))

int Starting address

? Input data

Signal Type Function

Code

Input ? type Input value

Digital Output 05 byte (H: 1)(L: 0)

 bool (H: true)(L:

false)

Digital Output 15 byte[] (H: 1)(L: 0)

 bool[] (H: true)(L:

false)

Register

Output

06 byte

 bool

Register

Output

16 int

 float

 double

 string

 byte[]

 int[]

 float[]

 double[]

 string[]

 bool[]

 *User defined modbus_write will follows Big-Endian (AB CD) format to write

* Here int means int32. For int16 type data, GetBytes() needs to be applied first

to change int16 to byte[]

int The maximum number of addresses to be write, only effective to string type

data

> 0 Valid address length. Write with defined address length

<= 0 Invalid address length. Write all the data

Return

bool True Write success

False Write failed 1. If the input data ? is empty string or array

2. If an error occurred in Modbus communication

Syntax 4 (TCP/RTU)

bool modbus_write(

string,

byte,

string,

int,

?

Omron TM Collaborative Robot: TMScript Language Manual (I664) 426

)

Note

Similar to Syntax3 with address length <= 0, it will write all the data.

modbus_write("TCP_1", 0, "RO", 9000, bb) => modbus_write("TCP_1", 0, "RO", 9000,

bb, 0)

Modbus Address data size

Digital 1 address = 1 bit size

Register 1 address = 2 bytes size

If the user defined values are applied to User Setting as

TCP device 0 DO 800 4

TCP device 0 RO 9000 12

byte[] bb = {10, 20, 30}

modbus_write("TCP_1", 0, "DO", 800, bb) // write 1,1,1

// Zero value, write 0. Non-zero value, write 1.

modbus_write("TCP_1", 0, "DO", 800, bb, 2) // write 1,1

// Address number = 2, only write 2 addresses.

modbus_write("TCP_1", 0, "DO", 800, true) // write 1

int i = 10000

modbus_write("TCP_1", 0, "RO", 9000, i) // write 0x00,0x00,0x27,0x10

// with int32 BigEndian (AB CD) default

bb = GetBytes(i, 0, 1) // bb = {0x10,0x27}

// transfer to int16 LittleEndian (CD AB)

modbus_write("TCP_1", 0, "RO", 9000, bb) // write 0x10,0x27

string[] n = {"ABC", "12", "34"}

modbus_write("TCP_1", 0, "RO", 9000, n, 2) // write ABC1

// Only 2 addresses available, the exceeding values

cannot be applied.

modbus_write("TCP_1", 0, "RO", 9000, n, 5) // write ABC12340

// The data needs 4 addresses (0xAB 0xC1 0x23 -

0x40)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 427

17. TM Ethernet Slave
Ethernet Slave comes with functions established with Socket TCP based on the framework of

client/server connections. Once enabled, the robot establishes a Socket TCP Listener Serve to send

the robot status and data to all of the connected clients or receive the contents from the clients to

execute the respective instructions and update the respective information periodically and promptly

without the real-time guarantee.

Like the Modbus Slave, the Ethernet Slave will automatically start on its own after power cycling

if it was previously set to Enable. The established IP and Port will be shown in the notice window.

IP TMflow → System → Network → IP Address

Port 5891

17.1 GUI Setting

Enable/Disable Enable or disable Ethernet Slave

IP Filter IP whitelist

Sets ranges for eligible IP addresses that are allowed to connect to the Ethernet

Slave. If no filters are set, all devices on the network can connect to the Ethernet

Slave.

Write

Permission

If checked, allows devices within the corresponding IP range to write to the

Ethernet Server with TMSVR commands.

 For example, setting IP Filter.

Group 1 192.168.1.100 ~ 200 denotes IP 192.168.1.100, 192.168.1.101, … , and

192.168.1.200 are available for connections.

Group 2 192.168.2.100 ~ 200 denotes IP 192.168.2.100, 192.168.2.101, … , and

192.168.2.200 are available for connections.

If the IP address of the client is not in the range of the IPs listed above, it rejects the client

to connect.

Group 1, 192.168.1.100 ~ 200, has permission to write, so clients connecting within this

group range sending data to Ethernet Slave makes Ethernet Slave write data. Group 2,

192.168.2.100 ~ 200, does not have permission to write. When sending data to Ethernet

Slave, it does not write data and will respond with the error code of write permission.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 428

17.2 Data Table
Users can use the items listed the Data Table to customize the required data content as well

as configure the communication protocol to transmit between the Ethernet Slave and clients,

and save the settings as a communication file. When the Ethernet Slave is enabled, the data

items in the communication file will be established with the relevant data content to the item to

send to the connected clients periodically (no real-time guarantee). The types of the data

format is defined by the settings in the communication file. The client can send data to the

server with any type of the supported data formats.

In the protocol, the types of the supported data format are:

BINARY Binary format, converse in Byte array (Little Endian / UTF8)

STRING String format, similar to the external command format

JSON JSON string format

The configuration interface is a left-to-right mechanism. Users can add items at the left to the

communication data table at the right and adjust the arrangement order of each item in the

communication data table at the right. In the content to send, there will always be an

item, Robot_Link, predefined in Ethernet Slave as a type of byte with the attribute of read-only to

denote whether to connect to the robot.

1. Predefined

Items and settings in this section are defined by TMflow, and the data content of the items is

updated by TMflow. The defined items are the general statuses of the robot, such as the

coordinates of the robot, the state of the project, the state of the electrical control box, or the

IO related statuses, such as digital input / digital output, analog input / analog output.

2. User defined

Items and settings in this section are defined by TMflow users for project programs to read /

write item data through the Expression Editor or for external users to read / write item data

through the TMSVR commands over a TCP/IP connection. With the user defined tab, the

project programs can work with external communication devices as a data exchange protocol.

The item list in the user-defined tab can be saved as a custom-defined fil to be edited or

exchanged data in the future.

3. Global Variable

In the global variable tab, the variable list created by the TMflow users provides a way to directly

use the variable name for read / write operations in the project programming, and the external

communication devices can read / write global variables with the communication protocol.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 429

4. TransmitFile

When the Ethernet Slave starts up, it will create the data content of the associated item by the

list of items in the selected communication file and send the content to the connected client

according to a fixed cycle. The Data section format will follow the specifications defined in the

communication file. The Ext?_DO_Mask and Ext?_AO_Mask in the Predefined System

Definition Area are primarily used by the client to transmit data to the server along with their

associated Ext?_DO and Ext?_AO. Since they are intended solely for client-to-server

communication, Ext?_DO_Mask and Ext?_AO_Mask are not in the periodic communication

data table.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 430

17.3 Communication Protocol

Length

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ Header , Length , Data , * Checksum \r \n

Checksum (XOR of these Bytes)

Name Size ASCII HEX Description

Start Byte 1 $ 0x24 Start Byte for Communication

Header X Header for Communication

Separator 1 , 0x2C Separator between Header and Length

Length Y Length of Data

Separator 1 , 0x2C Separator between Length and Data

Data Z Communication Data

Separator 1 , 0x2C Separator between Data and Checksum

Sign 1 * 0x2A Begin Sign of Checksum

Checksum 2 Checksum of Communication

End Byte 1 1 \r 0x0D

End Byte 2 1 \n 0x0A End Byte of Communication

*Using the same communication protocol with external commands.

1. Header

Defines the purpose of communication packets. Different headers come with different

definitions of communication packets and data.

⚫ TMSVR Defines the function of TM Ethernet Slave

⚫ CPERR Defines the errors of the communication packets such as packer errors, checksum

errors, header errors, and so on.

*Using the same content definitions with CPERR in external commands.

2. Length

The length indicates the length in the UTF8 bytes occupied by Data. Users can use decimal,

hexadecimal, or binary format. The maximum length is 32 bits.

For example,

 $TMSVR,100,Data,*CS\r\n // 100 in decimal indicates the data length is 100 bytes

$TMSVR,0x100,Data,*CS\r\n // 0x100 in hexadecimal indicates the data length is 256 bytes

$TMSVR,0b100,Data,*CS\r\n // 0b100 in binary indicates the data length is 4 bytes

$TMSVR,8,1,達明,*CS\r\n // indicates the length of Data, 1,達明, is 8 bytes (UTF8)

3. Data

The content of the communication packet can support any character (including 0x00 .. 0xFF and

uses UTF8 encoding), and the data length is determined by Length. The purpose and description

defined in Data must be defined by the header.

4. Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 431

The checksum of the communication packet. The calculation method is XOR (exclusive OR).

The calculation range is all Bytes between $ and * (excluding $ and *) as shown below.

$TMSVR,100,Data,*CS\r\n

Checksum = Byte[1] ^ Byte[2] … ^ Byte[N-6]

The checksum format is set to 2 bytes in hexadecimal (but not 0x), such as

$TMSVR,5,10,OK,*7E

CS = 0x54 ^ 0x4D ^ 0x53 ^ 0x56 ^ 0x52 ^ 0x2C ^ 0x35 ^ 0x2C ^ 0x31 ^ 0x30 ^ 0x2C ^ 0x4F ^

0x4B ^ 0x2C = 0x7E

CS = 7E (0x37 0x45)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 432

17.4 TMSVR

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ TMSVR , Length , Data , * Checksum \r \n

ID Mode Content

Transaction ID ,
0/1/2/3/
11/12/13

, Item and Value

TMSVR is defined as the TM Ethernet Slave protocol. The Data section of the packet is further

divided into three segments, ID (Transaction ID), Mode (Content Mode), and Content (Item and

Value), separated with commas and described below.

ID The transaction number expressed in any alphanumeric characters. (Reports the

CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a

communication packet response, it is a transaction number that identifies which

group of commands to respond.

, the symbol to separate

Mode The mode as the format of the data content

0 Indicates the server responds to the client command in string format.

1 Indicates the content data type in binary format

2 Indicates the content data type in string format

3 Indicates the content data type in JSON format

11 Indicates the content data type in binary format (Request read)

12 Indicates the content data type in string format (Request read)

13 Indicates the content data type in JSON format (Request read)

⚫ 1/2/3 are for client write to server and client read from server. The client read

from server is that the server sends contents to the connected client

periodically.

⚫ 11/12/13 are for client read from server with request read, which is the client

sends read request for the item and the server responds with the item value

to the client.

, the symbol to separate

Content The data content. Formatted by the mode definition.

Note

TMSVR command is for the client and the server to communicate in both directions. Under

normal circumstances, the server will broadcast the data items from the Transmit and User

Defined communication files to the connected clients periodically. When the server sends to

the client, the data is sent to the client to read from the server with no response to the server

required. When the client sends to the server, the data is received by the server from the client

to write with response to the client required.

⚫ ID Transaction Number

When the server sends data, cycles from 0 to 9 with each iteration. When the client sends

data to the server, the transaction number can be in any alphanumeric characters customized

at the client side. If the communication packet format is checked and correct , the server will

reply the client with the command processing status by the transaction number in the packet.

⚫ Mode Format and Mode for the Data Content

When the Mode is 1/2/3, it can be the function of client write to server or client read from

Omron TM Collaborative Robot: TMScript Language Manual (I664) 433

server, in which client read from server means the server sends content to the connected client

periodically. If client write to server, it means the clients sends data writing to the server. When

the client sends an item to write, not only can one item be written, but multiple items at a time,

and the server will send the command processing status according to the format of Mode 0.

When the Mode is 11/12/13, the request read method is used. The client sends an item

request and the server responds to the item value. The purpose is to get the other item data

not in the communication data table sent periodically. When the client sends a request to read,

not only can one item be retrieved, but multiple items at a time. When the request succeeds,

the server will send the item value to the client associated to the format of Mode 11/12/13.

However, if the request fails, for example, the item name does not exist, the server will send

the command processing status according to the format of Mode 0.

Whether data to write or request to read, the items can be all in the Predefined area but

not limited to saving in the data table. However, in the Userdefined area and the GlobalVariable

area, for the sake of custom definitions, it still need to be saved in the data table to proceed

with writing or reading.

⚫ Writing or Reading Confirmation

When the client sends data writing or reading requests to the server, no matter what format

the data table used to proceed sending periodically, the servers supports to the data format of

Mode 1/2/3/11/12/13 concurrently and checks whether all the criteria are correct before

performing the request. If there is any error with the write command, no request will be

performed. The criteria to write for inspection are:

1. The validity of the mode as the format of the data content

2. The connected client's write permissions based on the IP Filter.

3. The data content matches to the mode.

4. The item to write or read exists.

5. The attribute of the item to write is not read only.

6. The robot is in the appropriate mode (M/A).

7. The written data matches the data type of each item.

17.4.1 Mode = 0 (the status the server responds to the client command
processing)

After the server receives and processes a write command from a client, it will respond with

another TMSVR command with Mode 0. The details for Mode 0 are as follows.

 Data

ID Mode Error Code Error Description

Transaction

ID

, 0 , 00 .. 07 ,

Transaction ID Defined while the client sends the command for the server to reply with.

Mode 0 for the server to respond to the client

Error Code Error code definitions. Fixed as 2 bytes and in hexadecimal (but not 0x)

00 Correct writing. No error.

01 The communication format or mode is not supported. (Ex. Mode =

Omron TM Collaborative Robot: TMScript Language Manual (I664) 434

99)

02 The connected client is not permitted to write. (IP filer without write

permission)

03 The communication format and the data content format are

mismatched.

 (Ex. Mode = 3, but the data content is not in JSON format)

04 Item to write or read does not exist.

05 Unable to write to read-only items.

06 Incorrect M/A mode while writing.

07 Values to write mismatches with the configured type or the size.

Error Description Error description, following the error code.

00 OK

01 NotSupport

02 WritePermission

03 InvalidData

04 NotExist;XXX // ;XXX denotes which data item

05 ReadOnly;XXX

06 ModeError;XXX

07 ValueError;XXX

< $TMSVR,15,S0,2,Ctrl_DO0=1,*76\r\n // transaction ID S0, string format, set Ctrl_DO0=1

> $TMSVR,10,S0,0,00,OK,*18\r\n

// server responds transaction ID S0, mode 0, error code 00, correct writing

< $TMSVR,16,S1,99,Ctrl_DO0=1,*46\r\n // transaction ID S1, mode 99

> $TMSVR,18,S1,0,01,NotSupport,*0E\r\n

// server responds transaction ID S1, mode 0, error code 01, mode not

support

< $TMSVR,15,S2,2,Ctrl_DO0=1,*74\r\n // transaction ID S2, string format, set Ctrl_DO0=1

> $TMSVR,23,S2,0,02,WritePermission,*6A\r\n

// server responds transaction ID S2, mode 0, error code 02, the connected client is not granted with

write permission.

< $TMSVR,15,S3,3,Ctrl_DO0=1,*74\r\n // transaction ID S3, JSON format, set Ctrl_DO0=1

> $TMSVR,19,S3,0,03,InvalidData,*74\r\n

// server responds transaction ID S3, mode 0, error code 03, JSON format, data format (JSON)

mismatched with the content data format (STRING)

< $TMSVR,16,S4,2,Ctrl_DO32=1,*40\r\n // transaction ID S4, string format, set Ctrl_DO32=1

> $TMSVR,26,S4,0,04,NotExist;Ctrl_DO32,*58\r\n

// server responds transaction ID S4, mode 0, error ode 04, item Ctrl_DO32 does not exist.

< $TMSVR,17,S5,2,Robot_Link=1,*07\r\n

// transaction ID S5, string format, set Robot_Link=1

> $TMSVR,27,S5,0,05,ReadOnly;Robot_Link,*1E\r\n

// server responds transaction ID S5, mode 0, error code 05, the item Robot_Link is read only.

Supposed the user defined Item: adata, Type: int, Size: 4, and Write: Auto.

< $TMSVR,20,S6,2,adata={1,2,3,4},*55\r\n

// transaction ID S6, string format, set adata={1,2,3,4}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 435

> $TMSVR,23,S6,0,06,ModeError;adata,*2D\r\n

// server responds transaction ID S6, mode 0, error code 06, M/A mode mismatched while writing

(suppose it Manual Mode while writing).

< $TMSVR,18,S7,2,adata={1,2,3},*47\r\n // transaction ID S7, string format, set adata={1,2,3}

> $TMSVR,24,S7,0,07,ValueError;adata,*42\r\n

// server responds transaction ID S7, mode 0, error code 07, writing values and data size or type

mismatched. (the configured size is 4, but there is only 3 to write.)

17.4.2 Mode = 1 BINARY

The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

 Data

ID Mode Content

Transaction

ID

, 1 , Item and Value

Length of Item

2 bytes Little Endian

Item

UTF8

Length of Value

2 bytes Little

Endian

Value

Little Endian /

UTF8

…

Length of Item 2 bytes in Little Endian, value from 0 to 65535 indicating the length of

the item that follows

Item item name

Length of Value 2 bytes in Little Endian), value from 0 to 65535 indicating the length of

the data value that follows

Value data value

Suppose taking Check TCP_Value float[] and Ctrl_DO0 byte as the communication data and

transmitting in binary mode.

> 24 54 4D 53 56 52 2C // $TMSVR, // Header

36 39 2C // 69, // Length

30 2C 31 2C // 0,1, // transaction ID 0, mode 1, binary

0A 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0

// The name occupied 10 bytes, the value, 1 byte

09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD

CC CC 3D CD CC 4C 3E CD CC CC 3D // TCP_Value={1,1,1,0.1,0.2,0.1}

// The name occupied 9 bytes, the value, 24 bytes

08 00 43 74 72 6C 5F 44 4F 30 01 00 00 // Ctrl_DO0=0

// The name occupied 8 bytes, the value, 1 byte

2C 2A 39 36 0D 0A // ,*96\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 436

< 24 54 4D 53 56 52 2C // $TMSVR, // Header

31 38 2C // 18, // Length

54 31 2C 31 2C // T1,1, // transaction ID T1, mode 1, binary

08 00 43 74 72 6C 5F 44 4F 30 01 00 01 // Ctrl_DO0=1

// The name occupied 8 bytes, the value, 1 byte

2C 2A 37 41 0D 0A // ,*7A\r\n // Checksum

> $TMSVR,10,T1,0,00,OK,*1E\r\n

// server responds to ID T1, mode 1, error code 00, correct writing

Once the data type of the item to send is string [], two bytes, 0x00 0x00, are inserted between

the string elements as the separators.

> 24 54 4D 53 56 52 2C // $TMSVR, // Header

39 30 2C // 90, // Length

30 2C 31 2C // 0,1 // transaction ID 0, mode 1, binary

0A 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0

//The name occupied 10 bytes, the value, 1 byte

09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD

CC CC 3D CD CC 4C 3E CD CC CC 3D // TCP_Value={1,1,1,0.1,0.2,0.1}

//The name occupied 9 bytes, the value, 24 bytes

08 00 43 74 72 6C 5F 44 4F 30 01 00 01 // Ctrl_DO0=1

// The name occupied 8 bytes, the value, 1 byte

04 00 67 5F 73 73 0D 00 48 69 00 00 54 4D 00 00 52 6F 62 6F 74

// g_ss={"Hi","TM","Robot"}

// The name occupied 4 bytes, the value, 13 bytes

2C 2A 44 43 0D 0A // ,*DC\r\n // Checksum

Also, if the data type of the item to receive is string [], when converting to a byte array, two bytes,

00 00, are inserted between the string elements as the separators.

< 24 54 4D 53 56 52 2C // $TMSVR, // Header

32 35 2C // 25, // Length

54 32 2C 31 2C // T2,1, // transaction ID T2, mode 1, binary

04 00 67 5F 73 73 0C 00 48 65 6C 6C 6F 00 00 57 6F 72 6C 64

// g_ss={"Hello", "World"} // The name occupied 4 bytes, the value, 12 bytes

2C 2A 30 32 0D 0A // ,*02\r\n // Checksum

> $TMSVR,10,T2,0,00,OK,*1D\r\n

//server responds to ID T2, mode 0, error code 00, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 437

17.4.3 Mode = 2 STRING

The data content is transmitted as a string with the name and value of the data item in the Script

string of an external command. The format is shown as below.

 Data

ID Mode Content

Transaction ID , 2 , Item and Value

Item = Value \r\n …

Item item name

= equal

Value data value

\r\n symbol of carriage return as required if there is an item up next for separation.

Suppose taking Check TCP_Value float[] and Ctrl_DO0 byte, Ctrl_DO1 byte, g_ss string[] as

the communication data and transmitting in string mode.

> $TMSVR,97,9,2,Robot_Link=0\r\n // Robot_Link=0 // transaction ID 9, mode 2, string

TCP_Value={1,1,1,0.1,0.2,0.1}\r\n // TCP_Value={1,1,1,0.1,0.2,0.1}

Ctrl_DO0=1\r\n // Ctrl_DO0=1

Ctrl_DO1=0\r\n // Ctrl_DO1=0

g_ss={"Hi","TM","Robot"},*77\r\n // g_ss={"Hi","TM","Robot"}

< $TMSVR,15,T2,2,Ctrl_DO0=0\r\n // set Ctrl_DO0=0 // transaction ID T2, mode 2, string

Ctrl_DO1=1,*34\r\n // set Ctrl_DO1=1

> $TMSVR,10,T2,0,00,OK,*1D\r\n

// server responds to ID T2, mode 0, error code 00, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 438

public class TMSVRJsonData

{

public string Item;

public object Value;

}

17.4.4 Mode = 3 JSON

The data content is transmitted as a JSON string with the name and value of the data item

serialized in the JSON format as shown below.

 Data

ID Mode Content

Transaction

ID

, 3 , Item and Value

Item item name

Value data value

*[] array is in use when it comes it multiple items.

Suppose taking TCP_Value float[] and Ctrl_DO0 byte, Ctrl_DO1 byte, g_ss string[] as the

communication data and transmitting in JSON mode.

> $TMSVR,196,5,3,[{"Item":"Robot_Link","Value":0}, // Robot_Link=0

// transaction ID 5, mode 3, JSON

{"Item":"TCP_Value","Value":[1.0,1.0,1.0,0.1,0.2,0.1]},

// TCP_Value={1,1,1,0.1,0.2,0.1}

{"Item":"Ctrl_DO0","Value":0}, // Ctrl_DO0=0

{"Item":"Ctrl_DO1","Value":0}, // Ctrl_DO1=0

{"Item":"g_ss","Value":["Hi","TM","Robot"]}],*3A\r\n

// g_ss={"Hi","TM","Robot"}

< $TMSVR,113,T9,3,[{"Item":"Ctrl_DO0","Value":1}, // Ctrl_DO0=1

{"Item":"Ctrl_DO1","Value":0}, // Ctrl_DO1=0

{"Item":"g_ss","Value":["Hello","TM","Robot"]}],*7C\r\n

// g_ss={"Hello","TM","Robot"}

> $TMSVR,10,T9,0,00,OK,*16\r\n

// server responds to ID T9, mode 0, error code 0, correct writing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 439

17.4.5 Mode = 11 BINARY (Request read)

The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

 Data (client to server)

ID Mode Content

Transaction

ID

, 11 , Item

Length of Item

2 bytes Little Endian

Item

UTF8
…

The difference of the read

request from Mode = 1 is no

value required.

Length of Item 2 bytes in Little Endian, value from 0 to 65535 indicating the length of

the item that follows

Item Item name

Suppose taking TCP_Value float[] and Ctrl_DO0 byte as the communication data and

transmitting in binary mode.

server periodical delivery

> 24 54 4D 53 56 52 2C // $TMSVR, // Header

36 39 2C // 69, // Length

30 2C 31 2C // 0,1, // transaction ID 0, mode 1, binary

0A 00 52 6F 62 6F 74 5F 4C 69 6E 6B 01 00 00 // Robot_Link=0

// The name occupied 10 bytes, the value, 1 byte

09 00 54 43 50 5F 56 61 6C 75 65 18 00 00 00 80 3F 00 00 80 3F 00 00 80 3F CD

CC CC 3D CD CC 4C 3E CD CC CC 3D // TCP_Value={1,1,1,0.1,0.2,0.1}

// The name occupied 9 bytes, the value, 24 bytes

08 00 43 74 72 6C 5F 44 4F 30 01 00 00 // Ctrl_DO0=0

// The name occupied 8 bytes, the value, 1 byte

2C 2A 39 36 0D 0A // ,*96\r\n // Checksum

client requested to read

< 24 54 4D 53 56 52 2C // $TMSVR, // Header

32 36 2C // 26, // Length

51 31 2C 31 31 2C // Q1,11, // transaction ID Q1, mode 11 binary (Request read)

08 00 43 74 72 6C 5F 44 4F 30 // Ctrl_DO0 // The name occupied 8 bytes

08 00 54 43 50 5F 4D 61 73 73 // TCP_Mass // The name occupied 8 bytes

2C 2A 37 46 0D 0A // ,*7F\r\n // Checksum

server replied with the item value

> 24 54 4D 53 56 52 2C // $TMSVR, // Header

33 35 2C // 35, // Length

Omron TM Collaborative Robot: TMScript Language Manual (I664) 440

51 31 2C 31 31 2C // Q1,11, // server responds to ID Q1, mode 11 binary

08 00 43 74 72 6C 5F 44 4F 30 01 00 00

// Ctrl_DO0=0 // The name occupied 8 bytes, the value, 1 byte

08 00 54 43 50 5F 4D 61 73 73 04 00 00 00 00 00

// TCP_Mass=0 // The name occupied 8 bytes, the value, 4 byte

2C 2A 37 38 0D 0A // ,*78\r\n // Checksum

* server replied the same content format as Mode = 1 BINARY

client requested to read

< 24 54 4D 53 56 52 2C // $TMSVR, // Header

32 36 2C // 26, // Length

51 32 2C 31 31 2C // Q2,11, // transaction ID Q1, mode 11 binary (Request read)

08 00 43 74 72 6C 5F 44 4F 30 // Ctrl_DO0 // The name occupied 8 bytes

08 00 54 43 50 5F 4D 61 58 58 // TCP_MaXX // The name occupied 8 bytes

2C 2A 37 43 0D 0A // ,*7C\r\n // Checksum

server replied with the item value

> $TMSVR,25,Q2,0,04,NotExist;TCP_MaXX,*17\r\n

// server responds to ID Q2, mode 0, error code 04, item not existed

Omron TM Collaborative Robot: TMScript Language Manual (I664) 441

17.4.6 Mode = 12 STRING (Request read)

The data content is transmitted as a string with the name and value of the data item in the Script

string of an external command. The format is shown as below.

 Data (client to server)

ID Mode Content

Transaction

ID

, 12 , Item and Value

Item \r\n
…

No Value

required.

Item Item name

\r\n The newline characters. Required only as a delimiter if the next item comes.

