

Machine Automation Control ler NX1P

Practices Guide
for NX1P Programming

NX1P2-[][][][]

SYSMAC-SE20[][]

 P122-E1-02

2

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or
otherwise, without the prior written permission of OMRON.
No patent liability is assumed with respect to the use of the information contained herein. Moreover,
because OMRON is constantly striving to improve its high-quality products, the information
contained in this guide is subject to change without notice. Every precaution has been taken in the
preparation of this guide. Nevertheless, OMRON assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

© OMRON, 2017

Trademarks
• Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan and

other countries for OMRON factory automation products.
• Windows is either a registered trademark or trademark of Microsoft Corporation in the United States

and/or other countries.
• EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation

GmbH, Germany
• EtherNet/IP™ is a trademark of ODVA.
• Celeron, Intel, and Intel Core are the trademarks of Intel Corporation in the USA and other countries.
• Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.
Other company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

3

Introduction
Thank you for purchasing an NX-series NX1P2 CPU Unit and the Sysmac Studio.
This NX1P Programming Practices Guide for Beginners (hereafter referred to as “this Guide”)
describes the differences in programming between the NX1P and traditional controllers and the
programming procedures using the Sysmac Studio that are required to use an NX1P2 CPU
Unit for the first time. You can perform the procedures that are presented in this Guide to
quickly gain a basic understanding of the NX1P2 CPU Units and the Sysmac Studio. This
Guide does not contain safety information and other details that are required for actual use.
Thoroughly read and understand the manuals for all of the devices that are used in this Guide
to ensure that the system is used safely. Review the entire contents of these materials,
including all safety precautions, precautions for safe use, and precautions for correct use.
For the startup and operating instructions for motion control, refer to the NJ/NX-series Startup
Guide for Motion Control (Cat. No. W514).

Intended Audience
This Guide is intended for the following personnel, who must also have knowledge of electrical
systems (an electrical engineer or the equivalent).
• Personnel in charge of introducing FA systems
• Personnel in charge of designing FA systems
• Personnel in charge of installing and maintaining FA systems

Applicable Products
This Guide covers the following products.
• NX1P2 CPU Units of NX-series Machine Automation Controllers
• Automation Software Sysmac Studio

Special Information
The icons that are used in this Guide are described below.
 Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and
performance.

 Additional Information
Additional information to read as required.
This information is provided to increase understanding or make operation easier.

4

Terms and Conditions Agreement
Warranty, Limitations of Liability

Warranties

• Exclusive Warranty
Omron’s exclusive warranty is that the Products will be free from defects in materials and
workmanship for a period of twelve months from the date of sale by Omron (or such other
period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.

• Limitations
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED
THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses
based on infringement by the Products or otherwise of any intellectual property right.

• Buyer Remedy
Omron’s sole obligation hereunder shall be, at Omron’s election, to (i) replace (in the form
originally shipped with Buyer responsible for labor charges for removal or replacement thereof)
the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer
an amount equal to the purchase price of the non-complying Product; provided that in no event
shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses
regarding the Products unless Omron’s analysis confirms that the Products were properly
handled, stored, installed and maintained and not subject to contamination, abuse, misuse or
inappropriate modification. Return of any Products by Buyer must be approved in writing by
Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability
or the results from the use of Products in combination with any electrical or electronic
components, circuits, system assemblies or any other materials or substances or environments.
Any advice, recommendations or information given orally or in writing, are not to be construed
as an amendment or addition to the above warranty.

See http://www.omron.com/global/ or contact your Omron representative for published
information.

Limitation on Liability; Etc
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS
IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN
CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the
Product on which liability is asserted.

5

Application Considerations

Suitability of Use
Omron Companies shall not be responsible for conformity with any standards, codes or regulations
which apply to the combination of the Product in the Buyer’s application or use of the Product. At
Buyer’s request, Omron will provide applicable third party certification documents identifying ratings
and limitations of use which apply to the Product. This information by itself is not sufficient for a
complete determination of the suitability of the Product in combination with the end product,
machine, system, or other application or use. Buyer shall be solely responsible for determining
appropriateness of the particular Product with respect to Buyer’s application, product or system.
Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED
TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products
Omron Companies shall not be responsible for the user’s programming of a programmable
Product, or any consequence thereof.