Suppose taking TCP_Value float[] and Ctrl_DO0 byte, Ctrl_DO1 byte, g_ss string[] as the

communication data and transmitting in STRING mode.

server periodical delivery

> $TMSVR,97,9,2,Robot_Link=0\r\n // Robot_Link=0 // transaction ID 9, mode 2

TCP_Value={1,1,1,0.1,0.2,0.1}\r\n // TCP_Value={1,1,1,0.1,0.2,0.1}

Ctrl_DO0=1\r\n // Ctrl_DO0=1

Ctrl_DO1=0\r\n // Ctrl_DO1=0

g_ss={"Hi","TM","Robot"},*77\r\n // g_ss={"Hi","TM","Robot"}

client requested to read

< $TMSVR,28,Q2,12,Robot_Link\r\n // Item Robot_Link

// transaction ID Q2, mode 12 JSON (Request read)

TCP_Mass,*0E\r\n // Item TCP_Mass

server replied with the item value

> $TMSVR,30,Q2,12,Robot_Link=0\r\n // server responds to ID Q2, mode 12

TCP_Mass=0,*09\r\n

* server replied the same content format as Mode = 2 STRING

Omron TM Collaborative Robot: TMScript Language Manual (I664) 442

public class TMSVRJsonData

{

public string Item;

public object Value;

}

17.4.7 Mode = 13 JSON (Request read)

The data content is transmitted as a JSON string with the name and value of the data item

serialized in the JSON format as shown below.

 Data (client to server)

ID Mode Content

Transaction

ID

, 13 , Item and Value

Item Item name

Value Data value

* [] array is in use when it comes it multiple items.

* Shared with Mode = 3 JSON for using the same class for serialization / deserialization, but

the Value attribute may not exist

Suppose taking TCP_Value float[] and Ctrl_DO0 byte, Ctrl_DO1 byte, g_ss string[] as the

communication data and transmitting in JSON mode.

server periodical delivery

> $TMSVR,196,5,3,[{"Item":"Robot_Link","Value":0}, // Robot_Link=0

// transaction ID 5, mode 3

{"Item":"TCP_Value","Value":[1.0,1.0,1.0,0.1,0.2,0.1]}, // TCP_Value={1,1,1,0.1,0.2,0.1}

{"Item":"Ctrl_DO0","Value":0}, // Ctrl_DO0=0

{"Item":"Ctrl_DO1","Value":0}, // Ctrl_DO1=0

{"Item":"g_ss","Value":["Hi","TM","Robot"]}],*3A\r\n // g_ss={"Hi","TM","Robot"}

client requested to read

< $TMSVR,27,Q3,13,[{"Item":"TCP_Mass"}],*3C\r\n

// transaction ID Q3, mode 13 JSON (Request

read)

server replied with the item value

> $TMSVR,39,Q3,13,[{"Item":"TCP_Mass","Value":0.0}],*40\r\n

// server responds to ID Q3, mode 13

* server replied the same content format as Mode = 3 JSON

Omron TM Collaborative Robot: TMScript Language Manual (I664) 443

17.5 svr_read()

Read the item value in the communication data table of Ethernet Slave in the Connection Tab

of Robot Setting at the local host.

Syntax 1

? svr_read(

string

)

Parameter

string Item name

Return

? Return value by set data type

Note

Suppose taking TCP_Value float[], Ctrl_DO0 byte, Ctrl_DO1 byte, and g_ss string[] as the

communication data table.

float[] fva0= svr_read("TCP_Value") // {1, 1, 1, 0.1, 0.2, 0.1}

byte b0 = svr_read("Ctrl_DO0") // 0

byte b1 = svr_read("Ctrl_DO1") // 1

string[]ss = svr_read("g_ss") // {"Hi","TM","Robot"}

ss = g_ss // make the variable to take, g_ss, a variable name directly

byte st = svr_read("Robot_Link") // 0 (Robot disconnected) 1 (Robot connected)

float[] fva1 = svr_read("TCP_Value") // Report error. Suppose Ethernet Slave is not launched.

float[] fva2 = svr_read("TCP_Value1") // Report error. Item name TCP_Value1 does not exist.

float[] fva3 = svr_read("g_ff") // Report error.. Item name g_ff does not exist in the

communication table.

// If g_ff is assumed to exist among the global variables, it cannot be accessed because not it does not load

all global variables.

float[] fva4 = svr_read("Coord_Base_Flange") // {0.01,-252.6,891.7,90,0,0}

// Although added as the communication data, it's accessible for item name Coord_Base_Flange is in the

system definitions.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 444

17.6 svr_write()

Write the item value into the communication data table of Ethernet Slave in the Connection Tab

of Robot Setting at the local host.

Syntax 1

bool svr_write(

string,

?

)

Parameters

string Item name

? Item value

Return

bool True Write successfully

False Write failed Possible causes

1. Item name does not exist.

2. Unable to write the read-only item name.

3. Item value to write mismatched with item data type.

Note

Suppose taking TCP_Value float[], Ctrl_DO0 byte, Ctrl_DO1 byte, and g_ss string[] in the

communication data table.

float[] tvalue = {1,2,3,0.1,0.2,0.3}

bool flag = false

flag = svr_write("TCP_Value", tvalue) // flag = false read-only, invalid process (not an error)

flag = svr_write("Ctrl_DO0", 1) // flag = true，Ctrl_DO0 = 1

flag = svr_write("Ctrl_DO1", 0) // flag = true，Ctrl_DO1 = 0

flag = svr_write("TCP_Value", tvalue) // Error. Suppose Ethernet Slave is not launched.

flag = svr_write("TCP_Value1", tvalue) // Error. Item name TCP_Value1 does not exist.

flag = svr_write("Ctrl_DO0", "True") // Error. Item name Ctrl_DO0 writes value as string (the

data type is set to byte)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 445

18. Profinet Functions
The robot communicates with external controllers via the Profinet communication protocol. In

the mechanism of the Profinet communication protocol, the robot works as a Profinet IO device for

external devices to read and write the robot data. Meanwhile, TMflow monitors the table of data

receiving from external devices and the table of data sending to external devices with Profinet

functions as well as changes the custom definition section in the table of data sending to external

devices.

Communication Data Table

The data table is composed of the input data and the output data. Input Data Table is for

external devices posting on the robot, and Output Data Table is for the robot sending to

external devices. Both of the data tables come with System Definition Section and

Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data

contents are updated by the robot or external devices. The defined items are robot status

relevant such as robot bases, project status, control box status, or input/output status

relevant such as digital I/Os and analog I/Os. Users can use Profinet functions to read

the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data

contents are updated by users or external devices. In the meantime of the project editing,

users can use Profinet functions to read and write the output data table in the custom

definition section or read input data table in the custom definition section as well as use

the custom definition section as a data exchange register between the project and

external devices.

Communication

Data Table

(at the robot’s

viewpoint)

Data

Section

TMflow Profinet

Function Permissions

External Device

Permissions

Input Data

Table

System

Definition

Section

Read Write

Custom

Definition

Section

Read Write

Output Data

Table

System

Definition

Section

Read Read

Custom

Definition

Section

Read/Write Read

Omron TM Collaborative Robot: TMScript Language Manual (I664) 446

18.1 profinet_read_input()

Read the input table content.

Syntax 1

byte[] profinet_read_input(

int,

int

)

Parameters

int Starting address

int The address amount to read

Return

byte[] Return data in a byte array.

Note

byte[] var_ba = profinet_read_input(148,16)

// {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

Syntax 2

byte profinet_read_input(

int,

)

Parameters

int Starting address

Return

byte Return data in byte.

Note

byte var_b = profinet_read_input(148)

// 0x30

Syntax 3

? profinet_read_input(

string,

int,

int

)

Parameters

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? profinet_read_input(

string,

int,

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (I664) 447

string Item name

int The starting shifted address of the item

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5

? profinet_read_input(

string

)

Parameter

string Item name

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = profinet_read_input("StickStatus",0,1)

// 0x02

var_b = profinet_read_input("StickStatus",0)

// 0x02

var_b = profinet_read_input("StickStatus")

// 0x02

byte[] var_ba = profinet_read_input("CtrlBox_DO",0,2)

// {0x00,0x04}

var_ba = profinet_read_input("CtrlBox_DO")

// {0x00,0x04}

int[] var_ia = profinet_read_input("Register_Int",0,12)

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int[]

// int[] = {0x00000001,0x00000002,0x00000003} (Little Endian)

// int[] = {1,2,3}

var_ia = profinet_read_input("Register_Int",12)

// byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,

0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,

0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,

0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 448

0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

var_ia = profinet_read_input("Register_Int")

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,

0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,

0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,

0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

float[] var_fa = profinet_read_input("Register_Float",4,12)

// byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

// float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

// float[] = {1.2,1.3,2.1}

var_fa = profinet_read_input("Register_Float",12)

// byte[] = {0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]

// float[] = {0x40066666,0x400CCCCD,0x40133333,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000} (Big Endian)

// float[] = {2.1,2.2,2.3,0}

var_fa = profinet_read_input("Register_Float")

// byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,

0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]

// float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Big Endian)

// float[] = {1.1,1.2,1.3,2.1,2.2,2.3,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 449

Omron TM Collaborative Robot: TMScript Language Manual (I664) 450

18.2 profinet_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1

int[] profinet_read_input_int(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] profinet_read_input_int(

int,

int

)

Parameters

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = profinet_read_input_int(164,12,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = profinet_read_input_int(164,11,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

var_ia = profinet_read_input_int(164,10,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)

// int[] = {32767,99999,32768}

var_ia = profinet_read_input_int(164,12,1)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 451

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Big Endian) to int[]

// int[] = {0xFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)

// int[] = {-8454144,-1618607872,8454143}

var_ia = profinet_read_input_int(164,12,2)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = profinet_read_input_int(164,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

Syntax 3

int profinet_read_input_int(

int

)

Parameters

int Starting address

 * Convert the read data to an int array based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = profinet_read_input_int(164)

// byte[] = {0xE4,0x07,0x00,0x00} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

var_i = profinet_read_input_int(164)

// byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int

// int = 0x000007E4 (Big Endian)

// int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (I664) 452

18.3 profinet_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] profinet_read_input_float(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] profinet_read_input_float(

int,

int

)

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

* Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = profinet_read_input_float(284,12,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = profinet_read_input_float(284,11,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)

// float[] = {1.0,2.0,5.877472E-39}

var_fa = profinet_read_input_float(284,10,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)

// float[] = {1.0,2.0,0.0}

var_fa = profinet_read_input_float(284,12,1)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)

// float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 453

var_fa = profinet_read_input_float(284,12,2)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = profinet_read_input_float(284,12)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

Syntax 3

float profinet_read_input_float(

int

)

Parameters

int Starting address

 * Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big Endian (ABCD).

Return

float Return data in floating-point number.

Note

float var_f = profinet_read_input_float(284)

// byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float

// float = 0x3F800000 (Little Endian)

// float = 1.0

var_f = profinet_read_input_float(284)

// byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float

// float = {0x3F800000} (Big Endian)

// float = {1.0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 454

18.4 profinet_read_input_string()

Read the input table content and convert the data to the string encoded in UTF8.

Syntax 1

string profinet_read_input_string(

int,

int

)

Parameters

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = profinet_read_input_string(148,16)

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

var_s = profinet_read_input_string(148,32)

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

var_s = profinet_read_input_string(148,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

var_s = profinet_read_input_string(148,10)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}

// string = "abcd達明"

var_s = profinet_read_input_string(148,8)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}

// string = "abcd達�"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 455

18.5 profinet_read_input_bit()

Read the input table content and retrieve the nth bit value of the data byte.

Syntax 1

byte profinet_read_input_bit(

int,

int

)

Parameters

int Starting address

int The nth bit value in the data byte

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

Note

byte var_b = profinet_read_input_bit(148,0)

// 0x30 get bit: "0"

// 0

var_b = profinet_read_input_bit(148,5)

// 0x30 get bit: "5"

// 1

Syntax 2

byte profinet_read_input_bit(

string,

int

)

Parameters

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte var_b = profinet_read_input_bit("Register_Bit",0)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// 1 get bit: "0"

var_b = profinet_read_input_bit("Register_Bit",17)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// 0 get bit: "17"

Syntax 3

byte[] profinet_read_input_bit(

int,

int,

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 456

)

Parameters

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_ba = profinet_read_input_bit(148,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = profinet_read_input_bit(148,12,8)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,1,0,1,0,0,1,1}

Syntax 4

byte[] profinet_read_input_bit(

string,

int,

int

)

Parameters

string Item name

int Starting bit

int he amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_ba = profinet_read_input_bit("Register_Bit",0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = profinet_read_input_bit("Register_Bit",12,8)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 457

18.6 profinet_read_output()

Read the output table content.

Syntax 1

byte[] profinet_read_output(

int,

int

)

Parameters

int Starting address

int The address length to read

Return

byte[] Return data in a byte array.

Note

byte[] var_ba = profinet_read_output(540,16)

// {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

Syntax 2

byte profinet_read_output(

int

)

Parameters

int Starting address

Return

byte Return data in byte

Note

byte var_b = profinet_read_output(540)

// 0x30

Syntax 3

? profinet_read_output(

string,

int,

int

)

Parameters

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? profinet_read_output(

string,

int,

)

Parameters

string Item name

Omron TM Collaborative Robot: TMScript Language Manual (I664) 458

int The starting shifted address of the item

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5

? profinet_read_output(

string

)

Parameter

string Item name

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = profinet_read_output("ManualAuto",0,1)

// 0x02

var_b = profinet_read_output("ManualAuto",0)

// 0x02

var_b = profinet_read_output("ManualAuto")

// 0x02

byte[] var_ba = profinet_read_output("Error_Code",0,4)

// {0x00,0x04,0x80,0x0C}

var_ba = profinet_read_output("Error_Code",0,2)

// {0x00,0x04}

var_ba = profinet_read_output("Error_Code")

// {0x00,0x04,0x80,0x0C}

var_int i = profinet_read_output("Current_Time_YY")

// byte[] = {0x00,0x00,0x07,0xE4} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

int[] var_ia = profinet_read_output("Register_Int",0,12)

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int[]

// int[] = { 0x00000001,0x00000002,0x00000003} (Little Endian)

// int[] = {1,2,3}

var_ia = profinet_read_output("Register_Int",12)

// byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,

0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,

0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 459

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,

0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

var_ia = profinet_read_output("Register_Int")

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,

0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,

0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,

0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

float var_f = profinet_read_output("Current_TCP_Mass")

// byte[] = {0x40,0x40,0x00,0x00} (Big Endian) to float

// float = 0x40400000 (Big Endian)

// float = 3.0

var_fa = profinet_read_output("Current_TCP_Value",4,12)

// byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

// float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

// float[] = {1.2,1.3,2.1}

var_fa = profinet_read_output("Current_TCP_Value",12)

// byte[] = { 0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian)

to float[]

// float[] = {0x40066666,0x400CCCCD,0x40133333} (Big Endian)

// float[] = {2.1,2.2,2.3}

var_fa = profinet_read_output("Current_TCP_Value")

// byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,

0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian) to float[]

// float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333}

(Big Endian)

// float[] = { 1.1,1.2,1.3,2.1,2.2,2.3}

string var_s = profinet_read_output ("RobotModel",0,16)

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 460

var_s = profinet_read_output ("RobotModel",4,3)

// byte[] = {0x37,0x30,0x30}

// string = "700"

var_s = profinet_read_output ("RobotModel")

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 461

18.7 profinet_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1

int[] profinet_read_output_int(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] profinet_read_output_int(

int,

int

)

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = profinet_read_output_int(556,12,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = profinet_read_output_int(556,11,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

var_ia = profinet_read_output_int(556,10,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)

// int[] = {32767,99999,32768}

var_ia = profinet_read_output_int(556,12,1)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0xFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)

// int[] = {-8454144,-1618607872,8454143}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 462

var_ia = profinet_read_output_int(556,12,2)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = profinet_read_output_int(556,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

Syntax 3

int profinet_read_output_int(

int

)

Parameters

int Starting address

 * Convert the read data to an integer based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = profinet_read_output_int(556)

// byte[] = {0xE4,0x07,0x00,0x00} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

var_i = profinet_read_output_int(556)

// byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int

// int = 0x000007E4 (Big Endian)

// int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (I664) 463

18.8 profinet_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] profinet_read_output_float(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] profinet_read_output_float(

int,

int

)

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = profinet_read_output_float(676,12,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = profinet_read_output_float(676,11,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)

// float[] = {1.0,2.0,5.877472E-39}

var_fa = profinet_read_output_float(676,10,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)

// float[] = {1.0,2.0,0.0}

var_fa = profinet_read_output_float(676,12,1)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 464

// float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = profinet_read_output_float(676,12,2)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

Syntax 3

float profinet_read_output_float(

int

)

Parameters

int Starting address

* Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big Endian (ABCD).

Return

float Return data in a floating-point number.

Note

float var_f = profinet_read_output_float(676)

// byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float

// float = 0x3F800000 (Little Endian)

// float = 1.0

var_f = profinet_read_output_float(676)

// byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float

// float = 0x3F800000 (Big Endian)

// float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 465

18.9 profinet_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1

string profinet_read_output_string(

int,

int

)

Parameters

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = profinet_read_output_string(540,16)

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

var_s = profinet_read_output_string(540,32)

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

var_s = profinet_read_output_string(540,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

var_s = profinet_read_output_string(540,10)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}

// string = "abcd達明"

var_s = profinet_read_output_string(540,8)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}

// string = "abcd達�"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 466

18.10 profinet_read_output_bit()

Read the output table content and retrieve the nth bit value of the data byte.

Syntax 1

byte profinet_read_output_bit(

int,

int

)

Parameters

int Starting address

int The nth bit value in the data byte

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

Note

byte var_b = profinet_read_output_bit(540,0)

// 0x30 get bit: "0"

// 0

var_b = profinet_read_output_bit(540,5)

// 0x30 get bit: "5"

// 1

Syntax 2

byte profinet_read_output_bit(

string,

int

)

Parameters

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte[] var_data = {57,184,12}

profinet_write_output(540,var_data,3)

// {00111001,10111000,00001100} (binary)

byte var_b = profinet_read_output_bit("Register_Bit",0)

// 1

var_b = profinet_read_output_bit("Register_Bit",17)

// 0

Syntax 3

byte[] profinet_read_output_bit(

int,

int,

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 467

)

Parameters

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_data = {57,184,12}

profinet_write_output(540,var_data,3)

// {00111001,10111000,00001100} (binary)

byte[] var_ba = profinet_read_output_bit(540,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = profinet_read_output_bit(540,12,8)

// byte[] = {1,1,0,1,0,0,1,1}

Syntax 4

byte[] profinet_read_output_bit(

string,

int,

int

)

Parameters

string Item name

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_data = {57,184,12}

profinet_write_output(540,var_data,3)

// {00111001,10111000,00001100} (binary)

byte[] var_ba = profinet_read_output_bit("Register_Bit",0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = profinet_read_output_bit("Register_Bit",12,8)

// byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 468

18.11 profinet_write_output()

Write data to the output table.

Syntax 1

bool profinet_write_output (

int,

?,

int

)

Parameters

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int The maximum amount of the address to write

> 0 Legitimate data length. Write by the amount of the address.

<= 0 Illegitimate data length. Write by the complete length of the data to

write.

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 2

bool profinet_write_output(

int,

?

)

Parameters

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

Bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 1. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 3

bool profinet_write_output(

int,

?,

int,

int

Omron TM Collaborative Robot: TMScript Language Manual (I664) 469

)

Parameters

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

profinet_write_output(540,var_data,1)

byte var_b = profinet_read_output(540)

// 0xFF

byte[] var_data = {1,127,255}

profinet_write_output(540,var_data,3)

byte[] var_ba = profinet_read_output(540,3)

// {0x01,0x7F,0xFF}

profinet_write_output(540,var_data,2)

var_ba = profinet_read_output(540,3)

// {0x01,0x7F,0x00}

profinet_write_output(540,var_data,-1)

var_ba = profinet_read_output(540,3)

// {0x00,0x7F,0xFF}

int var_data = 32767

profinet_write_output(556,var_data,4)

int var_i = profinet_read_output_int(556)

// byte[] = {0xFF,0x7F,0x00,0x00} (Little Endian) to int

// int = 0x00007FFF (Little Endian)

// int = 32767

profinet_write_output(556,var_data,1)

var_i = profinet_read_output_int(556)

// byte[] = {0xFF,0x00,0x00,0x00} (Little Endian) to int

// int = 0x000000FF (Little Endian)

// int = 255

int[] var_data = {32767,99999,-32768}

profinet_write_output(556,var_data,12)

int[] var_ia = profinet_read_output_int(556,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 470

// int[] = {32767,99999,-32768}

profinet_write_output(556,var_data,3)

var_ia = profinet_read_output_int(556,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)

// int[] = {32767,0,0}

profinet_write_output(556,var_data,11)

var_ia = profinet_read_output_int(556,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0x00} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

profinet_write_output(556,var_data,4,4)

var_ia = profinet_read_output_int(556,12)

// byte[] = {0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)

// int[] = {99999,0,0}

float var_data = -10.0

profinet_write_output(676,var_data,4)

float var_f = profinet_read_output_float(676)

// byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float

// float = 0xC1200000 (Little Endian)

// float = -10.0

profinet_write_output(676,var_data,1)

var_f = profinet_read_output_float(676)

// byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float

// float = 0x00000000 (Little Endian)

// float = 0

float[] var_data = {-10.0,3.3,123.45}

profinet_write_output(676,var_data,12)

float[] var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {-10,3.3,123.45}

profinet_write_output(676,var_data,3)

var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to float[]

// float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)

// float[] = {2.938736E-39,0,0}

profinet_write_output(676,var_data,11)

var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x00} (Little Endian)

to float[]

// float[] = {0xC1200000,0x40533333,0x00F6E666} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 471

// float[] = {-10,3.3,2.267418E-38}

profinet_write_output(676,var_data,4,4)

var_fa = profinet_read_output_float(676,12)

// byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to float[]

// float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)

// float[] = {3.3,0,0}

string var_data = "abcd達明機器人 1234"

profinet_write_output(540,var_data,32)

string var_s = profinet_read_output_string(540,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

profinet_write_output(540,var_data,10)

var_s = profinet_read_output_string(540,32)

// byte[] = { 0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明"

profinet_write_output(540,var_data,8)

var_s = profinet_read_output_string(540,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達�"

profinet_write_output(540,var_data,4,15)

var_s = profinet_read_output_string(540,15)

// byte[] = {0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

// string = "達明機器人"

Syntax 4

bool profinet_write_output(

string,

int,

?

int,

int

)

Parameters

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 472

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5

bool profinet_write_output(

string,

int,

?

int

)

Parameters

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6

bool profinet_write_output(

string,

int,

?

)

Parameters

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the

data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 7

bool profinet_write_output(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 473

string,

?

)

Parameters

string Item name

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write

as well as write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768}

profinet_write_output("Register_Int",0,var_data,0,12)

int[] var_ia = profinet_read_output_int(556,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

profinet_write_output("Register_Int",4,var_data,4,4)

var_ia = profinet_read_output_int(556,12)

// byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)

// int[] = {0,99999,0}

profinet_write_output("Register_Int",4,var_data)

var_ia = profinet_read_output_int(556,20)

// byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF,

0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000000,0x00007FFF,0x0001869F,0xFFFF8000,0x00000000} (Little Endian)

// int[] = {0,32767,99999,-32768,0}

float[] var_data = {-10.0,3.3,123.45}

profinet_write_output("Register_Float",0,var_data,0,12)

float[] var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {-10,3.3,123.45}

profinet_write_output("Register_Float",4,var_data,4,8)

var_fa = profinet_read_output_float(676,12)

// byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

// float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 474

// float[] = {0,3.3,123.45}

profinet_write_output("Register_Float",8,var_data)

var_fa = profinet_read_output_float(676,20)

// byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,

0x66,0xE6,0xF6,0x42} (Little Endian) to float[]

// float[] = {0x00000000,0x00000000,0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {0,0,-10,3.3,123.45}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 475

18.12 profinet_write_output_bit()

Write content to the nth bit value of the data byte in the output table.

Syntax 1

bool profinet_write_output_bit(

int,

int,

int

)

Parameters

int Starting address

int The nth bit value in the data byte

int The data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

byte var_data = 240

profinet_write_output(540,var_data)

byte var_b = profinet_read_output(540)

// 0xF0

profinet_write_output_bit(540,1,1)

var_b = profinet_read_output_bit(540,1)

// 0xF2 get bit: "1"

// 1

profinet_write_output_bit(540,7,0)

var_b = profinet_read_output_bit(540,7)

// 0x72 get bit: "7"

// 0

Syntax 2

bool profient_write_output_bit(

string,

int,

int

)

Parameter

int Item name

int The nth bit value

int The data to write

*Data in bit will write in int.

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

byte var_data = 240

profinet _write_output(540,var_data)

byte var_b = profinet _read_output(540)

// 0xF0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 476

profinet _write_output_bit("Register_Bit",1,1)

var_b = profinet _read_output_bit(540,1)

// 0xF2 get bit: "1"

// 1

profinet _write_output_bit("Register_Bit",7,0)

var_b = profinet _read_output_bit(540,7)

// 0x72 get bit: "7"

// 0

Syntax 3

bool profinet_write_output_bit(

int,

int,

byte[],

int,

int

)

Parameters

int Starting address

int Starting bit

byte[] Data to write.

*Data in bit will write in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int Starting bit to write data

int The amount of bit to write data

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 4

bool profinet_write_output_bit(

int,

int,

byte[],

int

)

Parameters

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 3. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 477

Bit value = 0 for byte value ==0

Syntax 5

bool profinet_write_output_bit(

int,

int,

byte[]

)

Parameters

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

profinet_write_output_bit(540,0,var_data,0,20)

byte[] var_ba = profinet_read_output (540,0,3)

// byte[] = {0x39,0xB8,0x0C}

var_ba = profinet_read_output_bit(540,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

profinet_write_output_bit(540,3,var_data,5,10)

var_ba = profinet_read_output (540,0,3)

// byte[] = {0x08,0x0E,0x00}

var_ba = profinet_read_output_bit(540,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool profinet_write_output_bit(

string,

int,

byte[],

int,

int

)

Parameters

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

int The bit amount of the data to write

Return

bool True Write successfully.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 478

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 7

bool profinet_write_output_bit(

string,

int,

byte[],

int

)

Parameters

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 6. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 8

bool profinet_write_output_bit(

string,

int,

byte[]

)

Parameters

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 6. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

profinet_write_output_bit("Register_Bit",0,var_data,0,20)

byte[] var_ba = profinet_read_output (540,3)

// byte[] = {0x39,0xB8,0x0C}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 479

var_ba = profinet_read_output_bit(540,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

profinet_write_output_bit("Register_Bit",3,var_data,5,10)

var_ba = profinet_read_output (540,3)

// byte[] = {0x08,0x0E,0x00}

var_ba = profinet_read_output_bit(540,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 480

19. EtherNet/IP Functions
The robot communicates with external controllers via the EtherNet/IP communication

protocol. In the mechanism of the EtherNet/IP communication protocol, the robot works as an

EtherNet/IP IO device for external devices to read and write the robot data. Meanwhile, TMflow

monitors the table of data receiving from external devices and the table of data sending to

external devices with EtherNet/IP functions as well as changes the custom definition section in the

table of data sending to external devices.

Communication Data Table

The data table is composed of the input data and the output data. Input Data Table is for

external devices posting on the robot, and Output Data Table is for the robot sending to

external devices. Both of the data tables come with System Definition Section and

Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data

contents are updated by the robot or external devices. The defined items are robot status

relevant such as robot bases, project status, control box status, or input/output status

relevant such as digital I/Os and analog I/Os. Users can use EtherNet/IP functions to

read the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data

contents are updated by users or external devices. In the meantime of the project editing,

users can use EtherNet/IP functions to read and write the output data table in the custom

definition section or read input data table in the custom definition section as well as use

the custom definition section as a data exchange register between the project and

external devices.

Communication

Data Table

(at the robot’s

viewpoint)

Data

Section

TMflow EtherNet/IP

Function Permissions

External Device

Permissions

Input Data

Table

System

Definition

Section

Read Write

Custom

Definition

Section

Read Write

Output Data

Table

System

Definition

Section

Read Read

Custom

Definition

Section

Read/Write Read

Omron TM Collaborative Robot: TMScript Language Manual (I664) 481

19.1 eip_read_input()

Read the input table content.

Syntax 1

byte[] eip_read_input(

int,

int

)

Parameters

int Starting address

int The address amount to read

Return

byte[] Return data in a byte array.

Note

byte[] var_ba = eip_read_input(104,8)

// {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32}

Syntax 2

byte eip_read_input(

int,

)

Parameters

int Starting address

Return

byte Return data in byte.

Note

byte var_b = eip_read_input(104)

// 0x30

Syntax 3

? eip_read_input(

string,

int,

int

)

Parameters

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? eip_read_input(

string,

int,

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (I664) 482

string Item name

int The starting shifted address of the item

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5

? eip_read_input(

string

)

Parameters

string Item name

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

 Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = eip_read_input("O2T_StickStatus",0,1)

// 0x02

var_b = eip_read_input("O2T_StickStatus",0)

// 0x02

var_b = eip_read_input("O2T_StickStatus")

// 0x02

byte[] var_ba = eip_read_input("O2T_CtrlBox_DO",0,2)

// {0x00,0x04}

var_ba = eip_read_input("O2T_CtrlBox_DO")

// {0x00,0x04}

int[] var_ia = eip_read_input("O2T_Register_Int",0,12)

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003} (Little Endian)

// int[] = {1,2,3}

var_ia = eip_read_input("O2T_Register_Int",12)

// byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,

0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,

0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little

Endian)

to int[]

// int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,

0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {4,5,6,7,8,9,10,11,12,0,0,0}

var_ia = eip_read_input("O2T_Register_Int")

Omron TM Collaborative Robot: TMScript Language Manual (I664) 483

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,

0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,

0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,

0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,

0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0}

float[] var_fa = eip_read_input("O2T_Register_Float",4,12)

// byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

// float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

// float[] = {1.2,1.3,2.1}

var_fa = eip_read_input("O2T_Register_Float",12)

// byte[] = {0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

(Big Endian) to float[]

// float[] = {0x40066666,0x400CCCCD,0x40133333,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000} (Big Endian)

// float[] = {2.1,2.2,2.3,0,0,0,0,0,0,0,0,0}

var_fa = eip_read_input("O2T_Register_Float")

// byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,

0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]

// float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333,

0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,

0x00000000,0x00000000,0x00000000} (Big Endian)

// float[] = { 1.1,1.2,1.3,2.1,2.2,2.3,0,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 484

19.2 eip_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1

int[] eip_read_input_int(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] eip_read_input_int(

int,

int

)

Parameters

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian.

int[] var_ia = eip_read_input_int(112,12,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = eip_read_input_int(112,11,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

var_ia = eip_read_input_int(112,10,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)

// int[] = {32767,99999,32768}

var_ia = eip_read_input_int(112,12,1)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Big Endian) to int[]

// int[] = {0xFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 485

// int[] = {-8454144,-1618607872,8454143}

var_ia = eip_read_input_int(112,12,2)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = eip_read_input_int(112,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

Syntax 3

int eip_read_input_int(

int

)

Parameter

int Starting address

 *Convert the read data to an integer based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = eip_read_input_int(112)

// byte[] = {0xE4,0x07,0x00,0x00} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

var_i = eip_read_input_int(112)

// byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int

// int = 0x000007E4 (Big Endian)

// int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (I664) 486

19.3 eip_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] eip_read_input_float(

int,

int,

int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] eip_read_input_float(

int,

int

)

Parameter

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = eip_read_input_float(172,12,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = eip_read_input_float(172,11,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)

// float[] = {1.0,2.0,5.877472E-39}

var_fa = eip_read_input_float(172,10,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)

// float[] = {1.0,2.0,0.0}

var_fa = eip_read_input_float(172,12,1)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 487

to float[]

// float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)

// float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = eip_read_input_float(172,12,2)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = eip_read_input_float(172,12)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

Syntax 3

float eip_read_input_float(

int

)

Parameter

int Starting address

 *Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big Endian (ABCD).

Return

Float Return data in a floating-point number.

Note

float var_f = eip_read_input_float(172)

// byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float

// float = 0x3F800000 (Little Endian)

// float = 1.0

var_f = eip_read_input_float(172)

// byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float

// float = 0x3F800000 (Big Endian)

// float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 488

19.4 eip_read_input_string()

Read the input table content and convert the data to the string encoded in UTF8.

Syntax 1

string eip_read_input_string(

int,

int

)

Parameter

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = eip_read_input_string(104,16)

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

var_s = eip_read_input_string(104,32)

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

var_s = eip_read_input_string(104,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

var_s = eip_read_input_string(104,10)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}

// string = "abcd達明"

var_s = eip_read_input_string(104,8)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}

// string = "abcd達�"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 489

19.5 eip_read_input_bit()

Read the input table content and retrieve the nth bit value of the data byte.

Syntax 1

byte eip_read_input_bit(

int,

int

)

Parameter

int Starting address

int The nth bit value in the data byte

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte var_b = eip_read_input_bit(104,0)

// 0x30 get bit: "0"

// 0

var_b = eip_read_input_bit(104,5)

// 0x30 get bit: "5"

// 1

Syntax 2

byte eip_read_input_bit(

string,

int

)

Parameter

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte var_b = eip_read_input_bit("O2T_Register_Bit",0)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// 1 get bit: "0"

var_b = eip_read_input_bit("O2T_Register_Bit",17)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// 0 get bit: "17"

Syntax 3

byte[] eip_read_input_bit(

int,

int,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 490

int

)

Parameter

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_ba = eip_read_input_bit(104,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = eip_read_input_bit(104,12,8)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,1,0,1,0,0,1,1}

Syntax 4

byte[] eip_read_input_bit(

string,

int,

int

)

Parameter

string Item name

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_ba = eip_read_input_bit("O2T_Register_Bit",0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = eip_read_input_bit("O2T_Register_Bit",12,8)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1,…} // total

// byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 491

19.6 eip_read_output()

Read the output table content.

Syntax 1

byte[] eip_read_output(

int,

int

)

Parameter

int Starting address

int The address length to read

Return

byte[] Return data in a byte array.

Note

byte[] var_ba = eip_read_output(300,8)

// {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32}

Syntax 2

byte eip_read_output(

int

)

Parameter

int Starting address

Return

Byte Return data in byte.

Note

byte var_b = eip_read_output(300)

// 0x30

Syntax 3

? eip_read_output(

string,

int,

int

)

Parameter

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? eip_read_output(

string,

int,

)

Parameter

Omron TM Collaborative Robot: TMScript Language Manual (I664) 492

string Item name

int The starting shifted address of the item

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Syntax 5

? eip_read_output(

string

)

Parameter

string Item name

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = eip_read_output("ManualAuto",0,1)

// 0x02

var_b = eip_read_output("ManualAuto",0)

// 0x02

var_b = eip_read_output("ManualAuto")

// 0x02

byte[] var_ba = eip_read_output("Error_Code",0,4)

// {0x00,0x04,0x80,0x0C}

var_ba = eip_read_output("Error_Code",0,2)

// {0x00,0x04}

var_ba = eip_read_output("Error_Code")

// {0x00,0x04,0x80,0x0C}

int var_i = eip_read_output("Current_Time_Year")

// byte[] = {0x00,0x00,0x07,0xE4} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

int[] var_ia = eip_read_output("T2O_Register_Int",0,12)

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03} (Little Endian)

to int[]

// int[] = { 0x00000001,0x00000002,0x00000003} (Little Endian)

// int[] = {1,2,3}

var_ia = eip_read_output("T2O_Register_Int",12)

// byte[] = {0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,

0x00,0x00,0x00,0x08,0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 493

0x00,0x00,0x00,0x0C,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

(Little Endian) to int[]

// int[] = {0x00000004,0x00000005,0x00000006,0x00000007,0x00000008,0x00000009,

0x0000000A,0x0000000B,0x0000000C,0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {4,5,6,7,8,9,10,11,12,0,0,0}

var_ia = eip_read_output("T2O_Register_Int")

// byte[] = {0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x02,0x00,0x00,0x00,0x03,0x00,0x00,0x00,0x04,

0x00,0x00,0x00,0x05,0x00,0x00,0x00,0x06,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x08,

0x00,0x00,0x00,0x09,0x00,0x00,0x00,0x0A,0x00,0x00,0x00,0x0B,0x00,0x00,0x00,0x0C,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000001,0x00000002,0x00000003,0x00000004,0x00000005,0x00000006,

0x00000007,0x00000008,0x00000009,0x0000000A,0x0000000B,0x0000000C,

0x00000000,0x00000000,0x00000000} (Little Endian)

// int[] = {1,2,3,4,5,6,7,8,9,10,11,12,0,0,0}

float var_f = eip_read_output("Current_TCP_Mass")

// byte[] = {0x40,0x40,0x00,0x00} (Big Endian) to float

// float = 0x40400000 (Big Endian)

// float = 3.0

float[] var_fa = eip_read_output("Current_TCP_Value",4,12)

// byte[] = {0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66} (Big Endian) to float[]

// float[] = {0x3F99999A,0x3FA66666,0x40066666} (Big Endian)

// float[] = {1.2,1.3,2.1}

var_fa = eip_read_output("Current_TCP_Value",12)

// byte[] = { 0x40,0x06,0x66,0x66,0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian)

to float[]

// float[] = {0x40066666,0x400CCCCD,0x40133333} (Big Endian)

// float[] = {2.1,2.2,2.3}

var_fa = eip_read_output("Current_TCP_Value")

// byte[] = {0x3F,0x8C,0xCC,0xCD,0x3F,0x99,0x99,0x9A,0x3F,0xA6,0x66,0x66,0x40,0x06,0x66,0x66,

0x40,0x0C,0xCC,0xCD,0x40,0x13,0x33,0x33} (Big Endian) to float[]

// float[] = {0x3F8CCCCD,0x3F99999A,0x3FA66666,0x40066666,0x400CCCCD,0x40133333}

(Big Endian)

// float[] = { 1.1,1.2,1.3,2.1,2.2,2.3}

string var_s = eip_read_output ("ControlBoxID",0,16)

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

var_s = eip_read_output ("ControlBoxID",4,3)

// byte[] = {0x30,0x31,0x31}

// string = "011"

var_s = eip_read_output ("ControlBoxID")

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 494

19.7 eip_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1

int[] eip_read_output_int(

int,

int,

int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] eip_read_output_int(

int,

int

)

Parameter

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

int[] var_ia = eip_read_output_int(308,12,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = eip_read_output_int(308,11,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

var_ia = eip_read_output_int(308,10,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0001869F,0x00008000} (Little Endian)

// int[] = {32767,99999,32768}

var_ia = eip_read_output_int(308,12,1)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 495

// int[] = {0xFF7F0000,0x9F860100,0x0080FFFF} (Big Endian)

// int[] = {-8454144,-1618607872,8454143}

var_ia = eip_read_output_int(308,12,2)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = eip_read_output_int(308,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

Syntax 3

int eip_read_output_int(

int

)

Parameter

int Starting address

 * Convert the read data to an integer based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = eip_read_output_int(308)

// byte[] = {0xE4,0x07,0x00,0x00} (Little Endian) to int

// int = 0x000007E4 (Little Endian)

// int = 2020

var_i = eip_read_output_int(308)

// byte[] = {0x00,0x00,0x07,0xE4} (Big Endian) to int

// int = 0x000007E4 (Big Endian)

// int = 2020

Omron TM Collaborative Robot: TMScript Language Manual (I664) 496

19.8 eip_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] eip_read_output_float(

int,

int,

int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] eip_read_output_float(

int,

int

)

Parameter

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = eip_read_output_float(368,12,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = eip_read_output_float(368,11,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00400000} (Little Endian)

// float[] = {1.0,2.0,5.877472E-39}

var_fa = eip_read_output_float(368,10,0)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3F800000,0x40000000,0x00000000} (Little Endian)

// float[] = {1.0,2.0,0.0}

var_fa = eip_read_output_float(368,12,1)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 497

to float[]

// float[] = {0x0000803F,0x00000040,0x00004040} (Big Endian)

// float[] = {4.600603E-41,8.96831E-44,2.304856E-41}

var_fa = eip_read_output_float(368,12,2)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x80,0x3F,0x00,0x00,0x00,0x40,0x00,0x00,0x40,0x40} (Little Endian)

to float[]

// float[] = {0x3F800000,0x40000000,0x40400000} (Little Endian)

// float[] = {1.0,2.0,3.0}

Syntax 3

float eip_read_output_float(

int

)

Parameter

int Starting address

 *Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big

Return

float Return data in a floating-point number

Note

float var_f = eip_read_output_float(368)

// byte[] = {0x00,0x00,0x80,0x3F} (Little Endian) to float

// float = 0x3F800000 (Little Endian)

// float = 1.0

var_f = eip_read_output_float(368)

// byte[] = {0x3F,0x80,0x00,0x00} (Big Endian) to float

// float = 0x3F800000 (Big Endian)

// float = 1.0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 498

19.9 eip_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1

string eip_read_output_string(

int,

int

)

Parameter

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = eip_read_output_string(300,16)

// byte[] = {0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "TM5-700"

var_s = eip_read_output_string(300,32)

// byte[] = {0x30,0x31,0x30,0x36,0x30,0x31,0x31,0x32,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x54,0x4D,0x35,0x2D,0x37,0x30,0x30,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "01060112"

var_s = eip_read_output_string(300,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

var_s = eip_read_output_string(300,10)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E}

// string = "abcd達明"

var_s = eip_read_output_string(300,8)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6}

// string = "abcd達�"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 499

19.10 eip_read_output_bit()

Read the output table content and retrieve the nth bit value of the data byte.

Syntax 1

byte eip_read_output_bit(

int,

int

)

Parameter

int Starting address

int The nth bit value in the data byte

Return

Byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte var_b = eip_read_output_bit(300,0)

// 0x30 get bit: "0"

// 0

var_b = eip_read_output_bit(300,5)

// 0x30 get bit: "5"

// 1

Syntax 2

byte eip_read_output_bit(

string,

int

)

Parameter

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

byte[] var_data = {57,184,12}

eip_write_output(300,var_data,3)

// {00111001,10111000,00001100} (binary)

byte var_b = eip_read_output_bit("T2O_Register_Bit",0)

// 1

var_b = eip_read_output_bit("T2O_Register_Bit",17)

// 0

Syntax 3

byte[] eip_read_output_bit(

int,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 500

int,

int

)

Parameter

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_data = {57,184,12}

eip_write_output(300,var_data,3)

// {00111001,10111000,00001100} (binary)

byte[] var_ba = eip_read_output_bit(300,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = eip_read_output_bit(300,12,8)

// byte[] = {1,1,0,1,0,0,1,1}

Syntax 4

byte[] eip_read_output_bit(

string,

int,

int

)

Parameter

string Item name

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

byte[] var_data = {57,184,12}

eip_write_output(300,var_data,3)

// {00111001,10111000,00001100} (binary)

byte[] var_ba = eip_read_output_bit("T2O_Register_Bit",0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

var_ba = eip_read_output_bit("T2O_Register_Bit",12,8)

// byte[] = {1,1,0,1,0,0,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 501

19.11 eip_write_output()

Write data to the output table.

Syntax 1

bool eip_write_output(

int,

?,

int

)

Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int The maximum amount of the address to write

> 0 Valid data length. Write by the amount of the address.

<= 0 Invalid data length. Write by the complete length of the data to write.

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 2

bool eip_write_output(

int,

?

)

Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 1. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 3

bool eip_write_output(

int,

?,

int,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 502

int

)

Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

eip_write_output(300,var_data,1)

byte var_b = eip_read_output(300)

// 0xFF

byte[] var_data = {1,127,255}

eip_write_output(300,var_data,3)

byte[] var_ba = eip_read_output(300,3)

// {0x01,0x7F,0xFF}

eip_write_output(300,var_data,2)

var_ba = eip_read_output(300,3)

// {0x01,0x7F,0x00}

eip_write_output(300,var_data,-1)

var_ba = eip_read_output(300,3)

// {0x00,0x7F,0xFF}

int var_data = 32767

eip_write_output(308,var_data,4)

int var_i = eip_read_output_int(308)

// byte[] = {0xFF,0x7F,0x00,0x00} (Little Endian) to int

// int = 0x00007FFF (Little Endian)

// int = 32767

eip_write_output(308,var_data,1)

var_i = eip_read_output_int(308)

// byte[] = {0xFF,0x00,0x00,0x00} (Little Endian) to int

// int = 0x000000FF (Little Endian)

// int = 255

int[] var_data = {32767,99999,-32768}

eip_write_output(308,var_data,12)

int[] var_ia = eip_read_output_int(308,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 503

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

eip_write_output(308,var_data,3)

var_ia = eip_read_output_int(308,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)

// int[] = {32767,0,0}

eip_write_output(308,var_data,11)

var_ia = eip_read_output_int(308,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0x00} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0x00FF8000} (Little Endian)

// int[] = {32767,99999,16744448}

eip_write_output(308,var_data,4,4)

var_ia = eip_read_output_int(308,12)

// byte[] = {0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)

// int[] = {99999,0,0}

float var_data = -10.0

eip_write_output(368,var_data,4)

float var_f = eip_read_output_float(368)

// byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float

// float = 0xC1200000 (Little Endian)

// float = -10.0

eip_write_output(368,var_data,1)

var_f = eip_read_output_float(368)

// byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float

// float = 0x00000000 (Little Endian)

// float = 0

float[] var_data = {-10.0,3.3,123.45}

eip_write_output(368,var_data,12)

float[] var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {-10,3.3,123.45}

eip_write_output(368,var_data,3)

var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to float[]

// float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)

// float[] = {2.938736E-39,0,0}

eip_write_output(368,var_data,11)

var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x00} (Little Endian)

to float[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 504

// float[] = {0xC1200000,0x40533333,0x00F6E666} (Little Endian)

// float[] = {-10,3.3,2.267418E-38}

eip_write_output(368,var_data,4,4)

var_fa = eip_read_output_float(368,12)

// byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to float[]

// float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)

// float[] = {3.3,0,0}

string var_data = "abcd達明機器人 1234"

eip_write_output(300,var_data,32)

string var_s = eip_read_output_string(300,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,

0xE4,0xBA,0xBA,0x31,0x32,0x33,0x34,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明機器人 1234"

eip_write_output(300,var_data,10)

var_s = eip_read_output_string(300,32)

// byte[] = { 0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x98,0x8E,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達明"

eip_write_output(300,var_data,8)

var_s = eip_read_output_string(300,32)

// byte[] = {0x61,0x62,0x63,0x64,0xE9,0x81,0x94,0xE6,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = "abcd達�"

eip_write_output(300,var_data,4,15)

var_s = eip_read_output_string(300,15)

// byte[] = {0xE9,0x81,0x94,0xE6,0x98,0x8E,0xE6,0xA9,0x9F,0xE5,0x99,0xA8,0xE4,0xBA,0xBA}

// string = "達明機器人"

Syntax 4

bool eip_write_output(

string,

int,

?

int,

int

)

Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

Omron TM Collaborative Robot: TMScript Language Manual (I664) 505

2. Unable to send and receive correctly.

Note

** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5

bool eip_write_output(

string,

int,

?

int

)

Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6

bool eip_write_output(

string,

int,

?

)

Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the

data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (I664) 506

bool eip_write_output(

string,

?

)

Parameter

string Item name

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write

as well as write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768}

eip_write_output("T2O_Register_Int",0,var_data,0,12)

int[] var_ia = eip_read_output_int(308,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian)

to int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

eip_write_output("T2O_Register_Int",4,var_data,4,4)

var_ia = eip_read_output_int(308,12)

// byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian)

to int[]

// int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)

// int[] = {0,99999,0}

eip_write_output("T2O_Register_Int",4,var_data)

var_ia = eip_read_output_int(308,20)

// byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF,

0x00,0x00,0x00,0x00} (Little Endian) to int[]

// int[] = {0x00000000,0x00007FFF,0x0001869F,0xFFFF8000,0x00000000} (Little Endian)

// int[] = {0,32767,99999,-32768,0}

float[] var_data = {-10.0,3.3,123.45}

eip_write_output("T2O_Register_Float",0,var_data,0,12)

float[] var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {-10,3.3,123.45}

eip_write_output("T2O_Register_Float",4,var_data,4,8)

var_fa = eip_read_output_float(368,12)

// byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian)

to float[]

Omron TM Collaborative Robot: TMScript Language Manual (I664) 507

// float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {0,3.3,123.45}

eip_write_output("T2O_Register_Float",8,var_data)

var_fa = eip_read_output_float(368,20)

// byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,

0x66,0xE6,0xF6,0x42} (Little Endian) to float[]

// float[] = {0x00000000,0x00000000,0xC1200000,0x40533333,0x42F6E666} (Little Endian)

// float[] = {0,0,-10,3.3,123.45}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 508

19.12 eip_write_output_bit()

Write content to the nth bit value of the data byte in the output table.

Syntax 1

bool eip_write_output_bit(

int,

int,

int

)

Parameter

int Starting address

int The nth bit value

int The data to write

*Data in bit will write in int.

Return

Bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

byte var_data = 240

eip_write_output(300,var_data)

byte var_b = eip_read_output(300)

// 0xF0

eip_write_output_bit(300,1,1)

var_b = eip_read_output_bit(300,1)

// 0xF2 get bit: "1"

// 1

eip_write_output_bit(300,7,0)

var_b = eip_read_output_bit(300,7)

// 0x72 get bit: "7"

// 0

Syntax 2

bool eip_write_output_bit(

string,

int,

int

)

Parameter

string Item name

int The nth bit value

int The data to write

*Data in bit will write in int.

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

byte var_data = 240

eip_write_output(300,var_data)

byte var_b = eip_read_output(300)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 509

// 0xF0

eip_write_output_bit("T2O_Register_Bit",1,1)

var_b = eip_read_output_bit(300,1)

// 0xF2 get bit: "1"

// 1

eip_write_output_bit("T2O_Register_Bit",7,0)

var_b = eip_read_output_bit(300,7)

// 0x72 get bit: "7"

// 0

Syntax 3

bool eip_write_output_bit(

int,

int,

byte[],

int,

int

)

Parameter

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write

int The bit amount of the data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 4

bool eip_write_output_bit(

int,

int,

byte[],

int

)

Parameter

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 3. Write with the full length of the rest data to write.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 510

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 5

bool eip_write_output_bit(

int,

int,

byte[]

)

Parameter

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

eip_write_output_bit(300,0,var_data,0,20)

byte[] var_ba = eip_read_output (300,0,3)

// byte[] = {0x39,0xB8,0x0C}

var_ba = eip_read_output_bit(300,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

eip_write_output_bit(300,3,var_data,5,10)

var_ba = eip_read_output (300,0,3)

// byte[] = {0x08,0x0E,0x00}

var_ba = eip_read_output_bit(300,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool eip_write_output_bit(

string,

int,

byte[],

int,

int

)

Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

int The bit amount of the data to write

Omron TM Collaborative Robot: TMScript Language Manual (I664) 511

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 7

bool eip_write_output_bit(

string,

int,

byte[],

int

)

Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 6. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 8

bool eip_write_output_bit(

string,

int,

byte[]

)

Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

*Same as syntax 6. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

eip_write_output_bit("T2O_Register_Bit",0,var_data,0,20)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 512

byte[] var_ba = eip_read_output (300,3)

// byte[] = {0x39,0xB8,0x0C}

var_ba = eip_read_output_bit(300,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

eip_write_output_bit("T2O_Register_Bit",3,var_data,5,10)

var_ba = eip_read_output (300,3)

// byte[] = {0x08,0x0E,0x00}

var_ba = eip_read_output_bit(300,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 513

20. EtherCAT Functions
The robot communicates with external controllers via the EtherCAT communication protocol.

In the mechanism of the EtherCAT communication protocol, the robot works as an EtherCAT IO
device for external devices to read and write the robot data. At the same time, TMflow can monitor
the robot's "data table received from external devices" and "data table sent to external devices"
via EtherCAT functions. Additionally, TMflow can modify the user-defined areas within the "data
table sent to external devices."

Communication Data Table

The data table is composed of input data and output data. The Input Data Table is for

external devices posting on the robot, and the Output Data Table is for the robot sending

to external devices. Both data tables come with the System Definition Section and the

Custom Definition Section for data.

1. System Definition Section: Items and settings are defined by the robot, and the data

contents are updated by the robot or external devices. The defined items are robot status

relevant such as robot bases, project status, control box status, or input/output status

relevant such as digital I/Os and analog I/Os. Users can use EtherCAT functions to read

the input data table and the output data table in the system definition section.

2. Custom Definition Section: Items and settings are defined by users, and the data

contents are updated by users or external devices. While the project editing, users can

use EtherCAT functions to read and write the output data table in the custom definition

section or read input data table in the custom definition section. They can also use the

custom definition section as a data exchange register between the project and external

devices.

Communication

Data Table

(at the robot’s

viewpoint)

Data

Section

TMflow EtherCAT

Function Permissions

External Device

Permissions

Input Data

Table

System

Definition

Section

Read Write

Custom

Definition

Section

Read Write

Output Data

Table

System

Definition

Section

Read Read

Custom

Definition

Section

Read/Write Read

Omron TM Collaborative Robot: TMScript Language Manual (I664) 514

20.1 ethercat_read_input()

Read the input table content.

Syntax 1

byte[] ethercat_read_input(
int,
int

)
Parameter

int Starting address

int The address amount to read

Return

byte[] Return data in a byte array.
Note

byte[] var_ba = ethercat_read_input(4,20)

// {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}

Syntax 2

byte ethercat_read_input(
int

)
Parameter

int Starting address

Return

byte Return data in byte.

Note

byte var_b = ethercat_read_input(4)

// 0x45

Omron TM Collaborative Robot: TMScript Language Manual (I664) 515

Syntax 3

? ethercat_read_input(
string,
int,
int

)
Parameter

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? ethercat_read_input(
string,
int

)
Parameter

string Item name

int The starting shifted address of the item

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 516

Syntax 5

? ethercat_read_input(
string

)
Parameter

string Item name

Return

? The data type returned by the item definition in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

 Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = ethercat_read_input("CameraLightMask")

// 0x01

byte[] var_ba = ethercat_read_input("CtrlBox_DO",0,2)

// {0x99,0x66}

var_ba = ethercat_read_input("CtrlBox_DO",1,1)

// {0x66}

var_ba = ethercat_read_input("CtrlBox_DO")

// {0x99,0x66}

float var_f = ethercat_read_input("CtrlBox_AO")

// byte[] = {0xA4,0x70,0x9D,0x3F} (Little Endian) to float

// float = 0x3F9D70A4 (Little Endian)

// float = 1.23

string var_s = ethercat_read_input("AutoRun_ProjectName",0,10)

// byte[] = {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54}

// string = EtherCAT_T

var_s = ethercat_read_input("AutoRun_ProjectName",3,3)

// byte[] = {0x65,0x72,0x43}

// string = erC

var_s = ethercat_read_input("AutoRun_ProjectName")

// byte[] =

0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}

// string = EtherCAT_Test_1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 517

20.2 ethercat_read_input_int()

Read the input table content and convert the data to the 32-bit integer.

Syntax 1

int[] ethercat_read_input_int(

int,

int,

int

)

Parameters

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] ethercat_read_input_int(

int,

int

)

Parameters

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to an int array based on Little Endian (DCBA) or Big Endian.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 518

int[] var_ia = ethercat_read_input_int(72,4,0)

// byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian) to int[]

// int[] = {0x3ADE68B1} (Little Endian)

// int[] = {987654321}

var_ia = ethercat_read_input_int(72,1,0)

// byte[] = {0xB1} (Little Endian) to int[]

// int[] = {0x000000B1} (Little Endian)

// int[] = {177}

var_ia = ethercat_read_input_int(72,4)

// byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian) to int[]

// int[] = {0x3ADE68B1} (Little Endian)

// int[] = {987654321}

Syntax 3

int ethercat_read_input_int(
int

)
Parameter

int Starting address

 *Convert the read data to an integer based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = ethercat_read_input_int(72)

// byte[] = {0xB1,0x68,0xDE,0x3A} (Little Endian) to int

// int = 0x3ADE68B1 (Little Endian)

// int = 987654321

Omron TM Collaborative Robot: TMScript Language Manual (I664) 519

20.3 ethercat_read_input_float()

Read the input table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] ethercat_read_input_float(
int,
int,
int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] ethercat_read_input_float(
int,
int

)

Parameter

int Starting address

int The address amount to read

Note

Same as Syntax 1 with the parameter of the conversion of the read data defaults to 2.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = ethercat_read_input_float(56,8,0)

// byte[] = {0xA4,0x70,0x9D,0x3F,0x85,0xEB,0x91,0xC0} (Little Endian) to float[]

// float[] = {0x3F9D70A4,0xC091EB85} (Little Endian)

// float[] = {1.23,-4.56}

var_fa = ethercat_read_input_float(56,4,0)

// byte[] = {0xA4,0x70,0x9D,0x3F} (Little Endian) to float[]

// float[] = {0x3F9D70A4} (Little Endian)

// float[] = {1.23}

var_fa = ethercat_read_input_float(56,2,0)

// byte[] = {0xA4,0x70} (Little Endian) to float[]

// float[] = {0x000070A4} (Little Endian)

// float[] = {0}

var_fa = ethercat_read_input_float(56,8)

// byte[] = {0xA4,0x70,0x9D,0x3F,0x85,0xEB,0x91,0xC0} (Little Endian) to float[]

// float[] = {0x3F9D70A4,0xC091EB85} (Little Endian)

// float[] = {1.23,-4.56}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 520

Syntax 3

float ethercat_read_input_float(
int

)

Parameter

int Starting address

 *Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big Endian (ABCD).

Return

Float Return data in a floating-point number.

Note

int var_f = ethercat_read_input_float(132)

// byte[] = {0xE1,0x7A,0xFC,0x40} (Little Endian) to float

// float = 0x40FC7AE1 (Little Endian)

// float = 7.89

Omron TM Collaborative Robot: TMScript Language Manual (I664) 521

20.4 ethercat_read_input_string()

Read the input table content and convert the data to the string encoded in UTF8.

Syntax 1

string eip_read_input_string(

int,

int

)

Parameter

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = ethercat_read_input_string(4,20)

// byte[] =

{0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}

// string = EtherCAT_Test_1

var_s = ethercat_read_input_string (4,10)

// byte[] = {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54}

// string = EtherCAT_T

Omron TM Collaborative Robot: TMScript Language Manual (I664) 522

20.5 ethercat_read_input_bit()

Read the input table content and retrieve the nth bit value of the data byte.

Syntax 1

byte ethercat_read_input_bit(
int,
int

)

Parameter

int Starting address

int The nth bit value in the data byte

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

 byte var_b = ethercat_read_input_bit(50,0)

// byte[] = {0x99}

// 1

 var_b = ethercat_read_input_bit(50,7)

// byte[] = {0x99}

// 1

Syntax 2

byte ethercat_read_input_bit(
string,
int

)

Parameter

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

 byte var_b = ethercat_read_input_bit("Register_Bit",0)

// byte[] = {0x99}

// 1

 var_b = ethercat_read_input_bit("Register_Bit",7)

// byte[] = {0x99}

// 1

Syntax 3

byte[] ethercat_read_input_bit(
int,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 523

int,
int

)

Parameter

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

 byte[] var_ba = ethercat_read_input_bit(50,0,16)

// byte[] = {0x99,0x66}

// byte[] = {1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0}

var_ba = ethercat_read_input_bit (50,8,4)

// byte[] = {0x66}

// byte[] = {0,1,1,0}

var_ba = ethercat_read_input_bit (50,6,4)

// byte[] = {0x99,0x66}

// byte[] = {0,1,0,1}

Syntax 4
byte[] ethercat_read_input_bit(

string,
int,
int

)
Parameter

string Item name

int Starting bit

int he amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

 byte[] var_ba = ethercat_read_input_bit("Register_Bit",0,16)

// byte[] = {0xEE,0x66}

// byte[] = {0,1,1,1,0,1,1,1,0,1,1,0,0,1,1,0}

var_ba = ethercat_read_input_bit ("Register_Bit",8,4)

// byte[] = {0x66}

// byte[] = {0,1,1,0}

var_ba = ethercat_read_input_bit ("Register_Bit",6,4)

// byte[] = {0xEE,0x66}

// byte[] = {1,1,0,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 524

20.6 ethercat_read_output()

Read the output table content.

Syntax 1

byte[] ethercat_read_output(
int,
int

)

Parameter

int Starting address

int The address length to read

Return

byte[] Return data in a byte array.

Note

byte[] var_ba = ethercat_read_output(40,12)

// {0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73}

Syntax 2

byte ethercat_read_output(
int

)

Parameter

int Starting address

Return

byte Return data in byte.

Note

Same as syntax 1. Fill 1 as the last parameter int by default.

byte var_b = ethercat_read_output(40)

// 0x45

Omron TM Collaborative Robot: TMScript Language Manual (I664) 525

Syntax 3

? ethercat_read_output(
string,
int,
int

)
Parameter

string Item name

int The starting shifted address of the item

int The amount of the addresses to read

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Syntax 4

? ethercat_read_output(
string,
int

)
Parameter

string Item name

int The starting shifted address of the item

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Read to the end of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 526

Syntax 5

? ethercat_read_output(
string

)
Parameter

string Item name

Return

? The data type returned by the item defined in the communication data table.

* Data type includes byte,byte[],int,int[],float,float[],string

Note

* Same as syntax 3. Fill 0 as the starting shifted address of the item and read to the end

of the item by default.

* Reading data based on the configuration file Little Endian (DCBA) or Big Endian (ABCD).

byte var_b = ethercat_read_output("ManualAuto",0,1)

// 0x01

var_b = ethercat_read_output("ManualAuto",0)

// 0x01

var_b = ethercat_read_output("ManualAuto")

// 0x01

byte[] var_ba = ethercat_read_output("Error_Code",0,4)

// {0x04,0x44,0x04,0x00}

var_ba = ethercat_read_output("Error_Code",0,2)

// {0x04,0x44}

var_ba = ethercat_read_output("Error_Code")

// {0x04,0x44,0x04,0x00}

int var_i = ethercat_read_output("Current_Time_Year")
// byte[] = {0xE8,0x07,0x00,0x00} (Little Endian) to int
// int = 0x000007E8 (Little Endian)
// int = 2024

Omron TM Collaborative Robot: TMScript Language Manual (I664) 527

int[] var_ia = ethercat_read_output("Current_Time_Year")

// byte[] = {0xE8,0x07,0x00,0x00} (Little Endian) to int[]

// int16[] = {0x000007E8} (Little Endian)

// int[] = {2024}

float var_f = ethercat_read_output("CtrlBox_AO")

// byte[] = {0x9D,0x67,0x9D,0x3F} (Little Endian) to float[]

// float = 0x3F9D679D (Little Endian)

// float = 1.23

float[] var_fa = ethercat_read_output("Coord_CurrBase_Tool",4,12)

// byte[] = {0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42} (Little Endian) to

float[]

// float[] = {0xC37C999A,0x445EECCD,0x42B40000} (Little Endian)

// float[] = {-252.6,891.7,90}

var_fa = ethercat_read_output("Coord_CurrBase_Tool",4)

// byte[] =

{0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0

0} (Little Endian) to float[]

// float[] = {0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little Endian)

// float[] = {-252.6,891.7,90,0,0}

var_fa = ethercat_read_output("Coord_CurrBase_Tool")

// byte[] = {0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Big Endian) to float[]

// float[] = {0x3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little

Endian)

// float[] = {0.01,-252.6,891.7,90,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 528

20.7 ethercat_read_output_int()

Read the output table content and convert the data to the 32-bit integer.

Syntax 1

int[] ethercat_read_output_int(
int,
int,
int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to an int array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

int[] Return data in an integer array.

Syntax 2

int[] ethercat_read_output_int(
int,
int

)

Parameter

int Starting address

int The address amount to read

Note

Same as syntax 1. Fill 2 as the last parameter int by default.

* Convert the read data to an int array based on Little Endian (DCBA) or Big Endian (ABCD).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 529

int[] var_ia = ethercat_read_output_int(216,12,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to

int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

var_ia = ethercat_read_output_int(216,6,0)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86} (Little Endian) to int[]

// int[] = {0x00007FFF,0x0000869F} (Little Endian)

// int[] = {32767,34463}

var_ia = ethercat_read_output_int(216,1,0)

// byte[] = {0xFF} (Little Endian) to int[]

// int[] = {0x000000FF} (Little Endian)

// int[] = {255}

var_ia = ethercat_read_output_int(216,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to

int[]

// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)

// int[] = {32767,99999,-32768}

Syntax 3

int ethercat_read_output_int(
int

)
Parameter

int Starting address

 * Convert the read data to an integer based on Little Endian (DCBA) or Big

Endian (ABCD).

Return

int Return data in an integer

Note

int var_i = ethercat_read_output_int(216)

// byte[] = {0xFF,0x7F,0x00,0x00} (Little Endian) to int[]

// int[] = 0x00007FFF (Little Endian)

// int = 32767

Omron TM Collaborative Robot: TMScript Language Manual (I664) 530

20.8 ethercat_read_output_float()

Read the output table content and convert the data to the 32-bit floating-point number.

Syntax 1

float[] ethercat_read_output_float(
int,
int,
int

)

Parameter

int Starting address

int The address amount to read

int The conversion of the read data to a float array based on Little Endian (DCBA)

or Big Endian (ABCD).

0 Little-Endian

1 Big-Endian

2 Based on the configuration file.

Return

float[] Return data in a floating-point number array.

Syntax 2

float[] ethercat_read_output_float(
int,
int

)

Parameter

int Starting address

int The address amount to read

Note

Same as syntax 1. Fill 2 as the last parameter int by default.

*Convert the read data to a float array based on Little Endian (DCBA) or Big Endian

(ABCD).

float[] var_fa = ethercat_read_output_float(120,24,0)

// byte[] =

{0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little

Endian)

// float[] = {0.01,-252.6,891.7,90,0,0}

var_fa = ethercat_read_output_float(120,12,0)

// byte[] = {0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44} (Little Endian) to

float[]

// float[] = {0x3C23D70A,0xC37C999A,0x445EECCD} (Little Endian)

// float[] = {0.01,-252.6,891.7}

var_fa = ethercat_read_output_float(120,2,0)

// byte[] = {0x0A,0xD7} (Little Endian) to float[]

// float[] = {0x0000D70A} (Little Endian)

// float[] = {0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 531

var_fa = ethercat_read_output_float(120,24)

// byte[] =

{0x0A,0xD7,0x23,0x3C,0x9A,0x99,0x7C,0xC3,0xCD,0xEC,0x5E,0x44,0x00,0x00,0xB4,0x42,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]

// float[] = {0x3C23D70A,0xC37C999A,0x445EECCD,0x42B40000,0x00000000,0x00000000} (Little

Endian)

// float[] = {0.01,-252.6,891.7,90,0,0}

Syntax 3

float ethercat_read_output_float(
int

)

Parameter

int Starting address

*Convert the read data to a floating-point number based on Little Endian

(DCBA) or Big

Return

float Return data in a floating-point number

Note

float var_f = ethercat_read_output_float(120)

// byte[] = {0x0A,0xD7,0x23,0x3C} (Little Endian) to float[]

// float[] = 0x3C23D70A (Little Endian)

// float = 0.01

Omron TM Collaborative Robot: TMScript Language Manual (I664) 532

20.9 ethercat_read_output_string()

Read the output table content and convert the data to the string encoded in UTF8.

Syntax 1

string ethercat_read_output_string(
int,
int

)
Parameter

int Starting address

int The address amount to read

Return

string Return data in a UTF8 string (ending with 0x00 encountered).

Note

string var_s = ethercat_read_output_string(40,20)
// byte[] =

{0x45,0x74,0x68,0x65,0x72,0x43,0x41,0x54,0x5F,0x54,0x65,0x73,0x74,0x5F,0x31,0x00,0x00,0x00,0x00,0x00}

// string = "EtherCAT_Test_1"

var_s = ethercat_read_output_string(40,3)

// byte[] = {0x45,0x74,0x68}

// string = "Eth"

Omron TM Collaborative Robot: TMScript Language Manual (I664) 533

20.10 ethercat_read_output_bit()

Read the output table content and retrieve the nth bit value of the data byte.

Syntax 1

byte ethercat_read_output_bit(
int,
int

)

Parameter

int Starting address

int The nth bit value in the data byte

Return

Byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

 byte var_b = ethercat_read_output_bit(186,0)

// byte[] = {0x99}

// 1

 var_b = ethercat_read_output_bit(186,7)

// byte[] = {0x99}

// 1

Syntax 2

byte ethercat_read_output_bit(
string,
int

)

Parameter

string Item name

int The nth bit value

Return

byte Return data in byte.

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte.

Note

 byte var_b = ethercat_read_output_bit("Register_Bit",0)

// byte[] = {0x84}

// 0

 var_b = ethercat_read_output_bit("Register_Bit",7)

// byte[] = {0x84}

// 1

Syntax 3

byte[] ethercat_read_output_bit(
int,
int,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 534

int
)

Parameter

int Starting address

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

 byte[] var_ba = ethercat_read_output_bit(186,0,16)

// byte[] = {0x99,0x66}

// byte[] = {1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0}

var_ba = ethercat_read_output_bit (186,8,4)

// byte[] = {0x66}

// byte[] = {0,1,1,0}

var_ba = ethercat_read_output_bit (186,6,4)

// byte[] = {0x99,0x66}

// byte[] = {0,1,0,1}

Syntax 4
byte[] ethercat_read_output_bit(

string,
int,
int

)

Parameter

string Item name

int Starting bit

int The amount of bit to read

Return

byte[] Return data in byte[].

Return 1 for bit value == 1.

Return 0 for bit value == 0.

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Note

 byte[] var_ba = ethercat_read_output_bit("Register_Bit",0,16)

// byte[] = {0x84,0xB7}

// byte[] = {0,0,1,0,0,0,0,1,1,1,1,0,1,1,0,1}

var_ba = ethercat_read_output_bit ("Register_Bit",8,4)

// byte[] = {0xB7}

// byte[] = {1,1,1,0}

var_ba = ethercat_read_output_bit ("Register_Bit",6,4)

// byte[] = {0x84,0xB7}

// byte[] = {0,1,1,1}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 535

20.11 ethercat_write_output()

Write data to the output table.

Syntax 1

bool ethercat_write_output(
int,
?,
int

)
Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int The maximum amount of the address to write

> 0 Valid data length. Write by the amount of the address.

<= 0 Invalid data length. Write by the complete length of the data to write.

Return

Bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 2

bool ethercat_write_output(
int,
?

)
Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

Bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 1. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 3

bool ethercat_write_output(
int,
?,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 536

int,
int

)
Parameter

int Starting address

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

** Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

byte var_data = 255

ethercat_write_output(208,var_data,1)

byte var_b = ethercat_read_output(208)

// 0xFF

byte[] var_data = {1,127,255}

ethercat_write_output(208,var_data,2)

byte[] var_ba = ethercat_read_output(208,3)

 // {0x01,0x7F,0x00}

ethercat_write_output(208,var_data,3)

var_ba = ethercat_read_output(208,3)

 // {0x01,0x7F,0xFF}

ethercat_write_output(208,var_data,-1)

var_ba = ethercat_read_output(208,3)

 // {0x01,0x7F,0xFF}

int var_data = 32767

ethercat_write_output(216,var_data,4)

var_i = ethercat_read_output_int(216)

// byte[] = {0xFF,0x7F,0x00,0x00} (Little Endian) to int
// int = 0x00007FFF (Little Endian)
// int = 32767

ethercat_write_output(216,var_data,1)

var_i = ethercat_read_output_int(216)

// byte[] = {0xFF,0x00,0x00,0x00} (Little Endian) to int
// int = 0x000000FF (Little Endian)
// int = 255

int[] var_data = {32767,99999,-32768}

ethercat_write_output(216,var_data,12)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 537

int[] var_ia = ethercat_read_output_int(216,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to int[]
// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
// int[] = {32767,99999,-32768}

ethercat_write_output(216,var_data,3)

var_ia = ethercat_read_output_int(216,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
// int[] = {0x00007FFF,0x00000000,0x00000000} (Little Endian)
// int[] = {32767,0,0}

ethercat_write_output(216,var_data,4,4)

var_ia = ethercat_read_output_int(216,12)

// byte[] = {0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
// int[] = {0x0001869F,0x00000000,0x00000000} (Little Endian)
// int[] = {99999,0,0 }

float var_data = -10.0

ethercat_write_output(232,var_data,4)

float var_f = ethercat_read_output_float(232)

// byte[] = {0x00,0x00,0x20,0xC1} (Little Endian) to float
// float = 0xC1200000 (Little Endian)
// float = -10.0

ethercat_write_output(232,var_data,1)

var_f = ethercat_read_output_int(232)

// byte[] = {0x00,0x00,0x00,0x00} (Little Endian) to float
// float = 0x00000000 (Little Endian)
// float = 0

float[] var_data = {-10.0,3.3,123.45}

ethercat_write_output(232,var_data,12)

float[] var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {-10.0,3.3,123.45}

ethercat_write_output(232,var_data,3)

var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
// float[] = {0x00200000,0x00000000,0x00000000} (Little Endian)
// float[] = {0,0,0}

ethercat_write_output(232,var_data,4,4)

var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x33,0x33,0x53,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00} (Little Endian) to float[]
// float[] = {0x40533333,0x00000000,0x00000000} (Little Endian)
// float[] = {3.3,0,0}

string var_data = "abcdefg1234567"

ethercat_write_output(208,var_data,16)

string var_s = ethercat_read_output_string(208,20)

// byte[] =
{0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x00,0x00,0x00,0x00,0x00,0x00}
// string = abcdefg1234567

ethercat_write_output(208,var_data,8)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 538

var_s = ethercat_read_output_string(208,20)

// byte[] =
{0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x31,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}
// string = abcdefg1

ethercat_write_output(208,var_data,3,3)

var_s = ethercat_read_output_string(208,20)

// byte[] =
{0x64,0x65,0x66,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}

// string = def

Syntax 4

bool ethercat_write_output(
string,
int,
?,
int,
int

)

Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

int The amount of the address to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 5

bool ethercat_write_output(
string,
int,
?,
int

)
Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

int Starting address of the data to write

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

Omron TM Collaborative Robot: TMScript Language Manual (I664) 539

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 6

bool ethercat_write_output(
string,
int,
?

)
Parameter

string Item name

int The starting shifted address of the item

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting address to write and write with the full length of the

data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

Syntax 7

bool ethercat_write_output(
string,
?

)

Parameter

string Item name

? The data to write

 * Available data types include byte,byte[],int,int[],float,float[],string

Return

bool True Write successfully.

False Write unsuccessfully.

1. If the data to write is an empty string or an empty

array

2. Unable to send and receive correctly.

Note

Same as syntax 4. Fill 0 as the starting shifted address and the starting address to write

as well as write with the full length of the data to write by default.

* Write data based on Little Endian (DCBA) or Big Endian (ABCD) in the configuration file.

int[] var_data = {32767,99999,-32768}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 540

ethercat_write_output("Register_Int",0,var_data,0,12)

int[] var_ia = ethercat_read_output_int(216,12)

// byte[] = {0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x80,0xFF,0xFF} (Little Endian) to int[]
// int[] = {0x00007FFF,0x0001869F,0xFFFF8000} (Little Endian)
// int[] = {32767,99999,-32768}

ethercat_write_output("Register_Int",4,var_data,4,4)

var_ia = ethercat_read_output_int(216,12)

// byte[] = {0x00,0x00,0x00,0x00,0x9F,0x86,0x01,0x00,0x00,0x00,0x00,0x00} (Little Endian) to int[]
// int[] = {0x00000000,0x0001869F,0x00000000} (Little Endian)
// int[] = {0,99999,0}

ethercat_write_output("Register_Int",4,var_data)

var_ia = ethercat_read_output_int(216,12)

// byte[] = {0x00,0x00,0x00,0x00,0xFF,0x7F,0x00,0x00,0x9F,0x86,0x01,0x00} (Little Endian) to int[]
// int[] = {0x00000000,0x00007FFF,0x0001869F} (Little Endian)
// int[] = {0,32767,99999}

float[] var_data = {-10.0,3.3,123.45}

ethercat_write_output("Register_Float",0,var_data,0,12)

float[] var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
// float[] = {0xC1200000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {-10.0,3.3,123.45}

ethercat_write_output("Register_Float",4,var_data,4,8)

var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x00,0x00,0x00,0x00,0x33,0x33,0x53,0x40,0x66,0xE6,0xF6,0x42} (Little Endian) to float[]
// float[] = {0x00000000,0x40533333,0x42F6E666} (Little Endian)
// float[] = {0,3.3,123.45}

ethercat_write_output("Register_Float",4,var_data)

var_fa = ethercat_read_output_float(232,12)

// byte[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x20,0xC1,0x33,0x33,0x53,0x40} (Little Endian) to float[]
// float[] = {0x00000000,0xC1200000,0x40533333} (Little Endian)
// float[] = {0,-10,3.3}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 541

20.12 ethercat_write_output_bit()

Write content to the nth bit value of the data byte in the output table.

Syntax 1

bool ethercat_write_output_bit(
int,
int,
int

)
Parameter

int Starting address

int The nth bit value

int The data to write

*Data in bit will write in int.

Return

Bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive .

Note

byte var_data = 240

ethercat_write_output(208,var_data)

 byte var_b = ethercat_read_output(208)

// 0xF0

ethercat_write_output_bit(208,1,1)

 var_b = ethercat_read_output_bit(208,1)

// 0xF2 get bit: "1"

// 1

ethercat_write_output_bit(208,7,0)

 var_b = ethercat_read_output_bit(208,7)

// 0x72 get bit: "7"

// 0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 542

Syntax 2

bool ethercat_write_output_bit(
string,
int,
int

)
Parameter

string Item name

int The nth bit value

int The data to write

*Data in bit will write in int.

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

byte var_data = 240

ethercat_write_output(208,var_data)

 byte var_b = ethercat_read_output(208)

// 0xF0

ethercat_write_output_bit("Register_Bit",1,1)

 var_b = ethercat_read_output_bit(208,1)

// 0xF2 get bit: "1"

// 1

ethercat_write_output_bit("Register_Bit",7,0)

 var_b = ethercat_read_output_bit(208,7)

// 0x72 get bit: "7"

// 0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 543

Syntax 3

bool ethercat_write_output_bit(
int,
int,
byte[],
int,
int

)
Parameter

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write

int The bit amount of the data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 4

bool ethercat_write_output_bit(
int,
int,
byte[],
int

)
Parameter

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit of the data to write

Return

Bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

*Same as syntax 3. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 5

bool ethercat_write_output_bit(
int,
int,
byte[]

)
Parameter

Omron TM Collaborative Robot: TMScript Language Manual (I664) 544

int Starting address

int The nth bit value

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

*Same as syntax 3. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

ethercat_write_output_bit(208,0,var_data,0,20)

 byte[] var_ba = ethercat_read_output(208,3)

// byte[] = {0x39,0xB8,0x0C}

var_ba = ethercat_read_output_bit (208,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

ethercat_write_output_bit(208,3,var_data,5,10)

var_ba = ethercat_read_output (208,3)

// byte[] = {0x08,0x0E,0x00}

var_ba = ethercat_read_output_bit (208,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Syntax 6

bool ethercat_write_output_bit(
string,
int,
byte[],
int,
int

)
Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

int The bit amount of the data to write

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 7

Omron TM Collaborative Robot: TMScript Language Manual (I664) 545

bool ethercat_write_output_bit(
string,
int,
byte[],
int

)
Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

int The starting bit to write data

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

*Same as syntax 6. Write with the full length of the rest data to write.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

Syntax 8

bool ethercat_write_output_bit(
string,
int,
byte[]

)
Parameter

string Item name

int Starting bit

byte[] The data to write

*Data in bit will return in byte such as bit[0] for byte[0] and bit[1] for byte[1].

Return

bool True Write successfully.

False Write unsuccessfully. 1. Unable to send correctly and receive.

Note

*Same as syntax 6. Fill 0 as the starting bit to write as well as write with the full length of

the data to write by default.

Bit value = 1 for byte value >=1

Bit value = 0 for byte value ==0

byte[] var_data = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

ethercat_write_output_bit("Register_Bit",0,var_data,0,20)

 byte[] var_ba = ethercat_read_output(208,3)

// byte[] = {0x39,0xB8,0x0C}

var_ba = ethercat_read_output_bit (208,0,20)

// byte[] = {1,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,1,1}

ethercat_write_output_bit("Register_Bit ",3,var_data,5,10)

var_ba = ethercat_read_output (208,3)

// byte[] = {0x08,0x0E,0x00}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 546

var_ba = ethercat_read_output_bit (208,0,20)

// byte[] = {0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}

Omron TM Collaborative Robot: TMScript Language Manual (I664) 547

21. Real-Time Remote Server
Real-Time Remote Server (RTRS) comes with functions established with Socket TCP based

on the framework of client/server connections. Once enabled, the robot establishes a Real-Time

Socket TCP Listening Server to send the robot status and data to all of the connected clients or

receive the contents from the clients to execute the respective instructions and update the

respective information periodically.

When the TMflow program starts, the Real-Time Remote Server either launches automatically

or stays inactive, depending on the configured settings. It shuts down only when the TMflow

program is closed or when explicitly configured to stop. The server's IP address and port number

appear in the Notice Window.

IP TMflow → Configuration → Remote Control Settings →

Command Interface → RTRS → Static IP

Port 5895 (TMRTS) , 5896 (TMRTC)

21.1 GUI Setting

Enable/Disable Enable or disable Real-Time Remote Server. Once enabled, a system restart

is required for the changes to take effect.

Motion Control

Instructions

Motion control commands become available once enabled, and the robot will

switch to external control mode.

TMRTS Packet header for data communication manages data communication. The system
activates without requiring the selection of the Motion Command option in the interface.
The connection becomes available after a system restart. For detailed packet
specifications, refer to the TMRTS documentation.

TMRTC Packet Header for Data Communication manages data communication. The system
activates by requiring the selection of the Motion Command option in the interface.
The connection becomes available after a system restart. This packet format is used
solely for motion control. To obtain robot status for coordinated control, use it together
with TMRTS packets. For motion control packet details, refer to the TMRTC
documentation.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 548

21.2 Communication Protocol

Length

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ Header , Length , Data , * Checksum \r \n

Checksum (XOR of these Bytes)

Name Size ASCII HEX Description

Start Byte 1 $ 0x24 Start Byte for Communication

Header X Header for Communication

Separator 1 , 0x2C Separator between Header and Length

Length Y Length of Data

Separator 1 , 0x2C Separator between Length and Data

Data Z Communication Data

Separator 1 , 0x2C Separator between Data and Checksum

Sign 1 * 0x2A Begin Sign of Checksum

Checksum 2 Checksum of Communication

End Byte 1 1 \r 0x0D

End Byte 2 1 \n 0x0A End Byte of Communication
*Using the same communication protocol with external commands.

1. Header

Defines the purpose of communication packets. Different headers come with different definitions
of communication packets and data.

⚫ TMRTS Defines the data transmission functions of TM Real-Time Remote Server

⚫ TMRTC Defines the motion control functions of TM Real-Time Remote Server

⚫ CPERR Defines the errors of the communication packets such as packer errors, checksum

errors, header errors, and so on.
*Using the same content definitions with CPERR in external commands.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 549

2. Length

The length indicates the length in the UTF8 bytes occupied by Data. Users can use decimal,

hexadecimal, or binary format. The maximum length is 32 bits.

For example,

 $TMRTS,100,Data,*CS\r\n // 100 in decimal indicates the data length is 100 bytes

$TMRTS,0x100,Data,*CS\r\n // 0x100 in hexadecimal indicates the data length is 256 bytes

$TMRTS,0b100,Data,*CS\r\n // 0b100 in binary indicates the data length is 4 bytes

$TMRTS,8,1,達明,*CS\r\n // indicates the length of Data, 1,達明, is 8 bytes (UTF8)

3. Data

The content of the communication packet can support any character (including 0x00 .. 0xFF and

uses UTF8 encoding), and the data length is determined by Length. The purpose and description

defined in Data must be defined by the header.

4. Checksum

The checksum of the communication packet. The calculation method is XOR (exclusive OR).

The calculation range is all Bytes between $ and * (excluding $ and *) as shown below.

$TMRTS,100,Data,*CS\r\n

Checksum = Byte[1] ^ Byte[2] … ^ Byte[N-6]

The checksum format is set to 2 bytes in hexadecimal (but not 0x), such as

$TMRTS,5,10,OK,*7C

CS = 0x54 ^ 0x4D ^ 0x52 ^ 0x54 ^ 0x53 ^ 0x2C ^ 0x35 ^ 0x2C ^ 0x31 ^ 0x30 ^ 0x2C ^ 0x4F ^ 0x4B ^

0x2C = 0x7C

CS = 7C (0x37 0x43)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 550

21.3 TMRTS

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ TMRTS , Length , Data , * Checksum \r \n

ID Mode Content

Transaction ID

,
0/1/

7/8/9
, Item or Value

TMRTS is defined as the communication protocol used on port 5895 in the Real-Time Remote

Server (RTRS). The Data section of the packet is further divided into three segments, ID

(Transaction ID), Mode (Content Mode), and Content (Item and Value), separated with commas

and described below.

ID The transaction number expressed in any alphanumeric characters. (Reports the

CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a

communication packet response, it is a transaction number that identifies which

group of commands to respond.

, The symbol to separate

Mode The data format and structure define the type of content transmitted.

4 Indicates the server responds to a client command; data format is string.

5 Indicates either that the server sends data to the client at fixed intervals or

the client sends a command to the server; data format is binary.

7 Initiates or stops data transmission from the server to the client.

8 Sets the transmission frequency (in Hz) for data sent from the server to the

client.

9 Configures the data content transmitted from the server to the client

, The symbol to separate

Content The data content. Formatted by the mode definition.

Note

TMRTS command is for the client and the server to communicate in both directions.
Under normal circumstances, the server periodically sends data to the client based on the
item list configured by the client using Mode 9. When the server sends to the client, the data
is sent to the client to read from the server with no response to the server required. When the
client sends to the server, the data is received by the server from the client to write with
response to the client required.

⚫ ID Transaction Number

When the server sends data, it cycles from 0 to 9 with each iteration. When the client sends

data to the server, the transaction number can be in any alphanumeric characters customized

at the client side. If the communication packet format is checked and correct, the server will

reply to the client with the command processing status by the transaction number in the packet.

⚫ Mode Format and Mode for the Data Content

When Mode = 1, the client writes data to the server. The client can write multiple items in
a single transmission, it is not limited to one. The server will send the command processing

Omron TM Collaborative Robot: TMScript Language Manual (I664) 551

status according to the format of Mode 0, described in the section below.

When Mode = 8 or 9, the client configures the data transmission frequency and content.

When Mode = 7, the client starts or stops data transmission. The typical usage flow is as follows:

1. Enable the RTRS service.
2. Configure the transmission frequency and data content using the TMRTS protocol,

Mode 8 and Mode 9, respectively.
3. Start data transmission using TMRTS Mode 7.
4. To write data, send a command using TMRTS Mode 1.

⚫ Writing or Reading Confirmation

When the client sends data writing to the server, the servers check whether all the criteria

are correct before performing the request. If there is any error with the write command, no

request will be performed. The criteria to write to the server are:

1. Data format being transmitted (Mode)

2. Whether the connected IP address has write permission (IP address with Write

Permission)

3. Whether the data content conforms to the data format (Mode and Content)

4. The item to write exists.

5. The attribute of the item to write is not read only.

6. The written data matches the data type of each item.

7. Data transmission settings (Mode 9) are successfully configured.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 552

22.3.1 Mode = 0 (the server status response to the client command processing)
After the server receives and processes a write command from a client, it will respond with

another command with Mode 0. The details for Mode 0 are as follows.

 Data

ID Mode Error Code Error Description

Transaction ID , 0 , 00 .. 08 ,

Transaction ID Defined while the client sends the command for the server to reply

with.

Mode 0 for the server to respond to the client

Error Code Error code definitions. Fixed as 2 hexadecimal bytes, but without 0x.

00 Correct writing. No error.

01 The communication format or mode is not supported. (Ex. Mode = 99)

02 The connected client is not permitted to write. (IP address without write

permission)

03 The communication format and the data content format are mismatched.

 (Ex. Not in binary format)

04 Item to write does not exist.

05 Unable to write to read-only items.

07 Values to write does not match the configured type or the size.

08 Incomplete data transmission configuration.

Error Description Error description, following the error code

00 OK

01 NotSupport;XXX

02 WritePermission

03 InvalidData

04 NotExist;XXX // ;XXX denotes which the incorrect data item

05 ReadOnly;XXX

07 ValueError;XXX

08 SettingIncomplete

Omron TM Collaborative Robot: TMScript Language Manual (I664) 553

When input is correct and the server responds

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

35 2C // 5, // Length

32 2C 37 2C // 2,7, // transaction ID 2, mode 7

30 // 0 // Close data transmission

2C 2A 36 30 0D 0A // ,*60\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

39 2C // 9, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

30 30 2C // 00, // Error Code 00

4F 4B // OK // Correct writing

2C 2A 37 33 0D 0A // ,*73\r\n // Checksum

When using a non-existent Mode

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

35 2C // 5, // Length

33 2C 35 2C // 3,5, // transaction ID 3, mode 5

30 // 0

2C 2A 36 33 0D 0A // ,*63\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 30 2C // 20, // Length

33 2C 30 2C // 3,0, // server responds to ID 30, mode 0

30 31 2C // 01, // Error Code 01

4E 6F 74 53 75 70 70 6F 72 74 3B 20 35 // NotSupport; 5 // mode 5 not supported

2C 2A 37 38 0D 0A // ,*78\r\n // Checksum

When multiple clients write to the same item simultaneously, all writes will occur on the first

 client if a client without write permission issues a write command.

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

31 2C 31 2C // 1,1, // transaction ID 1, mode 1

08 00 43 74 72 6C 5F 44 4F 31 01 00 01 // Ctrl_DO1=1 // The name occupied 8 bytes, the value, 1

 byte

2C 2A 32 32 0D 0A // ,*22\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 32 2C // 22, // Length

31 2C 30 2C // 1,0, // server responds to ID 1, mode 0

30 32 2C // 02, // Error Code 02

57 72 69 74 65 50 65 72 6D 69 73 73 69 6F 6E // WritePermission // No writing permission

2C 2A 33 39 0D 0A // ,*39\r\n // Checksum

When the data content is invalid

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

33 32 2C 39 2C // 32,9, // transaction ID 32, mode 9

0B 00 4A 6F 69 6E 74 41 6E 67 6C 65 // JointAngle

// The name occupied 11 bytes, and 10 bytes, actually

Omron TM Collaborative Robot: TMScript Language Manual (I664) 554

2C 2A 34 32 0D 0A // ,*42\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 39 2C // 19, // Length

33 32 2C 30 2C // 32,0, // server responds to ID 32, mode 0

30 33 2C // 03, // Error Code 03

49 6E 76 61 6C 69 64 44 61 74 61 // InvalidData // Incorrect number of bytes used for

 the item name.

2C 2A 31 37 0D 0A // ,*17\r\n // Checksum

When attempting to configure a non-existent item as a data exchange target

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

37 2C // 7, // Length

30 2C 39 2C // 0,9, // transaction ID 0, mode 9

01 00 30 // 0 // The name occupied 1 byte

2C 2A 36 46 0D 0A // ,*6F\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

30 2C 30 2C // 0,0, // server responds to ID 0, mode 0

30 34 2C // 04, // Error Code 04

4E 6F 74 45 78 69 73 74 3B 30 // NotExist;0 // Item 0 does not exist.

2C 2A 34 33 0D 0A // ,*43\r\n // Checksum

When the client writes a value to a read-only item

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

32 37 2C 31 2C // 27,1, // transaction ID 27, mode 1

07 00 45 6E 64 5F 44 49 30 01 00 01 // End_DI0=1 // The name occupied 7 bytes, the value, 1

 byte

2C 2A 37 38 0D 0A // ,*78\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 34 2C // 24, // Length

32 37 2C 30 2C // 27,0, // server responds to ID 27, mode 0

30 35 2C // 05, // Error Code 05

52 65 61 64 4F 6E 6C 79 3B 45 6E 64 5F 44 49 30 // ReadOnly;End_DI0

 //Read-only access only.

2C 2A 36 41 0D 0A // ,*6A\r\n // Checksum

When the value in the client’s command exceeds the allowable range

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

39 2C // 9, // Length

33 30 2C 38 2C // 30,8, // transaction ID 30, mode 8

00 00 16 44 // 600 // Floating-point number

2C 2A 33 30 0D 0A // ,*30\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

34 34 2C // 44, // Length

33 30 2C 30 2C // 30,0, // server responds to ID 30, mode 0

30 37 2C // 07, // Error Code 07

Omron TM Collaborative Robot: TMScript Language Manual (I664) 555

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6F 75 74 20 6F

66 20 72 61 6E 67 65 // ValueError;The value is out of range // Value out of range

2C 2A 34 30 0D 0A // ,*40\r\n // Checksum

When the client attempts to start data transmission without completing the data exchange

item configuration

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

35 2C // 5, // Length

31 2C 37 2C // 1,7, // transaction ID 1, mode 7

31 // 1 // Open data transmission

2C 2A 36 32 0D 0A // ,*62\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 34 2C // 24, // Length

31 2C 30 2C // 1,0, // server responds to ID 1, mode 0

30 38 2C // 08, // Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65 // SettingIncomplete

// Configuration incomplete.

2C 2A 33 42 0D 0A // ,*3B\r\n // Checksum

Assume the Client sets the read-only data in the server

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 38 2C // 18, // Length

32 32 2C 31 2C // 22,1, // transaction ID 22, mode 1, binary

08 00 43 74 72 6C 5F 44 49 30 01 00 01 // Ctrl_DI0=1

 // The name occupied 8 bytes, the value, 1 byte

2C 2A 31 42 0D 0A // ,*1B\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 35 2C // 25, // Length

32 32 2C 30 2C // 22,0, // server responds to ID 22, mode 0

30 35 2C // 05, // error code 05

52 65 61 64 4F 6E 6C 79 3B 43 74 72 6C 5F 44 49 30 // ReadOnly;Ctrl_DI0

 // Read-only access only

2C 2A 30 38 0D 0A // ,*08\r\n // Checksum

Assume the data name length setting is incorrect when configuring the server from the client

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

32 2C 31 2C // 2,1, // transaction ID 2, mode 1, binary

00 00 43 74 72 6C 5F 44 4F 30 01 00 01 // Ctrl_DI0=1

 // The name occupied 0 byte (error), the value, 1 byte

2C 2A 32 38 0D 0A // ,*28\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 38 2C // 18, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

30 33 2C // 03, // error code 03

49 6E 76 61 6C 69 64 44 61 74 61 // InvalidData // Invalid data

2C 2A 32 35 0D 0A // ,*25\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 556

22.3.2 Mode = 1 BINARY
The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown below.

Mode 1 works as the server regularly sends predefined data items to one or more clients, when

a client writes values to writable data items on the server. When multiple clients are connected,

write access is granted to the first client that writes to a data exchange item. Due to the potential

for high-frequency communication, the server does not send a response when a client command

is correct.

 Data

ID Mode Content

Transaction ID , 1 , Item and Value

Length of Item
2 bytes Little Endian

Item
UTF8

Length of Value
2 bytes Little

Endian

Value
Little Endian /

UTF8
…

Length of Item 2 bytes in Little Endian, value from 0 to 65535 indicating the length of

the item that follows

Item item name

Length of Value 2 bytes in Little Endian, value from 0 to 65535 indicating the length of

the data value that follows

Value data value

Assume the communication data includes Joint_Angle (type: float[]) transmitted from the Server
to the Client.

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

34 33 2C // 43, // Length

30 2C 31 2C // 0,1, // transaction ID 0, mode 1, binary

0B 00 4A 6F 69 6E 74 5F 41 6E 67 6C 65 18 00 3C BD 2D 41 3F F7 14 C3 77 ED 36 42 AB

FE 0F 43 78 FA 95 41 4F 6F 07 42 //Joint_Angle={10.8587, -148.9658, 45.7319, 143.9948,

 18.7473, 33.8587}

// The name occupied 11 bytes, the value, 24 bytes

2C 2A 30 42 0D 0A // ,*0B\r\n // Checksum

Assume the Client sets the values of Ctrl_DO2 (type: byte) and Ctrl_AO0 (type: float). Note that
in this case, the Server will not respond to the Client.

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

34 31 2C // 41, // Length

31 2C 31 2C // 1,1, // transaction ID 1, mode 1, binary

08 00 43 74 72 6C 5F 44 4F 32 01 00 01 // Ctrl_DO2=1

// The name occupied 8 bytes, the value, 1 byte

08 00 43 74 72 6C 5F 41 4F 30 04 00 00 00 80 3F // Ctrl_AO0=1

// The name occupied 8 bytes, the value, 4 bytes

2C 2A 44 39 0D 0A // ,*D9\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 557

Assume the Client sets the read-only data in the server

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 38 2C // 18, // Length

32 32 2C 31 2C // 22,1, // transaction ID 22, mode 1, binary

08 00 43 74 72 6C 5F 44 49 30 01 00 01 // Ctrl_DI0=1

 // The name occupied 8 bytes, the value, 1 byte

2C 2A 31 42 0D 0A // ,*1B\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 35 2C // 25, // Length

32 32 2C 30 2C // 22,0, // server responds to ID 22, mode 0

30 35 2C // 05, // error code 05

52 65 61 64 4F 6E 6C 79 3B 43 74 72 6C 5F 44 49 30 // ReadOnly;Ctrl_DI0

 // Read-only access only

2C 2A 30 38 0D 0A // ,*08\r\n // Checksum

Assume the data name length setting is incorrect when configuring the server from the client

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

32 2C 31 2C // 2,1, // transaction ID 2, mode 1, binary

00 00 43 74 72 6C 5F 44 4F 30 01 00 01 // Ctrl_DI0=1

 // The name occupied 0 byte (error), the value, 1 byte

2C 2A 32 38 0D 0A // ,*28\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 38 2C // 18, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

30 33 2C // 03, // error code 03

49 6E 76 61 6C 69 64 44 61 74 61 // InvalidData // Invalid data

2C 2A 32 35 0D 0A // ,*25\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 558

22.3.3 Mode = 7 START/STOP Data Streaming
The system transmits content in UTF-8 format to configure the start or stop of data transmission.

The table below provides a detailed outline of the format.

 Data

ID Mode Content

Transaction ID , 7 , Value

UTF8

'0': STOP

'1': START

To start data transmission

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

35 2C // 5, // Length

32 2C 37 2C // 2,7, // transaction ID 2,7

31 // 1 // Start data transmission

2C 2A 36 31 0D 0A // ,*61\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

39 2C // 9, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

30 30 2C // 00, // Error Code 00

4F 4B // OK // Correct writing

2C 2A 37 33 0D 0A // ,*73\r\n // Checksum

To enable the streaming function before completing the data transmission settings (Mode 9)

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

35 2C // 5, // Length

31 2C 37 2C // 1,7, // transaction ID 1, mode 7, binary

31 // 1 // Activate data transmission

2C 2A 36 32 0D 0A // ,*62\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

32 34 2C // 24, // Length

31 2C 30 2C // 1,0, // server responds to ID 1, mode 0

30 38 2C // 08, // Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65

// SettingIncomplete

// Response for incomplete data transmission settings (Mode 9)

2C 2A 33 42 0D 0A // ,*3B\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 559

22.3.4 Mode = 8 SET Streaming Frequency
The system transmits data in binary format at a default frequency of 50 Hz. The system

converts the frequency and rounds it to the nearest whole millisecond. The server then

transmits the data at the specified frequency. The table below provides a detailed outline of the

format.

 Data

ID Mode Content

Transaction ID , 8 , Value

float Little Endian
50-500 (Hz)

To configure the streaming transmission frequency

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

38 2C // 8, // Length

32 2C 38 2C // 2,8, // transaction ID 2, mode 8

00 00 48 42 // 50 // Set transmission frequency to 50 Hz.

2C 2A 35 38 0D 0A // ,*58\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

39 2C // 9, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

30 30 2C 4F 4B // 00,OK // Error Code 00，Correct writing

2C 2A 37 33 0D 0A // ,*73\r\n // Checksum

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

38 2C // 8, // Length

33 2C 38 2C // 3,8, // transaction ID 3, mode 8

00 00 7A 44 // 1000 // Set transmission frequency to 1000Hz

2C 2A 36 44 0D 0A // ,*6D\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

34 33 2C // 43, // Length

33 2C 30 2C // 3,0, // transaction ID 3mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6F 75 74 20 6F

66 20 72 61 6E 67 65 // ValueError;The value is out of range

// The configured value exceeds the limit.

2C 2A 37 37 0D 0A // ,*77\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 560

22.3.5 Mode = 9 SET Streaming Data
The system transmits data content using a binary format. Configure the names of the data items

to be transmitted periodically using the format shown in the table below.

 Data (client to server)

ID Mode Content

Transaction ID , 9 , Item

Length of Item
2 bytes Little Endian

Item
UTF8

…
Configure the data item without
requiring a Value field, unlike Mode = 1.

Length of Item Present the item name length using 2 bytes in Little Endian format. The
value ranges from 0 to 65535 and indicates the length of the following
item name.

Item The name of the item.

To configure Joint_Angle as the data content that the server periodically sends to the client,

< 24 54 4D 52 54 53 2C // $TMRTS, // Header

31 37 2C // 17, // Length

31 2C 39 2C // 1,9, // transaction ID 1, mode 9

0B 00 4A 6F 69 6E 74 5F 41 6E 67 6C 65 // Joint_Angle // The name occupied 11 bytes

2C 2A 32 44 0D 0A // ,*2D\r\n // Checksum

> 24 54 4D 52 54 53 2C // $TMRTS, // Header

39 2C // 9, // Length

31 2C 30 2C // 1,0, // transaction ID 1, mode 0

30 30 2C 4F 4B // 00,OK // Error Code 00，Correct writing

2C 2A 37 30 0D 0A // ,*70\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 561

21.4 TMRTC

Start Byte Hdr Len Data Checksum End Byte1 End Byte2

$ TMRTC , Length , Data , * Checksum \r \n

ID Mode Content

Transaction ID ,
0/1/
7/8

, Item and Value

TMRTC is defined as the communication protocol used on port 5896 in the Real-Time Remote

Server (RTRS). The Data section of the packet is further divided into three segments, ID

(Transaction ID), Mode (Content Mode), and Content (Item and Value), separated with commas

and described below.

ID The transaction number expressed in any alphanumeric characters. (Reports the

CPERR 04 error if a non-alphanumeric byte is encountered.) When used as a

communication packet response, it is a transaction number that identifies which

group of commands to respond.

, The symbol to separate

Mode The data format and structure define the type of content transmitted.

0 Indicates that the server responds to a command from the client as a string

format

1 Indicates that the client sends a motion control command to the server as a

binary format

7 Indicates to set the start or stop of the server's motion control mode

8 Indicates to configure the type and parameters of motion control

, The symbol to separate

Content The data content. Formatted by the mode definition.

Note

TMRTC command is for the client and the server to communicate in both directions.
When the client sends a motion control setting (Mode 8) to the server, the server responds
with Mode 0. However, when the client sends a motion control command (Mode 1), the server
does not respond to the client.

TMRTC only allows a single client connection at a time. During motion execution, the
server continuously receives motion commands from the client. If an unexpected
disconnection occurs during this process, the server may remain in a state of waiting for
further commands. In such cases, rebooting the robot arm is required.

⚫ ID Transaction Number

TMRTC, unlike TMRTS, does not perform periodic data transmission. It only responds to

the client when receiving a motion control setting command (Mode 8). Therefore, all
transmission IDs are user-defined alphanumeric strings assigned by the client. After verifying
that the packet format is correct, the server uses the transmission ID in the packet to reply with
the command processing status.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 562

⚫ Mode Format and Mode for the Data Content

When Mode = 8, the client configures the server’s motion control settings, and the server
must respond using Mode 0 to acknowledge the configuration. When Mode = 1, the client sends
motion control values to the server, and the server does not respond using Mode 0.

When Mode = 7, the client sets the server to start or stop motion control mode. The typical

usage flow is as follows:

1. Enable the RTRS service and check motion control instructions.
2. Connect to port 5895 (TMRTS) and retrieve the robot status.
3. Connect to port 5896 (TMRTC) and configure the motion control settings using Mode

8.
4. Enable motion control Mode 7.
5. Update the motion control target values using Mode 1.

⚫ Writing or Reading Confirmation

When the client sends data writing to the server, the servers checks whether all the criteria

are correct before performing the request. If there is any error with the write command, no

request will be performed. The criteria to write for inspection are:

1. Data format being transmitted (Mode)

2. Whether the connected IP address has write permission (IP address with Write

Permission)

3. Whether the data content conforms to the data format (Mode and Content)

4. The written data matches the data type of each item.

5. Motion control settings (Mode 8) successfully configured.

6. Whether the system is in a motion-controllable state.

7. Whether motion control (Mode 7) has started.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 563

22.4.1 Mode = 0 (the server status response to the client command processing)
After the server receives and processes a write command from a client, it will respond with

another command with Mode 0. The details for Mode 0 are as follows.

 Data

ID Mode Error Code Error Description

Transaction
ID

, 0 , 00, 01, 02, 03,
07, 08, 09, 10

,

Transaction ID Defined while the client sends the command for the server to reply

with

Mode 0 for the server to respond to the client

Error Code Error code definitions. Fixed as 2 hexadecimal bytes, but without 0x.

00 Correct writing. No error.

01 The communication format or mode is not supported. (Ex. Mode = 99)

02 The connected client is not permitted to write. (IP address without write

 permission)

03 The communication format and the data content format are mismatched

07 Values to write does not match with the configured type or the size.

08 Incomplete motion control configuration.

09 Motion command is not permitted.

10 Motion has already started

Error Description Error description, following the error code.

00 OK

01 NotSupport;XXX

02 WritePermission

03 InvalidData

07 ValueError;XXX

08 SettingIncomplete

09 MotionNotAllowed

10 MotionStarted

Omron TM Collaborative Robot: TMScript Language Manual (I664) 564

When the setting command is correct

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

31 2C 37 2C // 1,7, // transaction ID 1, mode 7

30 // 0 // Stop motion control

2C 2A 37 33 0D 0A // ,*73\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

39 2C // 9, // Length

31 2C 30 2C // 1,0, // server responds to ID 1, mode 0

30 30 2C // 00, // Error Code 00

4F 4B // OK // Correct writing

2C 2A 36 30 0D 0A // ,*60\r\n // Checksum

When using a non-existent Mode

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

30 2C 35 2C // 1,7, // transaction ID 0, mode 5

30 // 0 //

2C 2A 37 30 0D 0A //,*70\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 30 2C // 20, // Length

30 2C 30 2C // 0,0, // server responds to ID 0, mode 0

30 31 2C // 01, // Error Code 01

4E 6F 74 53 75 70 70 6F 72 74 3B 20 35 // NotSupport; 5 // mode 5 not supported

2C 2A 36 42 0D 0A // ,*6B\r\n // Checksum

When Mode 7 is activated and a Mode 8 command is subsequently issued

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 39 2C // 19, // Length

31 31 2C 38 2C // 11,8, // transaction ID 11, mode 8

53 4A F4 01 00 00 00 00 80 3F F4 01 00 00 // S J 500 1 500

 // Position mode, Joint angle mode, Acceleration-to-max-speed time:

 500 ms, Gain: 1, Expected command interval: 500 ms

2C 2A 45 36 0D 0A // ,*E6\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 33 2C // 23, // Length

31 31 2C 30 2C // 11,0, // server responds to ID 11, mode 0

30 32 2C // 02, // Error Code 02

57 72 69 74 65 50 65 72 6D 69 73 73 69 6F 6E // WritePermission

// When Mode 7 is active, it is not possible to write Mode 8 settings.

2C 2A 31 39 0D 0A // ,*19\r\n // Checksum

When the Mode is not specified

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 2C // 4, // Length

31 2C __ 2C // 1,, // transaction ID 1, no mode

31 // 1

Omron TM Collaborative Robot: TMScript Language Manual (I664) 565

2C 2A 34 34 0D 0A // ,*44\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 38 2C // 18, // Length

31 2C 30 2C // 1,0, // server responds to ID 1, mode 0

30 33 2C // 03, // Error Code 03

49 6E 76 61 6C 69 64 44 61 74 61 // InvalidData // Invalid content

2C 2A 33 36 0D 0A // ,*36\r\n // Checksum

If the value in the command is invalid (blank)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 2C // 4, // Length

30 2C 38 2C // 0,8, // transaction ID 0, mode 8

 //

2C 2A 34 43 0D 0A // ,*4C\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 32 2C // 42, // Length

30 2C 30 2C // 0,0, // server responds to ID 0, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

75 70 70 6F 72 74 // ValueError;The value is not support // Invalid value

2C 2A 34 37 0D 0A // ,*47\r\n // Checksum

If the value in the command is invalid (incorrect value)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 38 2C // 18, // Length

30 2C 38 2C // 0,8, // transaction ID 0, mode 8

53 56 96 00 00 00 00 00 80 3F E8 03 00 00 // S V 150 1 1000

// Position mode, V mode (not supported), Acceleration-to-max-speed

time: 150 ms, Gain: 1, Expected command interval: 1000 ms

2C 2A 42 36 0D 0A // ,*B6\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 32 2C // 42, // Length

30 2C 30 2C // 0,0, // transaction ID 0, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

75 70 70 6F 72 74 // ValueError;The value is not support // Unsupported value error

2C 2A 34 37 0D 0A // ,*47\r\n // Checksum

If the motion setting is incomplete and the client issues a start motion command (Mode 7)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

33 2C 37 2C // 3,7, // transaction ID 3, mode 7

31 // 1 // Start motion control

2C 2A 37 30 0D 0A // ,*70\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 34 2C // 24, // Length

33 2C 30 2C // 3,0, // server responds to ID 3, mode 0

Omron TM Collaborative Robot: TMScript Language Manual (I664) 566

30 38 2C // 08, // Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65 // SettingIncomplete

// Motion control configuration incomplete

2C 2A 32 39 0D 0A // ,*29\r\n // Checksum

If a motion control command is issued before motion control is enabled

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 38 2C // 28, // Length

30 2C 31 2C // 0,1, // transaction ID 0, mode 1

CD CC CC 3D CD CC CC 3D CD CC CC 3D CD CC CC 3D CD CC CC 3D CD CC CC 3D

 // {0.1.0.1,0.1,0.1,0.1,0.1}

2C 2A 37 42 0D 0A // ,*7B\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 33 2C // 23, // Length

30 2C 30 2C // 0,0, // server responds to ID 0, mode 0

30 39 2C // 09, // Error Code 09

4D 6F 74 69 6F 6E 4E 6F 74 41 6C 6C 6F 77 65 64 // MotionNotAllowed

// Motion command not permitted

2C 2A 36 37 0D 0A // ,*67\r\n // Checksum

If motion control has already started and the client issues a start motion command (Mode 7)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

32 2C 37 2C // 2,7, // transaction ID 2, mode 7

31 // 1 // Start motion control

2C 2A 37 30 0D 0A // ,*71\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 30 2C // 20, // Length

32 2C 30 2C // 2,0, // server responds to ID 2, mode 0

31 30 2C // 10, // Error Code 10

4D 6F 74 69 6F 6E 53 74 61 72 74 65 64 // MotionStarted // Motion control already started

2C 2A 32 32 0D 0A // ,*22\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 567

22.4.2 Mode = 1 BINARY
The data content is transmitted in binary mode by converting the data item name with the Little

Endian value and the value with UTF8 to a byte array accordingly. The format is shown as below.

 Data

ID Mode Content

Transaction ID , 1 , Value

6 * float Little Endian

Configure motion control command values

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 38 2C // 28, // Length

30 2C 31 2C // 0,1, // transaction ID 0, mode 1

3C BD 2D 41 3F F7 14 C3 77 ED 36 42 AB FE 0F 43 78 FA 95 41 4F 6F 07 42

// {10.8587,-148.9658,45.7319,143.9948,18.7473,33.8587}

2C 2A 34 44 0D 0A // ,*4D\r\n // Checksum

If the command value format is incorrect-

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 35 2C // 25, // Length

31 32 2C 31 2C // 12,1, // transaction ID 12, mode 1

00 00 C8 42 00 00 C8 42 00 00 C8 42 00 00 C8 42 00 00 C8 42

// {100,100,100,100,100} five values only

2C 2A 43 46 0D 0A // ,*CF\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 30 2C // 40, // Length

31 32 2C 30 2C // 12,0, // transaction ID 12, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 43 6F 6E 74 65 6E 74 4C 65 6E 67 74 68 20 69 6C 6C 65

67 61 6C

// ValueError;ContentLength illegal // Invalid content length

2C 2A 37 37 0D 0A // ,*77\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 568

22.4.3 Mode = 7 START/STOP Motion Control
The system transmits content in UTF-8 format to configure the start or stop of motion control.

The table below provides a detailed outline of the format.

 Data

ID Mode Content

Transaction ID , 7 , Value

UTF8

'0': STOP

'1': START

To activate motion control, use the example below.

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

38 2C 37 2C // 8,7, // transaction ID 2, mode 7, binary

31 // 1 // Start motion control

2C 2A 37 42 0D 0A // ,*7B\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

39 2C // 9, // Length

38 2C 30 2C // 8,0, // transaction ID 8, mode 0

30 30 2C // 00, // Error Code 0

4F 4B // OK // Correct writing

2C 2A 36 39 0D 0A // ,*69\r\n // Checksum

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

35 2C // 5, // Length

32 2C 37 2C // 2,7, // transaction ID 2, mode 7, binary

31 // 1 // Start motion control

2C 2A 37 31 0D 0A // ,*71\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

32 34 2C // 24, // Length

32 2C 30 2C // 2,0, // transaction ID 2, mode 0

30 38 2C // 08 // Error Code 08

53 65 74 74 69 6E 67 49 6E 63 6F 6D 70 6C 65 74 65 // SettingIncomplete

// Configuration incomplete.

2C 2A 32 38 0D 0A // ,*28\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 569

22.4.4 Mode = 8 SET Motion Control Settings
The system transmits data in binary format to define the motion control type and its parameters.

For parameter definitions, refer to the Position() and Velocity() functions in the chapter on Robot

Motion and Vision Tasks. The table below provides a detailed outline of the format.

 Data

ID Mode Content

Transaction ID , 8 , Item and Value

Position(S) →
Position

1 byte string
'S'

Control Mode
1 byte string
'C' or 'T' or 'J'

Acceleration Time
4 bytes int
150-2000

Gain
4 bytes float

1-100

Control Interval
4 bytes int

>= 2

Velocity(V) →
Velocity

1 byte string
'V'

Control Mode
1 byte string
'C' or 'T' or 'J'

Acceleration Time
4 bytes int
150-2000

Control Interval
4 bytes int

>= 2

To set the motion control to Position mode and Joint angle mode, acceleration time to max-
speed time: 150 ms, gain value of 1, and the expected command interval of 1000 ms, use the
following example:

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 38 2C // 18, // Length

35 2C 38 2C // 5,8, // transaction ID 5, mode 8

53 4A 96 00 00 00 00 00 80 3F E8 03 00 00 // S J 150 1 1000

// Position mode, Joint angle mode, Acceleration-to-max-speed time:

150 ms, Gain: 1, Expected command interval: 1000 ms

2C 2A 41 46 0D 0A // ,*AF\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

39 2C // 9, // Length

35 2C 30 2C // 5,0, // transaction ID 5, mode 0

30 30 2C // 00, // Error Code 00

4F 4B // OK // Correct writing

2C 2A 36 34 0D 0A // ,*64\r\n // Checksum

If the command contains invalid values

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 38 2C // 18, // Length

30 2C 38 2C // 0,8, // transaction ID 0, mode 8

53 56 96 00 00 00 00 00 80 3F E8 03 00 00 // S V 150 1 1000

// Position mode, V mode (not supported), Acceleration-to-max-speed time:

150 ms, Gain: 1, Expected command interval: 1000 ms

2C 2A 42 36 0D 0A // ,*B6\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 32 2C // 42, // Length

30 2C 30 2C // 0,0, // transaction ID 0, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

75 70 70 6F 72 74 // ValueError;The value is not support // Unsupported value error

Omron TM Collaborative Robot: TMScript Language Manual (I664) 570

2C 2A 34 37 0D 0A // ,*47\r\n // Checksum

If the command contains invalid values (e.g., incorrect number of parameters)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 38 2C // 18, // Length

33 2C 38 2C // 3,8, // transaction ID 3, mode 8

56 4A 96 00 00 00 02 00 00 00 E8 03 00 00 // V J 150 2 1000

// Velocity mode, J mode, acceleration to maximum speed in 150 ms,

expected control command interval: 2 ms, unknown parameter: 1000

2C 2A 31 31 0D 0A // ,*11\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 32 2C // 42, // Length

33 2C 30 2C // 3,0, // transaction ID 3, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

75 70 70 6F 72 74 // ValueError;The value is not support // Unsupported value error

2C 2A 34 34 0D 0A // ,*44\r\n // Checksum

If the command contains invalid values (e.g., value out of range)

< 24 54 4D 52 54 43 2C // $TMRTC, // Header

31 34 2C // 14, // Length

30 2C 38 2C // 0,8, // transaction ID 0, mode 8

56 4A 64 00 00 00 02 00 00 00 // V J 100 2

// Velocity mode, J mode, acceleration to maximum speed in 100 ms

(exceeds the range), expected control command interval: 2 ms

2C 2A 30 37 0D 0A // ,*07\r\n // Checksum

> 24 54 4D 52 54 43 2C // $TMRTC, // Header

34 32 2C // 42, // Length

30 2C 30 2C // 0,0, // transaction ID 0, mode 0

30 37 2C // 07, // Error Code 07

56 61 6C 75 65 45 72 72 6F 72 3B 54 68 65 20 76 61 6C 75 65 20 69 73 20 6E 6F 74 20 73

75 70 70 6F 72 74 // ValueError;The value is not support // Unsupported value error

2C 2A 34 34 0D 0A // ,*47\r\n // Checksum

Omron TM Collaborative Robot: TMScript Language Manual (I664) 571

22. Compliance Functions
22.1 Compliance Class

Use the Compliance class and declare variables to provide users with the robot compliance

control setting and the stop conditions.

Construct 1

Compliance VariableName

Parameters No input parameter

Note

Compliance cp1 // Declare compliance control variable.

Member Methods

Name Default Description

Reset()
Reset all the compliance control motion parameters to the

default.

Frame() 1
Set the reference coordinate of the compliance control

motion.

HighResistance() false Resistance on the non-motion direction (X,Y,Z).

Single() The single axis parameter of the compliance control motion

Teach() The teach parameter of the compliance control motion

Multiple() The multiple axes parameter of the compliance control motion

Impedance The impedance parameter of the compliance control motion

Timeout() - The stop condition of timeout

DInput() - The stop condition of digital input

AInput() - The stop condition of analog input

Condition() - The stop condition of the conditional expression

Start() true Start the compliance control motion.

Stop() Stop the compliance control motion.

23.1.1 Reset()

Reset all the compliance control motion parameters to the default.

Syntax 1

void Reset(

)

Parameters

void No input value

Return

void No return

23.1.2 Frame()

Set the reference base of the compliance control motion.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 572

Syntax 1

void Frame(

int

)

Parameters

int The base associated with the control motion

1 Tool

2 The current base

Return

void No return

23.1.3 HighResistance()

Set the resistance on the non-motion direction (X,Y,Z).

Syntax 1

void HighResistance(

bool

)

Parameters

bool The resistance on the non-motion direction (X,Y,Z)

false Default

true High resistance

Return

void No return

23.1.4 Single()

Set the single axis parameters of compliance control motion.

Syntax 1

void Single(

int or string,

int

)

Parameters

int or string

Direction

0 or "X" X 3 or "RX" RX

1 or "Y" Y 4 or "RY" RY

2 or "Z" Z 5 or "RZ" RZ

int Distance X,Y,Z (mm) RX,RY,RZ (degree)

Return

void No return

23.1.5 Teach()

Set the teach parameters of compliance control motion.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 573

Syntax 1

void Teach(

int or string,

float[] or string,

float[] or string,

int

)

Parameters

int or string

Linear direction or rotating direction

0 or "Linear" Linear direction

1 or "Rotation" Rotating direction

float[] or string

The 1st point {𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)} or

The name of the 1st point (use the robot TCP coordinate)

float[] or string

The 2nd point {𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)} 或

The name of the 2nd point (use the robot TCP coordinate

int Adjustment range Linear (mm) Rotation (degree)

Return

void No return

23.1.6 Multiple()

Set the Multiple Axes parameters of compliance control motion.

Syntax 1

void Multiple(

int or string,

bool,

int,

int,

)

Parameters

int or string

Direction

0 or "X" X 3 or "RX" RX

1 or "Y" Y 4 or "RY" RY

2 or "Z" Z 5 or "RZ" RZ

bool Enable the control to the assigned direction or not.

false Disable

true Enable

int Distance restriction upper bound X,Y,Z (mm) RX,RY,RZ (degree)

int Distance restriction lower bound X,Y,Z (mm) RX,RY,RZ (degree)

Return

void No return

Syntax 2

void Multiple(

int or string,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 574

bool

)

Note

Same as Syntax 1 parameter definitions for setting whether to enable the control to the

assigned direction.

23.1.7 Impedance()

Set the impedance parameters of compliance control motion.

Syntax 1

void Impedance(

int or string,

int

)

Parameters

int or string

Axes to release

0 or "All" Release all axes

1 or "XYZ" Release X, Y, Z

2 or "RXYZ" Release RX, RY, RZ

int Rigidity level

0 Soft

1 Intermediate

2 Stiff

Return

void No return

23.1.8 Timeout()

Set the stop condition of timeout.

Syntax 1

void Timeout(

int

)

Parameters

int Timeout in milliseconds

< 0 Disable

>= 0 Timeout duration

Return

void No return

Syntax 2

void Timeout(

)

Parameters

void No parameterfor cancelling the stop condition.

Return

void No return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 575

23.1.9 DInput()

Set the stop condition of the digital input.

Syntax 1

void DInput(

string,

int,

int or string

)

Parameters

string Control module name

ControlBox The control box

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the stop condition to Low/High.

0 or "L" Low

1 or "H" High

Return

void No return

Syntax 2

void DInput(

int

)

Parameters

int The stroke ratio to start receiving digital input (valid when the operation

mode is " Compliance ")

Return

void No return

Syntax 3

void DInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

23.1.10 AInput()

Set the stop condition of the analog input.

Syntax 1

void AInput(

string,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 576

int,

int or string,

float

)

Parameters

string Control module name

ControlBox The control box

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the condition to judge

0 or ">" Greater than

1 or ">=" Greater than or equal to

2 or "=="

Equal to (Recommend not to use since it is not easy to

hold the equal condition with analog input.)

3 or "<=" Less than or equal to

4 or "<" Less than

float Condition value

Return

void No return

Syntax 2

void AInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

23.1.11 Condition()

Set the stop condition of the conditional expression.

Syntax 1

void Condition(

bool or ?

)

Parameters

bool or ? The conditional that can be true/false or a bool return of the statement.

Return

void No return

Syntax 2

void Condition(

)

Parameters

void No parameter for cancelling the stop condition.

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 577

void No return

23.1.12 Start()

Start the compliance control motion.

Syntax 1

int Start(

)

Parameters

void No input value

Return

int Return the result value after the force control motion stops.

0 Not Working

1 Working

2 Timeout

3 Distance reached

4 IO triggered

5 Resisted

6 Error

14 Over Speed

201 Digital IO triggered

202 Analog IO triggered

203 Variable

204 Force is comprehended

205 Allowable Position Tolerances

206 Motion Finish

23.1.13 Stop()

Stop the compliance control motion.

Syntax 1

int Stop(

)

Parameters

void No input value

Return

int Return the result value after the compliance control motion stops.

⚫ Parameter Settings

Compliance cp1 // Declare the compliance control variable.

(1)

cp1.Frame(1) // Set the compliance control base as tool.

cp1.Frame(2) // Set the compliance control base as the current base (will overwrite the

previous setting).

cp1.Reset() // Reset all parameters

(2)

cp1.Frame(1)

cp1.Single("X", 30) // Set direction X with distance of 30mm

Omron TM Collaborative Robot: TMScript Language Manual (I664) 578

cp1.Single("Z", 40) // Set direction Z with distance of 40mm (will overwrite the previous Single

setting)

cp1.Reset() // Reset all parameters

(3)

cp1.Frame(1)

cp1.HighResistance(true) // Set the resistance on the non-motion direction to High Resistance

// Control

cp1.Single("Z", 40) // Set direction Z with distance of 40mm (use Single mode)

cp1.Teach("Linear", "P1", "P2", 0) // Set the teach point P1 and P2 (will use Teach

mode instead)

cp1.AdvSet ("X", true, 100, -100) // Set direction X with advanced parameters (will use

Multiple mode instread)

cp1.AdvSet ("Z", true, 100, -10030) // Set direction Z

cp1.AdvSet ("X", true, 10, -10) // Set direction X with advanced parameters (will overwrite

the previous Multiple X parameter)

cp1.Impedance("All", 1) // Set the impedance parameter (will use Impedance mode instead)

// Stop Criteria

cp1.Timeout(10000) // Set timeout to 10000ms

cp1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

cp1.AInput("ControlBox", 0, ">=", 3.3) // When ControlBox AI0 is greater than or equal to 3.3V

int count = 0

cp1.Condition(count > 1000) // conditional expression

cp1.Reset() // Reset all parameters

⚫ Compliance Control

Compliance cp1

(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

cp1.Single("Z", 100) // Set direction Z with distance of 100mm

int re = cp1.Start() // Start the compliance control motion

// Set direction Z with a moving distance of 100mm, so it will move toward direction Z. Once the moving

distance is comprehended, it stops the control motion, exits the function, and returns the result

values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}

TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-

0.043}

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

cp1.Teach("Linear", "P1", "P2", 0) // Set the teach point P1 and P2 in the linear direction

cp1.Timeout(5000) // Set timeout to 5000ms

int re = cp1.Start() // Start the compliance control motion

// Teach the two points in the linear direction. Once the moving distance and the teach linear direction

are comprehended, it stops the control motion, exits the function, and return the result values. Since

the timeout is set, if it does not comprehend the moving distance in time, it stops the control motion,

exits the function, and returns the result values.

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

cp1.Teach("Rotation", "P1", "P3", 0)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 579

// Set the teach point P1 and P3 in the rotating direction

re = cp1.Start()

// Teach the two points in the rotating direction. Once the moving distance and the teach rotating

direction are comprehended, it stops the control motion, exits the function, and return the result

values. Since the timeout is set (without resetting the timeout of CP1), if it does not comprehend the

moving distance in time, it stops the control motion, exits the function, and returns the result values.

(3) Multiple Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)
cp1.Multiple("X", true, 100, -100) // Set direction X with multiple axis parameters

cp1.Multiple("Z", true, 100, -100) // Set direction Z with multiple axis parameters

cp1.Multiple("X", true, 100, -100) // Set direction X with multiple axis parameters (will overwrite the
previous multiple axis parameters).

int re = cp1.Start() // Start the compliance control motion

// Set direction X and Z for compliance control. Once the moving distance is comprehended, it stop the

control motion, exits the function, and returns the result values.

(4) Impedance

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

cp1.Impedance("all", 1) // Release all axes

cp1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

int re = cp1.Start() // Start the compliance control motion

// Release all axes. The robot stays put in the current position and complies with external forces to

lessen the torque on the joints. When the stop criterion, ControlBox DI0 is High, is comprehended, it

stop the control motion, exits the function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 580

23. TouchStop Functions
23.1 TouchStop class

Use the TouchStop class and declare variables to provide users with the robot touch stop

setting and the stop conditions to fulfill the touch stop function.

Construct1

TouchStop VariableName = string

TouchStop VariableName = string, string

Parameters

string Operation mode

"Compliance"

"Line"

"Force"

string Device name of the sensor (valid when the operation mode is "Force")

note

TouchStop ts1 = "Compliance" // Declare a touchstop control variable with the function of

compliance

TouchStop ts2 = "Line" // Declare a touchstop control variable with the function of line

FTSensor fts3 = "TMFT300" // Build a deivce named TMFT300.

TouchStop ts3 = "Force", "fts3" // Declare a touchstop control variable with the function of force

tethered with the sensor device fts3.

Member Methods

Name Default Description

Reset()
Reset all the compliance control motion parameters to the default

except the operation mode and the sensor device.

Frame() 1 Set the reference coordinate of the touchstop control motion.

HighResistance() false
Resistance on the non-motion direction (X,Y,Z). (Valid when the

operation mode is “Compliance”).

BrakeDistance() 0 (Valid when the operation mode is “Line”).

RecordPosPoint() - Set the record touchstop coordinate value to the point name.

Single() The single axis parameter of the compliance control motion

Teach() The teach parameter of the compliance control motion

AdvSet()
The advance setting parameter of the compliance control motion.

(Valid when the operation mode is “Compliance”).

Timeout() - The stop condition of timeout

DInput() - The stop condition of digital input

AInput() - The stop condition of analog input

Condition() - The stop condition of the conditional expression

Resisted() -
Stop condition of the external resistance detection. (Valid when the

operation mode is “Compliance”).

FTReached() -

The stop condition of monitoring the values of force,

torque, or resultant force acquired. (Valid when the operation

mode is “Force”).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 581

Name Default Description

Start() true Start the compliance control motion.

Stop() Stop the compliance control motion.

GetStoppedPos() {0,0,0,0,0,0} Get the stopped position values after the robot touch-stopped.

GetTriggeredPos() {0,0,0,0,0,0} Get the triggered position values after the robot touch-stopped.

GetMovingDistance() 0 Get the moving distance of the touchstop motion.

24.1.1 Reset()

Reset all the touchstop control motion parameters to the default except the operation mode

and the sensor device

Syntax 1

void Reset(

)

Parameters

void No input value

Return

void No return

24.1.2 Frame()

Set the reference base of the touchtop control motion.

Syntax 1

void Frame(

int

)

Parameters

int The base associated with the control motion

1 Tool

2 The current base

Return

void No return

24.1.3 HighResistance()

Set the resistance on the non-motion direction (X,Y,Z). (Valid Valid when the operation mode

is “Compliance”.)

Syntax 1

void HighResistance(

bool

)

Parameters

bool The resistance on the non-motion direction (X,Y,Z)

false Default

Omron TM Collaborative Robot: TMScript Language Manual (I664) 582

true High resistance

Return

void No return

24.1.4 BrakeDistance()

Set the braking distance. (Valid Valid when the operation mode is “Line”.)

Syntax 1

void BrakeDistance(

int

)

Parameters

int Braking distance in mm

Return

void No return

24.1.5 RecordPosPoint()

Set the record touchstop coordinate value to the point name.

* If in Flow projects, it requires to create the associated point name in the point manager. (Use

the TouchStop node to create.)

* If in Script projects, it requires to specify the associated point name in the define section.

(Define the point as "D" or "JD".)

Syntax 1

void RecordPosPoint(

string,

bool

)

Parameters

string The point name. Denote record canceled if empty string.

bool Record the touchstop stop point or the trigger point

false The stop point

true The trigger point

Return

void No return

Syntax 2

void RecordPosPoint(

string

)

Note

Same as Syntax 1. Fill false to the parameter of the recording the touchstop stop point or

the trigger point

Syntax 3

void RecordPosPoint(

)

Parameters

Omron TM Collaborative Robot: TMScript Language Manual (I664) 583

void No input value. Use to cancel recording the touchstop stop point or the trigger

point

Return

void No return

24.1.6 Single()

Set the single axis parameters of touchstop control motion.

Syntax 1

void Single(

int or string,

int,

int,

int

)

Parameters

int or string

Direction

0 or "X" X 3 or "RX" RX

1 or "Y" Y 4 or "RY" RY

2 or "Z" Z 5 or "RZ" RZ

int Distance X,Y,Z (mm) RX,RY,RZ (degree)

If operation mode is Compliance If operation mode is Line or Force

int Force X,Y,Z (N) RX,RY,RZ (mNm) Speed X,Y,Z (mm/s) RX,RY,RZ

(degree/s)

int Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s) Accelerate time in

millisecond

Return

void No return

Syntax 2

void Single(

int or string,

int,

int,

int,

bool,

bool

)

Parameters

int or string

Direction

0 or "X" X 3 or "RX" RX

1 or "Y" Y 4 or "RY" RY

2 or "Z" Z 5 or "RZ" RZ

int Distance X,Y,Z (mm) RX,RY,RZ (degree)

int Speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)

int Accelerate time in millisecond

bool Cancel precision positioning

Omron TM Collaborative Robot: TMScript Language Manual (I664) 584

true Cancel precision positioning

false Precision positioning (default)

bool Synchronize to the project speed or not

true Synchronize to the project speed (default)

false Synchronize to the project speed not

Return

void No return

24.1.7 Teach()

Set the teach parameters of compliance control motion.

Syntax 1

void Teach(

int or string,

float[] or string,

float[] or string,

int,

int,

int

)

Parameters

int or string

Linear direction or rotating direction

0 or "Linear" Linear direction

1 or "Rotation" Rotating direction

float[] or string

The 1st point {𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)} or

The name of the 1st point (use the robot TCP coordinate)

float[] or string

The 2nd point {𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)} 或

The name of the 2nd point (use the robot TCP coordinate

int Adjustment range Linear (mm) Rotation (degree)

If operation mode is Compliance If operation mode is Line or Force

int Force X,Y,Z (N) RX,RY,RZ (mNm) Speed X,Y,Z (mm/s) RX,RY,RZ

(degree/s)

int Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s) Accelerate time in

millisecond

Return

void No return

Syntax 2

void Teach(

int or string,

float[] or string,

float[] or string,

int,

int,

int,

bool,

Omron TM Collaborative Robot: TMScript Language Manual (I664) 585

bool

)

Parameters

int or string

Linear direction or rotating direction

0 or "Linear" Linear direction

1 or "Rotation" Rotating direction

float[] or string

The 1st point {𝑋1(𝑚𝑚) 𝑌1(𝑚𝑚) 𝑍1(𝑚𝑚) 𝑅𝑋1(°) 𝑅𝑌1(°) 𝑅𝑍1(°)} or

The name of the 1st point (use the robot TCP coordinate)

float[] or string

The 2nd point {𝑋2(𝑚𝑚) 𝑌2(𝑚𝑚) 𝑍2(𝑚𝑚) 𝑅𝑋2(°) 𝑅𝑌2(°) 𝑅𝑍2(°)} 或

The name of the 2nd point (use the robot TCP coordinate

int Adjustment range Linear (mm) Rotation (degree)

int Speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)

int Accelerate time in millisecond

bool Cancel precision positioning

true Cancel precision positioning

false Precision positioning (default)

bool Synchronize to the project speed or not

true Synchronize to the project speed (default)

false Synchronize to the project speed not

Return

void No return

24.1.8 AdvSet()

Set the advanced parameters of touchstop control motion. (Valid when the operation mode is

“Compliance”.)

Syntax 1

void AdvSet(

int or string,

bool,

int,

int,

int,

int

)

Parameters

int or string

Direction

0 or "X" X 3 or "RX" RX

1 or "Y" Y 4 or "RY" RY

2 or "Z" Z 5 or "RZ" RZ

bool Enable the control to the assigned direction or not.

false Disable

true Enable

int Distance restriction upper bound X,Y,Z (mm) RX,RY,RZ (degree)

int Distance restriction lower bound X,Y,Z (mm) RX,RY,RZ (degree)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 586

int Force X,Y,Z (N) RX,RY,RZ (mNm)

int Target speed X,Y,Z (mm/s) RX,RY,RZ (degree/s)

Return

void No return

Syntax 2

void AdvSet(

int or string,

bool

)

note

Same as Syntax 1 parameter definitions for setting whether to enable the control to the

assigned direction.

24.1.9 Timeout()

Set the stop condition of timeout.

Syntax 1

void Timeout(

int

)

Parameters

int Timeout in milliseconds

< 0 Disable

>= 0 Timeout duration

Return

void No return

Syntax 2

void Timeout(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.10 DInput()

Set the stop condition of the digital input.

Syntax 1

void DInput(

string,

int,

int or string

)

Parameters

string Control module name

ControlBox The control box

Omron TM Collaborative Robot: TMScript Language Manual (I664) 587

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the stop condition to Low/High.

0 or "L" Low

1 or "H" High

Return

void No return

Syntax 2

void DInput(

int

)

Parameters

int The stroke ratio to start receiving digital input (valid when the operation

mode is " Compliance ")

Return

void No return

Syntax 3

void DInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.11 AInput()

Set the stop condition of the analog input.

Syntax 1

void AInput(

string,

int,

int or string,

float

)

Parameters

string Control module name

ControlBox The control box

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the condition to judge

0 or ">" Greater than

1 or ">=" Greater than or equal to

2 or "=="

Omron TM Collaborative Robot: TMScript Language Manual (I664) 588

Equal to (Recommend not to use since it is not easy to

hold the equal condition with analog input.)

3 or "<=" Less than or equal to

4 or "<" Less than

float Condition value

Return

void No return

Syntax 2

void AInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.12 Condition()

Set the stop condition of the conditional expression.

Syntax 1

void Condition(

bool or ?

)

Parameters

bool or ? The conditional that can be true/false or a bool return of the statement.

Return

void No return

Syntax 2

void Condition(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.13 Resisted()

Set the stop condition of the external resistance detection. (valid when the operation mode is

" Compliance ")

Syntax 1

void Resisted(

bool

)

Parameters

bool External resistance detection

false Disable

Omron TM Collaborative Robot: TMScript Language Manual (I664) 589

true Enable

Return

void No return

Syntax 2

void Resisted(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.14 FTReached()

Set the stop condition of monitoring the values of force, torque, or resultant force acquired.

(valid when the operation mode is " Force")

Syntax 1

void FTReached(

int or string,

bool,

float

)

Parameters

int The values of force, torque, or resultant force.

6 or "F3D" F3D (N)

7 or "T3D" T3D (Nm)

8 or "Force" Force (N) (default)

Whether to enable monitoring the assigned the values of force, torque, or resultant force.

false Disable

true Enable

float The monitoring value

Return

void No return

Syntax 2

void FTReached(

int or string,

bool

)

Note

Same as syntax 1. Use to whether to enable monitoring the assigned the values of force,

torque, or resultant force.

Syntax 3

void FTReached(

bool

)

Parameters

bool Whether to enable the absolute values monitoring.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 590

false Disable

true Enable

Syntax 4

void FTReached(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

24.1.15 Start()

Start the touchstop control motion.

Syntax 1

int Start(

bool

)

Parameters

bool Zero out force sensor before execution. (valid when the operation mode is "

Force")

true Enable (default)

false Disable

Return

int Return the result value after the touchstop control motion stops.

0 Not Working

1 Working

2 Timeout

3 Distance reached

4 IO triggered

5 Resisted

6 Error

14 Over Speed

201 Digital IO triggered

202 Analog IO triggered

203 Variable

204 Force is Comprehended

205 Allowable Position Tolerances

206 Motion Finish

Syntax 2

int Start(

)

note

Same as syntax 1. Fill true to zero out force sensor before execution.

24.1.16 Stop()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 591

Stop the touchstop control motion.

Syntax 1

int Stop(

)

Parameters

void No input value

Return

int Return the result value after the touchstop control motion stops.

24.1.17 GetStoppedPos()

Get the stopped position values after the robot touch-stopped.

Syntax 1

void GetStoppedPos(

int

)

Parameters

int Get the coordinate value or the angle value of the stop point of the touch-stop

control motion.

0 the robot flange center coordinate (by the current base)

1 the robot joint angle

2 the robot end TCP coordinate (by the current base)

3 the robot TCP coordinate (by the RobotBase base)

4 the robot end TCP coordinate (by the RobotBase base)

Return

float[] If in coordinates, it is the six elements of the robot coordinates: X(mm),

Y(mm), Z(mm), RX(°), RY(°), and RZ(°); if in angle, the six elements of the

robot joint: Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), and Joint

6(°)

24.1.18 GetTriggeredPos()

Get the triggered position values after the robot touch-stopped.

Syntax 1

void GetTriggeredPos(

int

)

Parameters

int Get the coordinate value or the angle value of the stop point of the touch-stop

control motion.

0 the robot flange center coordinate (by the current base)

1 the robot joint angle

2 the robot end TCP coordinate (by the current base)

3 the robot TCP coordinate (by the RobotBase base)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 592

4 the robot end TCP coordinate (by the RobotBase base)

Return

float[] If in coordinates, it is the six elements of the robot coordinates: X(mm),

Y(mm), Z(mm), RX(°), RY(°), and RZ(°); if in angle, the six elements of the

robot joint: Joint 1(°), Joint 2(°), Joint 3(°), Joint 4(°), Joint 5(°), and Joint

6(°)

24.1.19 GetMovingDistance()

Get the moving distance of the touchstop motion.

Syntax 1

float GetMovingDistance(

)

Parameters

void No input value

Return

float Return the moving distance of the touchstop motion in mm.

⚫ Parameter Settings

TouchStop ts1 = "Compliance" // Declare the touchstop control variable functioning as Compliance.

TouchStop ts2 = "Line" // Declare the touchstop control variable functioning as Line.

FTSensor fts3 = "TMFT300" // Construct the device TMFT300.

TouchStop ts3 = "Force", "fts3" // Declare the touchstop control variable and tether fts3 as the

sensor name.

TPoint P0 = "JD",{0,0,0,0,0,0}

(1)

ts1.Frame(1) // Set the touchstop control base as tool.

ts1.Frame(2) // Set the touchstop control base as the current base (will overwrite the

previous setting).

ts1.Reset() // Reset all parameters

(2)

ts1.Frame(1)

ts1.Single("X", 30, 30, 30) // Set direction X with distance of 30mm, force of 30N, and target speed of

30 mm/s

ts1.Single("Z", 40, 30, 30) // Set direction Z with distance of 40mm (will overwrite the previous Single

setting)

ts1.Reset() // Reset all parameters

ts2.Single("Z", 30, 40, 500, false, true) // Set direction Z with distance of 30mm, target of

40mm/s, and accelerate time of 500ms.

(3)

ts1.Frame(1)

ts1.HighResistance(true) // Set the resistance on the non-motion direction to High Resistance

ts2.BrakeDistance(20) // Set the braking distance to 20mm

ts2.RecordPosPoint("P0", true) // Set the record touchstop coordinate value to P0.

// Control

ts1.Single("Z", 40, 30, 30) // Set direction Z with distance of 40mm (use Single

Omron TM Collaborative Robot: TMScript Language Manual (I664) 593

mode)

ts1.Teach("Linear", "P1", "P2", 0, 30, 30) // Set the teach point P1 and P2 (will use Teach

mode instead)

ts1.AdvSet ("X", true, 100, -100, 30, 30) // Set direction X with advanced parameters (will use

Advanced mode instread)

ts1.AdvSet ("Z", true, 100, -100, 30, 30) // Set direction Z with advanced parameters

ts1.AdvSet ("X", true, 10, -10, 30, 30) // Set direction X with advanced parameters (will overwrite

the previous AdvSet X parameter)

// Stop Criteria

ts1.Timeout(10000) // Set timeout to 10000ms

ts1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

ts1.DInput(100) // Start receiving digital input with stroke ratio to 100%

ts1.AInput("ControlBox", 0, ">=", 3.3) // When ControlBox AI0 is greater than or equal to 3.3V

int count = 0

ts1.Condition(count > 1000) // conditional expression

ts1.Resisted(true) // external resistance detection

ts1.Reset() // Reset all parameters (reserve tethering "fts1" as sensor

name)

ts3.FTReached("Force", true, 10) // Enable monitoring of the resultant force of the control

direction to satisfy 10N.

ts3.FTReached(true) // Enable monitoring of the absolute values

⚫ Touchstop Compliance

TouchStop ts1 = "Compliance" // Declare the touchstop control variable functioning as Compliance.

TPoint P0 = "JD",{0,0,0,0,0,0}

(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts1.Single("Z", 100, 30, 30) // Set timeout to 10000ms

ts1.AInput("ControlBox", 0, ">=", 3.3) // When ControlBox AI0 is greater than or equal to 3.3V

ts1.RecordPosPoint("P0", false) // Set the record touchstop coordinate value to P0.

int re = ts1.Start() // Start the touchstop compliance control motion

// Set direction Z with a moving distance of 100mm, a force of 30N, and a target speed of 30 mm/s, so it

will move toward direction Z. When the stop criterion, ControlBox AI0 is greater than or equal to 3.3V,

is comprehended, it stops the control motion, exits the function, and returns the result values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}

TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-

0.043}

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts1.Teach("Linear", "P1", "P2", 0, 40, 40)// Set the teach point P1 and P2 in the linear direction

ts1.Timeout(5000) // Set timeout to 5000ms

int re = ts1.Start() // Start the touchstop compliance control motion

// Teach the two points in the linear direction with a force of 40N and a target speed of 40 mm/s. Once

the moving distance and the teach linear direction are comprehended, it stops the control motion,

exits the function, and return the result values. Since the timeout is set, if it does not comprehend the

moving distance in time, it stops the control motion, exits the function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 594

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts1.Teach("Rotation", "P1", "P3", 0, 5000, 40)

// Set the teach point P1 and P3 in the rotating direction

re = ts1.Start()

// Teach the two points in the rotating direction with a force of 5000mNm and a target speed of 40

mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the

control motion, exits the function, and return the result values. Since the timeout is set (without

resetting the timeout of ts1), if it does not comprehend the moving distance in time, it stops the control

motion, exits the function, and returns the result values.

(3) Advanced

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts1.AdvSet("X", true, 100, -100, 30, 30) // Set direction X with advanced parameters

ts1.AdvSet("Z", true, 100, -100, 30, 30) // Set direction Z with advanced parameters

ts1.AdvSet("X", true, 100, -100, 40, 40) // Set direction X with advanced parameters (will overwrite

the previous AdvSet X parameter)

int re = ts1.Start() // Start the touchstop compliance control motion

// Set direction X and Z for compliance control. Once the moving distance is comprehended, it stops the

control motion, exits the function, and returns the result values.

⚫ Touchstop Line

TouchStop ts2 = "Line" // Declare the touchstop control variable functioning as Line

TPoint P0 = "JD",{0,0,0,0,0,0}

(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts2.Single("Z", 100, 30, 500) // Set direction Z with distance of 100mm

ts2.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

ts2.RecordPosPoint("P0", true) // Set the record touchstop coordinate value to P0.

int re = ts2.Start() // Start the touchstop control motion

// Set direction Z for control with a moving distance of 100mm, an accelerate time of 500ms, and a

target speed of 30 mm/s, so it will move toward direction Z. Once the moving distance is

comprehended, it stops the control motion, exits the function, and return the result values. When the

stop criterion, ControlBox DI0 is High, is comprehended, it stops the control motion, exits the function,

and returns the result values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}

TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-

0.043}

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts2.Teach("Linear", "P1", "P2", 0, 40, 500) // Set the teach point P1 and P2 in the linear

direction

ts2.Timeout(5000) // Set timeout to 5000ms

int re = ts2.Start() // Start the touchstop control motion

// Teach the two points in the linear direction with an accelerate time of 500ms and a target speed of 40

mm/s. Once the moving distance and the teach linear direction are comprehended, it stops the

control motion, exits the function, and return the result values. Since the timeout is set, if it does not

Omron TM Collaborative Robot: TMScript Language Manual (I664) 595

comprehend the moving distance in time, it stops the control motion, exits the function, and returns

the result values.

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts2.Teach("Rotation", "P1", "P3", 0, 40, 500) // Set the teach point P1 and P3 in the rotating

direction

re = ts2.Start()

// Teach the two points in the rotating direction with an accelerate time of 500ms and a target speed of

40 mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the

control motion, exits the function, and return the result values. Since the timeout is set (without

resetting the timeout of ts1), if it does not comprehend the moving distance in time, it stops the control

motion, exits the function, and returns the result values.

⚫ Touchstop Force

FTSensor fts3 = "TMFT300" // Construct the device TMFT300.

TouchStop ts3 = "Force", "fts3" // Declare the touchstop control variable and tether fts3 as the

sensor name.

TPoint P0 = "JD",{0,0,0,0,0,0}

(1) Single Axis

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts3.Single("Z", 100, 30, 500) // Set direction Z with distance of 100mm

ts3.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

ts3.FTReached("Force", true, 2) // Enable monitoring of the resultant force of the control

direction to satisfy 2N.

ts3.RecordPosPoint("P0", true) // Set the record touchstop coordinate value to P0.

int re = ts3.Start() // Start the touchstop control motion

// Set direction Z for control with a moving distance of 100mm, an accelerate time of 500ms, and a

target speed of 30 mm/s, so it will move toward direction Z. Once the moving distance is

comprehended, it stops the control motion, exits the function, and returns the result values. When the

stop criterion, ControlBox DI0 is High, is comprehended, it stop the control motion, exits the function,

and returns the result values. Since the stop criterion on the monitoring of the resultant force is set, if

it does not comprehend the moving distance in time, it stops the control motion, exits the function,

and returns the result values.

(2) Teach

TPoint P1 = {516.655,-147.754,445.381,179.444,-0.324,89.912},{0,0,90,0,90,0}

TPoint P2 = {517.419,-147.175,345.184,179.533,-0.319,89.918},{0.057,1.805,103.178,-

14.896,89.998,0.085}

TPoint P3 = {516.655,-147.740,445.388,-162.754,-0.281,89.819},{0.017,6.570,77.958,23.270,89.971,-

0.043}

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts3.Teach("Linear", "P1", "P2", 0, 40, 500) // Set the teach point P1 and P2 in the linear

direction

ts3.Timeout(5000) // Set timeout to 5000ms

ts3.FTReached("F3D", true, 2) // Enable monitoring of the force of the control direction to

satisfy 2N.

int re = ts3.Start() // Start the touchstop control motion

// Teach the two points in the linear direction with an accelerate time of 500ms and a target speed of 40

mm/s. Once the moving distance and the teach linear direction are comprehended, it stops the

Omron TM Collaborative Robot: TMScript Language Manual (I664) 596

control motion, exits the function, and return the result values. Since timeout is set, if it does not

comprehend the moving distance in time, it stops the control motion, exits the function, and returns

the result values. Since the stop criterion on the monitoring of the resultant force is set, if it does not

comprehend the moving distance in time, it stops the control motion, exits the function, and returns

the result values.

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

ts3.Timeout() // Cancel the timout stop criterion.

ts3.Teach("Rotation", "P1", "P3", 0, 40, 500)

// Set the teach point P1 and P3 in the rotating direction

re = ts3.Start()

// Teach the two points in the rotating direction with an accelerate time of 500ms and a target speed of

40 mm/s. Once the moving distance and the teach rotating direction are comprehended, it stops the

control motion, exits the function, and return the result values. Since the stop criterion on the

monitoring of the resultant force is set (without resetting the stop criterion on the resultant force of

ts3), if it does not comprehend the moving distance in time, it stops the control motion, exits the

function, and returns the result values.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 597

24. Force Control Functions
24.1 FTSensor Class

Use FTSensor class and declare variables to create a Force Torque Sensor device. The

variable name will be the device name.

Construct 1

FTSensor VariableName = string, string, float[], float[], float

FTSensor VariableName = string, float[], float[], float

FTSensor VariableName = string, string

FTSensor VariableName = string

Parameters

string Supported models from the sensor suppliers

"TMFT300"

"OnRobot_HEX-E"

"OnRobot_HEX-H"

"ROBOTIQ_FT300"

"SCHUNK_Axia80"

"SRI_M4313N3C"

" WACOH_WEF_WKF_115200"

"WEF-6A200-4-RG24_9600"

string connection description required when using serial port for communication

float[] Position setting: X(mm), Y(mm), Z(mm), RX(°), RY(°), RZ(°)

float[] TCP value: X(mm), Y(mm), Z(mm)

float Tool Mass: kg

Note

FTSensor fts_1 = "TMFT300","COM2" // Construct the device TMFT300. The connection parameters

are void for using EtherCAT communication.

FTSensor fts_2 = "TMFT300" // Construct the device TMFT300

FTSensor fts_3 = "ROBOTIQ_FT300","COM2"

// Construct the device ROBOTIQ_FT300. Require to assign the connection port for using serial port communication.

FTSensor fts_4 = "ROBOTIQ_FT300","COM2",{0,0,0,0,0,0},{0.12,0.24,0.36},1

// Construct the device ROBOTIQ_FT300. Require to assign the connection port for using serial port communication

and to configure the settings of the sensor position and tool mass center.

* If not filling position setting, TCP value, or tool mass, it uses the parameters in the force

sensor setting in the project.

* After construction, either in flow projects or script projects, the device will not connect

actively until proceeding to read or write.

Member Attributes

Name Type Mode Description Format

X float R The strength value of the X axis

Y float R The strength value of the y axis

Z float R The strength value of the z axis

TX float R The torque value of the X axis

TY float R The torque value of the y axis

TZ float R The torque value of the z axis

Omron TM Collaborative Robot: TMScript Language Manual (I664) 598

Name Type Mode Description Format

F3D float R The XYZ force strength value

T3D float R The XYZ torque value

Value float[] R
The XYZ force strength value

and torque value array.

{X, Y, Z, TX, TY, TZ},

Size = 6

ForceValue float[] R
The XYZ force strength value

array
{X, Y, Z}, Size = 3

TorqueValue float[] R The XYZ torque value array {TX, TY, TZ}, Size = 3

RefCoordX float R

The X-axis strength value

measured based on the

reference base set in the node

RefCoordY float R

The Y-axis strength value

measured based on the

reference base set in the node

RefCoordZ float R

The Z-axis strength value

measured based on the

reference base set in the node

RefCoordTX float R

The X-axis torque value

measured based on the

reference base set in the node

RefCoordTY float R

The Y-axis torque value

measured based on the

reference base set in the node

RefCoordTZ float R

The Z-axis torque value

measured based on the

reference base set in the node

RefCoordF3D float R

The XYZ strength measured

based on the reference base set

in the node

RefCoordT3D float R

The XYZ torque measured

based on the reference base set

in the node

RefCoordForceValue float[] R

The XYZ strength value matrix

measured based on the

reference base set in the node

{RefCoordX,

RefCoordY,

RefCoordZ}, Size = 3

RefCoordTorqueValue float[] R

The XYZ torque value matrix

measured based on the

reference base set in the node

{RefCoordTX,

RefCoordTY,

RefCoordTZ}, Size = 3

Model string R
The Model name of the F/T

sensor

Zero byte R/W Turn on or off F/T sensor offset 0: Zero OFF, 1: Zero ON

Attributes associated with RefCoord come with values when in Force Control motions.

Member Methods

Name Description

Open() Connect to the sensor device.

Close() Disconnect from the sensor device.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 599

25.1.1 Open()

Open the connection to the Force Torque Sensor.

Syntax 1

bool Open(

)

Parameters

void No parameter

Return

bool True open successfully

False open unsuccessfully (the project returns an error)

* After opening the device, it proceeds to the connection to communicate. It may take a while

to get the values due to different sensor models.

25.1.2 Close()

Close the connection from the Force Torque Sensor.

Syntax 1

bool Close(

)

Parameters

void No parameter

Return

bool True close successfully

False close unsuccessfully

Note

FTSensor fts_1 = "ROBOTIQ_FT300","COM2"

fts_1.Open() // Connect to the device.

fts_1.Close() // Disconnect from the device.

24.2 Force Class

Use Force class and declare variables for users to set the robot target force and torque

parameters to reach a variety of associated force control motions.

Construct 1

Force VariableName = string

Parameters

string sensor name

Note

FTSensor fts1 = "TMFT300" // Construct the device TMFT300.

Force fc1 = "fts1" // Declare the force control variable and tether fts1 as the sensor name.

Member Methods

Name Defaults Description

Reset() Reset all the force control motion parameters to the

Omron TM Collaborative Robot: TMScript Language Manual (I664) 600

default except the sensor name.

Frame() 1 Set the reference coordinate of the force control motion.

Distance() -
The moving distance of the force control motion (Available

only in the SetPoint F/T operation mode.)

ProtectionSpeed() The speed protection of the force control motion

FTSet()

0,false,5,2,-1

1,false,5,2,-1

2,false,5,2,-1

3,false,0.5,2,-1

4,false,0.5,2,-1

5,false,0.5,2,-1

The force and the torque of the force control motion. The

positive and negative values denote the force control

direction. Users can adjust the PID control parameters.

Trajectory() -
The trajectory path of the force control motion. (Trajectory

F/T operation mode.)

Timeout() -
Stop condition of timeout (Available only in the single F/T

operation mode.)

AllowPosTol() - Stop condition of tolerant position error

DInput() - Stop condition of digital input

AInput() - Stop condition of analog input

FTReached() -
The stop condition of monitoring the values of force,

torque, or resultant force acquired.

Condition() - Stop condition of the conditional expression

Start() true,false Start the force control motion.

Stop() Stop the force control motion.

25.2.1 Reset()

Reset all the force control motion parameters to the default except the sensor name.

Syntax 1

void Reset(

)

Parameters

void No parameter

Return

void No return

25.2.2 Frame()

Set the reference base of the force control motion.

Syntax 1

void Frame(

int

)

Parameters

int The base associated with the control motion

0 The robot base

1 Tool: the base is coupled with the orientation of the tool coordinate.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 601

(default)

2 The current base

3 Trajectory: the base changes with the path.

Return

void No return

Syntax 2

void Frame(

string

)

Parameters

string Point name. Use the TCP coordinate of the point as the base associate with the

control motion.

Return

void No return

Syntax 3

void Frame(

float[],

string

)

Parameters

float[] The TCP coordinate of the robot end point: X(mm), Y(mm), Z(mm), RX(°), RY(°),

RZ(°)

string Base name. Use the current base name if empty string.

Return

void No return

Syntax 4

void Frame(

float[]

)

Note

Same as syntax 3. Fill RobotBase in Base name.

Syntax 5

void Frame(

float, float, float, float, float, float,

string

)

Note

Same as syntax 3. Replace the type float[] with the parameters in float .

Syntax 6

void Frame(

float, float, float, float, float, float

)

Note

Same as syntax 4. Replace the type float[] with the parameters in float .

Omron TM Collaborative Robot: TMScript Language Manual (I664) 602

25.2.3 Distance()

Set the moving distance of the force control motion. (Available only in the SetPoint F/T

operation mode.)

Syntax 1

void Distance(

int

)

Parameters

int Distance mm

< 0 No limit to the moving distance.

>= 0

Limited to the moving distance. (Distance calculated from the

starting point where the force control motion begins.)

Return

void No return

25.2.4 ProtectionSpeed()

Set the speed protection of the force control motion.

Syntax 1

void ProtectionSpeed(
int, int, int, int, int, int

)
Parameters

int, int, int, int, int, int
Set the speed protection against the axial force or torque: X(mm/s), Y(mm/s),
Z(mm/s), RX(deg/s), RY(deg/s), RZ(deg/s)
<= 0 No limit to the speed.
> 0 Limited to the speed

* FTSet() is required to enable speed protection against the respective axial force or torque.
* Speed protection is available to configure in FTSet() as well.

Return

void No return

25.2.5 FTSet()

Set the force and the torque of the force control motion. The positive and negative values

denote the force control direction. Users can adjust the PID control parameters.

Syntax 1

void FTSet(

int or string,

bool,

float,

int

int

)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 603

Parameters

int or string

Axis force or axis torque

0 or "FX" FX (N) 3 or "TX" TX (Nm)

1 or "FY" FY (N) 4 or "TY" TY (Nm)

2 or "FZ" FZ (N) 5 or "TZ" TZ (Nm)

bool Whether to enable the control of the assigned axis force or axis torque

false Disable

true Enable

float The control value of force or torque. The positive and negative values denote

the force control direction.

int PID control parameter

(weak) (strong)

0 1 2 3 4

int Speed protection

<= 0 No limit to the speed.
> 0 Limited to the speed

Return

void No return

Syntax 2

void FTSet(

int or string,

bool,

float,

int

)

Note

Same as syntax 1. Fill -1 to Speed protection parameter for no speed limit.

Syntax 3

void FTSet(

int or string,

bool,

float

)

Note

Same as syntax 1 parameter definition. Fill 2 to PID control parameter and -1 to Speed

protection parameter for no speed limit.

Syntax 4

void FTSet(

int or string,

bool

)

Note

Same as syntax 1 parameter definition. Use to set whether to enable the control of the

assigned axis force or axis torque only. No change to other parameters (Axis force or axis

torque control value, PID control parameter, and Speed protection parameter).

Omron TM Collaborative Robot: TMScript Language Manual (I664) 604

Syntax 5

void FTSet(

int or string,

float

)

Note

Same as syntax 1 parameter definition. Use to set the control value of force or torque. No

change to other parameters (Whether to enable to the control, PID control parameter, and

Speed protection parameter).

Syntax 6

void FTSet(

int or string,

float,

int

)

Note

Same as syntax 1 parameter definition. Use to set Axis force or axis torque control value

and speed control. only. No change to other parameters (Whether to enable to the control

and PID control parameter).

Syntax 7

void FTSet(

int or string,

float[]

)

Parameters

int or string

Axis force or axis torque

0 or "FX" FX (N) 3 or "TX" TX (Nm)

1 or "FY" FY (N) 4 or "TY" TY (Nm)

2 or "FZ" FZ (N) 5 or "TZ" TZ (Nm)

float[] PID control parameter {Kp, Ki, Kd}

Note

Same as syntax 1 parameter definition. Use to set PID control parameter (Kp, Ki, Kd) only.

No change to other parameters (Whether to enable to the control, Axis force or axis torque

control value, and speed control).

25.2.6 Trajectory()
.

Set the trajectory path of the force control motion. (Trajectory F/T operation mode.)

Syntax 1

void Trajectory(

string

)

Parameters

string Subflow name. Use in flow projects only. Return errors if use in script projects.

Return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 605

void No return

Syntax 2

void Trajectory(

?

)

Parameters

? Trajectory path. Be a statement or a customized function

Return

void No return

Syntax 3

void Trajectory(

)

Parameters

void

No parameter for cancelling trajectory F/T operation mode. (Change to the

SetPoint F/T operation mode.)

Return

void No return

25.2.7 Timeout()

Set the stop condition of timeout. (Available only in the SetPoint F/T operation mode.)

Syntax 1

void Timeout(

int

)

Parameters

int Timeout in milliseconds

< 0 Disable

>= 0 Timeout duration

Return

void No return

Syntax 2

void Timeout(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.8 AllowPosTol()

Set the stop condition of the tolerant position error.

Syntax 1

void AllowPosTol(

Omron TM Collaborative Robot: TMScript Language Manual (I664) 606

int

)

Parameters

int Error distance in mm

< 0 Disable

>= 0 Distance of the tolerant error.

Return

void No return

Syntax 2

void AllowPosTol(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.9 DInput()

Set the stop condition of the digital input.

Syntax 1

void DInput(

string,

int,

int or string

)

Parameters

string Control module name

ControlBox The control box

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the stop condition to Low/High.

0 or "L" Low

1 or "H" High

Return

void No return

Syntax 2

void DInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.10 AInput()

Omron TM Collaborative Robot: TMScript Language Manual (I664) 607

Set the stop condition of the analog input.

Syntax 1

void AInput(

string,

int,

int or string,

float

)

Parameters

string Control module name

ControlBox The control box

EndModule The end module

ExtModuleN The external module (N = 0 .. n)

int Input channel 0 .. n

int or string

Set the condition to judge

0 or ">" Greater than

1 or ">=" Greater than or equal to

2 or "=="

Equal to (Recommend not to use since it is not easy to

hold the equal condition with analog input.)

3 or "<=" Less than or equal to

4 or "<" Less than

float Condition value

Return

void No return

Syntax 2

void AInput(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.11 FTReached()

Set the stop condition of monitoring the values of force, torque, or resultant force acquired.

Syntax 1

void FTReached(

int or string,

bool,

float

)

Parameters

int The values of force, torque, or resultant force.

0 or "FX" FX (N) 3 or "TX" TX (Nm)

1 or "FY" FY (N) 4 or "TY" TY (Nm)

Omron TM Collaborative Robot: TMScript Language Manual (I664) 608

2 or "FZ" FZ (N) 5 or "TZ" TZ (Nm)

6 or "F3D" F3D (N) 7 or "T3D" T3D (Nm)

bool Whether to enable monitoring the assigned the values of force, torque, or

resultant force.

false Disable

true Enable

float The monitoring value

Return

void No return

Syntax 2

void FTReached(

int or string,

bool

)

Note

Same as syntax 1. Use to whether to enable monitoring the assigned the values of force,

torque, or resultant force.

Syntax 3

void FTReached(

bool

)

Parameters

bool Whether to enable the absolute values monitoring.

false Disable

true Enable

Syntax 4

void FTReached(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.12 Condition()

Set the stop condition of the conditional expression.

Syntax 1

void Condition(

bool or ?

)

Parameters

bool or ? The conditional can be true/false or a bool return of the statement.

Return

void No return

Omron TM Collaborative Robot: TMScript Language Manual (I664) 609

Syntax 2

void Condition(

)

Parameters

void No parameter for cancelling the stop condition.

Return

void No return

25.2.13 Start()

Start the force control motion.

Syntax 1

int Start(

bool,

bool

)

Parameters

bool Zero out force sensor before execution.

true Enable (default)

false Disable

bool Enable tool gravity compensation

true Enable

false Disable (default)

Return

int Return the result value after the force control motion stops.

0 Not Working

1 Working

2 Timeout

3 Distance reached

4 IO triggered

5 Resisted

6 Error

14 Over Speed

201 Digital IO triggered

202 Analog IO triggered

203 Variable

204 Force is comprehended

205 Allowable Position Tolerances

206 Motion Finish

Syntax 2

int Start(

bool

)

Note

Same as syntax 1. Enabling the tool gravity compensation parameter will retrieve the

parameter values of the associated device name in the force sensor setting of the project. Fill

false if not retrieving the associated device name.

Omron TM Collaborative Robot: TMScript Language Manual (I664) 610

Syntax 3

int Start(

)

Note

Same as syntax 1. Fill true to zero out force sensor before execution. Enabling the tool

gravity compensation parameter will retrieve the parameter values of the associated device

name in the force sensor setting of the project. Fill false if not retrieving the associated device

name.

25.2.14 Stop()

Stop the force control motion.

Syntax 1

int Stop(

)

Parameters

void No parameter

Return

int Return the result value after the force control motion stops.

⚫ Parameter Settings

FTSensor fts1 = " TMFT300" // Construct the device TMFT300.

Force fc1 = "fts1" // Declare the force control variable and tether fts1 as the sensor name.

(1)

fc1.Frame(3) // Set the force control coordinate as trajectory.

fc1.Frame({517.5,-147.8,442.45,180,0,90}) // Set the force control coordinate as point (will

overwrite the previous setting)

fc1.Frame("P1") // Set the force control coordinate as point (will overwrite the

previous setting)

fc1.Reset() // Reset all parameters (reserve tethering "fts1" as sensor name)

(2)

fc1.Frame(3)

fc1.Frame({517.5,-147.8,442.45,180,0,90})

fc1.Frame("P1")

fc1.FTSet(0, true, 5, 0) // Set axis FX with force control 5N with PID 0.

fc1.FTSet(1, true, 6, 1) // Set axis FY with force control 6N with PID 1.

fc1.FTSet(2, true, 7, 3) // Set axis FZ with force control 7N with PID 3.

fc1.FTSet("FZ", true, 8) // Set axis FZ with force control 8N with PID 2. (will overwrite

the previous FZ setting)

fc1.Reset() // Reset all parameters (reserve tethering "fts1" as sensor name)

(3)

fc1.Frame(1) // Set the force control coordinate as tool.

fc1.StopDuration(300) // Set the duration of compliance stop. to 300ms

// Force and torque control

fc1.Distance(1000) // Set moving distance to 1000mm

Omron TM Collaborative Robot: TMScript Language Manual (I664) 611

fc1.FTSet("FZ", true, 5) // Set axis FZ with force control 5N

// Stop conditions

fc1.Timeout(10000) // Set timeout to 10000ms

fc1.AllowPosTol(100) // Set the tolerant error to 100mm

fc1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

fc1.AInput("ControlBox", 0, ">=", 3.3) // When ControlBox AI0 is greater than or equal to 3.3V

fc1.FTReached(2, true, 1) // Axis FZ satisfies 1N

fc1.FTReached("FZ", true, 2) // Axis FZ satisfies 2N (will overwrite the previous FZ setting)

fc1.FTReached(true) // Enable the absolute value monitoring

int count = 0

fc1.Condition(count > 100) // conditional expression

fc1.Reset() // Reset all parameters (reserve tethering "fts1" as sensor name)

⚫ SetPoint F/T Operation Mode

SetPoint mode applies mainly to the robot touching the target with force control.

FTSensor fts1 = " TMFT300"

Force fc1 = "fts1"

(1)

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

fc1.Distance(100) // Set moving distance to 100mm

fc1.FTSet("FZ", true, 5) // Set axis FZ with force control 5N

fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// Set axis FZ with force control 5N and the moving distance of 100mm, and the robot will move along

with the Z-direction. The robot stops moving once it satisfies the moving distance. However, the

motion is still under the force control, namely in the function.

(2)

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

fc1.FTSet("FZ", true, 5) // Set axis FZ with force control 5N

fc1.AllowPosTol(80) // The stop condition of the tolerant position error.

int re = fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// Set axis FZ with force control 5N, and the robot will move along with the Z-direction and monitor the

stop conditions concurrently. By satisfying the stop condition, the robot stops moving once it reaches

within the tolerant position error, stops the force control motion, exits the function, and returns the

result value.

(3)

PTP("JPP",{0,0,90,0,90,0},50,200,0,false)

fc1.Frame(1) // Set the force control coordinate as工具

fc1.StopDuration(300) // Set the duration of compliance stop.to 300ms

// Force and torque control

fc1.Distance(200) // Set moving distance to 200mm

fc1.FTSet("FZ", true, 5) // Set axis FZ with force control 5N

// Stop conditions

fc1.Timeout(10000) // Set timeout to 10000ms

Omron TM Collaborative Robot: TMScript Language Manual (I664) 612

fc1.AllowPosTol(1000) // Set the tolerant error to 1000mm

fc1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

fc1.AInput("ControlBox", 0, ">=", 3.3) // When ControlBox AI0 >= 3.3V

int count = 0

fc1.Condition(count > 100) // conditional expression

int re = fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// The robot stops moving once it satisfies the moving distance. However, the motion is still under the

force control, and the system monitors the stop conditions continuously. Not until any stop conditions

are comprehended will the force control motion be stopped, the function exit, and the result values

after stopping be returned.

⚫ Trajectory F/T Operation Mode

Trajectory mode applies mainly to the robot touching the target with robot base position control and

force control.

FTSensor fts1 = " TMFT300"

Force fc1 = "fts1"

(1)

fc1.FTSet("FZ", true, 2) // Set axis FZ with force control 2N

fc1.Trajectory("FTSubflow0") // Set FTSubflow0 as the trajectory path. (Use in flow projects only.)

int re = fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// Suppose FTSubflow0 comes with a few point nodes to finish.

// Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflow0. The robot

follows the nodes in the subflow to control and with force control concurrently. When the subflow

ends, it stops the force control motion, exits the function, and returns the result value.

(2)

fc1.FTSet("FZ", true, 2) // Set axis FZ with force control 2N

fc1.Frame(3) // Set the force control coordinate as trajectory

fc1.Trajectory("FTSubflow0") // Set FTSubflow0 as the trajectory path. (Use in flow projects only.)

int re = fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// Suppose FTSubflow0 comes with a few point nodes to finish.

// Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflow0. The robot

follows the nodes in the subflow to control and with force control concurrently. When the subflow

ends, it stops the force control motion, exits the function, and returns the result value.

(3)

fc1.FTSet("FZ", true, 2) // Set axis FZ with force control 2N

fc1.Frame(1) // Set the force control coordinate as tool

fc1.Trajectory("FTSubflow1") // Set FTSubflow1 as the trajectory path. (Use in flow projects only.)

// Stop conditions

fc1.Timeout(10000) // Timeout is invalid in the trajectory mod.

fc1.AllowPosTol(1000) // Set the tolerant error to 1000mm

fc1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

fc1.FTReached("FZ", true, 2) // Axis FZ satisfies 2N

fc1.FTReached(true) // Enable the absolute value monitoring

Omron TM Collaborative Robot: TMScript Language Manual (I664) 613

int re = fc1.Start() // Start the force control motion. Zero out force sensor before

execution.

// Suppose FTSubflow1 comes with a few point nodes to loop the loop.

// Set axis FZ with force control 2N and the trajectory path as the subflow FTSubflow1. The robot

follows the nodes in the subflow to control and with force control concurrently. Since the subflow is

looping the loop, the robot motion, the force control, and the stop condition monitoring keep on. Not

until any stop conditions are comprehended will the force control motion be stopped, the the function

exit, and the result values after stopping be returned.

(4)

define

{

FTSensor fts1 = " TMFT300"

Force fc1 = "fts1"

int count = 0

}

main

{

fc1.FTSet("FZ", true, 1, 0) // Set axis FZ with force control 8N with PID 0

fc1.Frame(1) // Set the force control coordinate as tool

fc1.Trajectory(FTMotion()) //Set FTMotion() customized function as the trajectory path.

// Stop conditions

fc1.Timeout(10000) // Timeout is invalid in the trajectory mode.

fc1.AllowPosTol(1000) // Set the tolerant error to 1000mm

fc1.DInput("ControlBox", 0, "H") // When ControlBox DI0 is High

fc1.FTReached("FZ", true, 2) // Axis FZ satisfies 2N

fc1.FTReached(true) // Enable the absolute value monitoring

fc1.Condition(count++ > 200000) // conditional expression

int re = fc1.Start()

// Start the force control motion. Zero out force sensor before

execution.

Display(re)

}

void FTMotion()

{

while (true)

{

PTP("JPP",{15,0,90,0,90,0},50,200,100,false)

PTP("JPP",{15,0,75,0,90,0},50,200,100,false)

PTP("JPP",{-15,0,75,0,90,0},50,200,100,false)

PTP("JPP",{-15,0,90,0,90,0},50,200,100,false)

Sleep(10)

}

}

// Set axis FZ with force control 1N, PID 0, and the trajectory path as FTMotion() customized function.

The robot follows the contents of FTMotion() to control and with force control concurrently. Since this

function is looping the loop, the robot motion, the force control, and the stop condition monitoring

keep on. Not until any stop conditions are comprehended will the force control motion be stopped, the

function exit, and the result values after stopping be returned.

Authorized Distributor:
Kyoto, JAPAN Contact : www.ia.omron.com

Regional Headquarters

OMRON ASIA PACIFIC PTE. LTD.
438B Alexandra Road, #08-01/02 Alexandra
Technopark, Singapore 119968
Tel: (65) 6835-3011 Fax: (65) 6835-3011

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200
Hoffman Estates, IL 60169 U.S.A.
Tel: (1) 847-843-7900 Fax: (1) 847-843-7787

OMRON ROBOTICS AND SAFETY TECHNOLOGIES, INC.
4225 Hacienda Drive, Pleasanton, CA 94588 U.S.A.
Tel: (1) 925-245-3400 Fax: (1) 925-960-0590

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-6023-0333 Fax: (86) 21-5037-2388

OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31) 2356-81-300 Fax: (31) 2356-81-388

OMRON Corporation Industrial Automation Company

Cat. No. I664-E-04 0825 (1123)

©OMRON Corporation 2023-2025 All Rights Reserved.
In the interest of product improvement,
specifications are subject to change without notice.

19888-820 D

	1. Overview
	2. Expression
	2.1 Types
	2.2 Variables and Constants
	2.3 Array
	2.4 Operator Symbols
	2.5 Data Type Conversion
	2.6 Endianness and Conversion
	2.7 Warning

	3. Script Project Programming
	3.1 define
	3.2 main
	3.3 closestop
	3.4 errorstop
	3.5 Customized Function
	3.6 Comment
	3.7 Variable
	3.8 Multi-Line Input
	3.9 Conditional Statements
	3.9.1 if
	3.9.2 switch

	3.10 Loop Statements
	3.10.1 for
	3.10.2 while
	3.10.3 do while

	3.11 Branching Statements
	3.11.1 break
	3.11.2 continue
	3.11.3 return

	3.12 Thread
	3.12.1 ThreadRun()
	3.12.2 ThreadID()
	3.12.3 ThreadState()
	3.12.4 ThreadExit()

	4. General Functions
	4.1 Byte_ToInt16()
	4.2 Byte_ToInt32()
	4.3 Byte_ToFloat()
	4.4 Byte_ToDouble()
	4.5 Byte_ToInt16Array()
	4.6 Byte_ToInt32Array()
	4.7 Byte_ToFloatArray()
	4.8 Byte_ToDoubleArray()
	4.9 Byte_ToString()
	4.10 Byte_Concat()
	4.11 String_ToInteger()
	4.12 String_ToFloat()
	4.13 String_ToDouble()
	4.14 String_ToByte()
	4.15 String_IndexOf()
	4.16 String_LastIndexOf()
	4.17 String_DiffIndexOf()
	4.18 String_Substring()
	4.19 String_Split()
	4.20 String_Replace()
	4.21 String_Trim()
	4.22 String_ToLower()
	4.23 String_ToUpper()
	4.24 Array_Append()
	4.25 Array_Insert()
	4.26 Array_Remove()
	4.27 Array_Equals()
	4.28 Array_IndexOf()
	4.29 Array_LastIndexOf()
	4.30 Array_Reverse()
	4.31 Array_Sort()
	4.32 Array_SubElements()
	4.33 ValueReverse()
	4.34 GetBytes()
	4.35 GetString()
	4.36 GetToken()
	4.37 GetAllTokens()
	4.38 GetNow()
	4.39 GetNowStamp()
	4.40 GetVarValue()
	4.41 SetVarValue()
	4.42 Length()
	4.43 Ctrl()
	4.44 XOR8()
	4.45 SUM8()
	4.46 SUM16()
	4.47 SUM32()
	4.48 CRC16()
	4.49 CRC32()
	4.50 ListenPacket()
	4.51 ListenSend()
	4.52 VarSync()

	5. General Functions (Script)
	5.1 Exit()
	5.2 Pause()
	5.3 Resume()
	5.4 WaitFor()
	5.5 Sleep()
	5.6 Display()

	6. Math Functions
	6.1 abs()
	6.2 pow()
	6.3 sqrt()
	6.4 ceil()
	6.5 floor()
	6.6 round()
	6.7 random()
	6.8 sum()
	6.9 average()
	6.10 stdevp()
	6.11 stdevs()
	6.12 min()
	6.13 max()
	6.14 d2r()
	6.15 r2d()
	6.16 sin()
	6.17 cos()
	6.18 tan()
	6.19 asin()
	6.20 acos()
	6.21 atan()
	6.22 atan2()
	6.23 log()
	6.24 log10()
	6.25 norm2()
	6.26 dist()
	6.27 trans()
	6.28 inversetrans()
	6.29 applytrans()
	6.30 interpoint()
	6.31 changeref()
	6.32 points2coord()
	6.33 intercoord()
	6.34 coorshift()

	7. File Functions
	7.1 File_ReadBytes()
	7.2 File_ReadText()
	7.3 File_ReadLines()
	7.4 File_NextLine()
	7.5 File_NextEOF()
	7.6 File_WriteBytes()
	7.7 File_WriteText()
	7.8 File_WriteLine()
	7.9 File_WriteLines()
	7.10 File_Exists()
	7.11 File_Length()
	7.12 File_Delete()
	7.13 File_Copy()
	7.14 File_CopyImage()
	7.15 File_GetImage()
	7.16 File_Replace()
	7.17 File_GetToken()
	7.18 File_GetAllTokens()
	7.19 File_GetFiles()
	7.20 File_LogWrite()

	8. Serial Port Functions
	8.1 SerialPort Class
	8.2 com_open()
	8.3 com_close()
	8.4 com_read()
	8.5 com_read_string()
	8.6 com_write()
	8.7 com_writeline()

	9. Socket Functions
	9.1 Socket Class
	9.2 socket_open()
	9.3 socket_close()
	9.4 socket_read()
	9.5 socket_read_string()
	9.6 socket_send()
	9.7 socket_sendline()

	10. Manual Decision Functions
	10.1 MDecision Class
	10.1.1 Reset()
	10.1.2 Title()
	10.1.3 Description()
	10.1.4 Timeout()
	10.1.5 TimeoutDefaultCase()
	10.1.6 Case()
	10.1.7 Show()

	11. Parameterized Objects
	11.1 Point
	11.2 Base
	11.3 TCP
	11.4 VPoint
	11.5 IO
	11.6 Robot
	11.7 FT

	12. Robot Teach Class
	12.1 TPoint Class
	12.2 TBase Class
	12.2.1 GetValue()
	12.2.2 SetValue()
	12.2.3 ConvShift()

	12.3 TTCP Class

	13. Robot Motion & Vision Job Function
	13.1 QueueTag()
	13.2 WaitQueueTag()
	13.3 CheckQueueTag()
	13.4 StopAndClearBuffer()
	13.5 ChangeBase()
	13.6 ChangeTCP()
	13.7 ChangeLoad()
	13.8 PTP()
	13.9 Move_PTP()
	13.10 Line()
	13.11 Move_Line()
	13.12 Circle()
	13.13 PLine()
	13.14 Move_PLine()
	13.15 LineSingularity()
	13.16 CollisionCheck()
	13.17 PVTEnter()
	13.18 PVTExit()
	13.19 PVTPoint()
	13.20 PVTPause()
	13.21 PVTResume()
	13.22 PathOffset_Set()
	13.23 PathOffset_Get()
	13.24 PathOffset_IsEnabled()
	13.25 PathOffset_AlphaFilter()
	13.26 PathOffset_MaxOffset()
	13.27 Velocity()
	13.28 Position()
	13.29 SetTCPSpeedLimit()
	13.30 SetAccTable()
	13.31 GetAccTable()
	13.32 Vision_DoJob()
	13.33 Vision_DoJob_PTP()
	13.34 Vision_DoJob_Line()

	14. Vision Functions
	14.1 Vision_IsJobAvailable()
	14.2 Multi-Object Result Output and Flying Trigger/Inspection Tasks
	14.2.1 Vision_GetOutputArraySize()
	14.2.2 Vision_GetOutputArrayValue()

	14.3 Vision_GetTriggerJobOutputCount()
	14.4 Vision_GetTriggerJobOutputValue()

	15. External Script
	15.1 Listen Node
	15.2 Communication Protocol
	15.3 TMSCT
	15.4 TMSTA
	15.5 CPERR
	15.6 ScriptListen()
	15.7 ScriptExit()
	15.8 Priority Commands

	16. Modbus Functions
	16.1 ModbusTCP Class
	16.1.1 Preset()
	16.1.2 IODDPreset()

	16.2 ModbusRTU Class
	16.2.1 Preset()
	16.2.2 IODDPreset()

	16.3 modbus_open()
	16.4 modbus_close()
	16.5 modbus_read()
	16.6 modbus_read_int16()
	16.7 modbus_read_int32()
	16.8 modbus_read_float()
	16.9 modbus_read_double()
	16.10 modbus_read_string()
	16.11 modbus_write()

	17. TM Ethernet Slave
	17.1 GUI Setting
	17.2 Data Table
	17.3 Communication Protocol
	17.4 TMSVR
	17.4.1 Mode = 0 (the status the server responds to the client command processing)
	17.4.2 Mode = 1 BINARY
	17.4.3 Mode = 2 STRING
	17.4.4 Mode = 3 JSON
	17.4.5 Mode = 11 BINARY (Request read)
	17.4.6 Mode = 12 STRING (Request read)
	17.4.7 Mode = 13 JSON (Request read)

	17.5 svr_read()
	17.6 svr_write()

	18. Profinet Functions
	18.1 profinet_read_input()
	18.2 profinet_read_input_int()
	18.3 profinet_read_input_float()
	18.4 profinet_read_input_string()
	18.5 profinet_read_input_bit()
	18.6 profinet_read_output()
	18.7 profinet_read_output_int()
	18.8 profinet_read_output_float()
	18.9 profinet_read_output_string()
	18.10 profinet_read_output_bit()
	18.11 profinet_write_output()
	18.12 profinet_write_output_bit()

	19. EtherNet/IP Functions
	19.1 eip_read_input()
	19.2 eip_read_input_int()
	19.3 eip_read_input_float()
	19.4 eip_read_input_string()
	19.5 eip_read_input_bit()
	19.6 eip_read_output()
	19.7 eip_read_output_int()
	19.8 eip_read_output_float()
	19.9 eip_read_output_string()
	19.10 eip_read_output_bit()
	19.11 eip_write_output()
	19.12 eip_write_output_bit()

	20. EtherCAT Functions
	20.1 ethercat_read_input()
	20.2 ethercat_read_input_int()
	20.3 ethercat_read_input_float()
	20.4 ethercat_read_input_string()
	20.5 ethercat_read_input_bit()
	20.6 ethercat_read_output()
	20.7 ethercat_read_output_int()
	20.8 ethercat_read_output_float()
	20.9 ethercat_read_output_string()
	20.10 ethercat_read_output_bit()
	20.11 ethercat_write_output()
	20.12 ethercat_write_output_bit()

	21. Real-Time Remote Server
	21.1 GUI Setting
	21.2 Communication Protocol
	21.3 TMRTS
	22.3.1 Mode = 0 (the server status response to the client command processing)
	22.3.2 Mode = 1 BINARY
	22.3.3 Mode = 7 START/STOP Data Streaming
	22.3.4 Mode = 8 SET Streaming Frequency
	22.3.5 Mode = 9 SET Streaming Data

	21.4 TMRTC
	22.4.1 Mode = 0 (the server status response to the client command processing)
	22.4.2 Mode = 1 BINARY
	22.4.3 Mode = 7 START/STOP Motion Control
	22.4.4 Mode = 8 SET Motion Control Settings

	22. Compliance Functions
	22.1 Compliance Class
	23.1.1 Reset()
	23.1.2 Frame()
	23.1.3 HighResistance()
	23.1.4 Single()
	23.1.5 Teach()
	23.1.6 Multiple()
	23.1.7 Impedance()
	23.1.8 Timeout()
	23.1.9 DInput()
	23.1.10 AInput()
	23.1.11 Condition()
	23.1.12 Start()
	23.1.13 Stop()

	23. TouchStop Functions
	23.1 TouchStop class
	24.1.1 Reset()
	24.1.2 Frame()
	24.1.3 HighResistance()
	24.1.4 BrakeDistance()
	24.1.5 RecordPosPoint()
	24.1.6 Single()
	24.1.7 Teach()
	24.1.8 AdvSet()
	24.1.9 Timeout()
	24.1.10 DInput()
	24.1.11 AInput()
	24.1.12 Condition()
	24.1.13 Resisted()
	24.1.14 FTReached()
	24.1.15 Start()
	24.1.16 Stop()
	24.1.17 GetStoppedPos()
	24.1.18 GetTriggeredPos()
	24.1.19 GetMovingDistance()

	24. Force Control Functions
	24.1 FTSensor Class
	25.1.1 Open()
	25.1.2 Close()

	24.2 Force Class
	25.2.1 Reset()
	25.2.2 Frame()
	25.2.3 Distance()
	25.2.4 ProtectionSpeed()
	25.2.5 FTSet()
	25.2.6 Trajectory()
	25.2.7 Timeout()
	25.2.8 AllowPosTol()
	25.2.9 DInput()
	25.2.10 AInput()
	25.2.11 FTReached()
	25.2.12 Condition()
	25.2.13 Start()
	25.2.14 Stop()