Disclaimers
Performance Data

Data presented in Omron Company websites, catalogs and other materials is provided as a
guide for the user in determining suitability and does not constitute a warranty. It may represent
the result of Omron’s test conditions, and the user must correlate it to actual application
requirements. Actual performance is subject to the Omron’s Warranty and Limitations of
Liability.

Change in Specifications
Product specifications and accessories may be changed at any time based on improvements
and other reasons. It is our practice to change part numbers when published ratings or features
are changed, or when significant construction changes are made. However, some
specifications of the Product may be changed without any notice. When in doubt, special part
numbers may be assigned to fix or establish key specifications for your application. Please
consult with your Omron’s representative at any time to confirm actual specifications of
purchased Product.

6

Errors and Omissions
Information presented by Omron Companies has been checked and is believed to be accurate;
however, no responsibility is assumed for clerical, typographical or proofreading errors or
omissions.

Automation Software Sysmac Studio
 WARRANTY
• The warranty period for the Software is one year from the date of purchase, unless

otherwise specifically agreed.
• If the User discovers defect of the Software (substantial non-conformity with the manual),

and return it to OMRON within the above warranty period, OMRON will replace the Software
without charge by offering media or download from OMRON’s website. And if the User
discovers defect of media which is attributable to OMRON and return it to OMRON within
the above warranty period, OMRON will replace defective media without charge. If OMRON
is unable to replace defective media or correct the Software, the liability of OMRON and the
User’s remedy shall be limited to the refund of the license fee paid to OMRON for the
Software.

 LIMITATION OF LIABILITY
• THE ABOVE WARRANTY SHALL CONSTITUTE THE USER’S SOLE AND EXCLUSIVE

REMEDIES AGAINST OMRON AND THERE ARE NO OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTY OF
MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT,
OMRON WILL BE LIABLE FOR ANY LOST PROFITS OR OTHER INDIRECT,
INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES

• ARISING OUT OF USE OF THE SOFTWARE. OMRON SHALL HAVE NO LIABILITY FOR
DEFECT OF THE SOFTWARE BASED ON MODIFICATION OR ALTERNATION TO THE
SOFTWARE BY THE USER OR ANY THIRD PARTY.

• OMRON SHALL HAVE NO LIABILITY FOR SOFTWARE DEVELOPED BY THE USER OR
ANY THIRD PARTY BASED ON THE SOFTWARE OR ANY CONSEQUENCE THEREOF.

 APPLICABLE CONDITIONS
USER SHALL NOT USE THE SOFTWARE FOR THE PURPOSE THAT IS NOT PROVIDED
IN THE ATTACHED USER MANUAL.

 CHANGE IN SPECIFICATION
The software specifications and accessories may be changed at any time based on
improvements and other reasons.

 ERRORS AND OMISSIONS
The information in this manual has been carefully checked and is believed to be accurate;
however, no responsibility is assumed for clerical, typographical, or proofreading errors, or
omissions.

7

Precautions
• When building a system, check the specifications for all devices and equipment that will

make up the system and make sure that the OMRON products are used well within their
rated specifications and performances. Safety measures, such as safety circuits, must be
implemented in order to minimize the risks in the event of a malfunction.

• Thoroughly read and understand the manuals for all devices and equipment that will make
up the system to ensure that the system is used safely. Review the entire contents of these
materials, including all safety precautions, precautions for safe use, and precautions for
correct use.

• Confirm all regulations, standards, and restrictions that the system must adhere to.

Software Licenses and Copyrights
This product incorporates certain third party software. The license and copyright information
associated with this software is available at http://www.fa.omron.co.jp/nj_info_e/.

8

Related Manuals

The followings are the manuals related to this manual. Use these manuals for reference.

Manual name Cat. No. Model Application Description
NX-series
NX1P2 CPU Unit
Hardware User's
Manual

W578 NX1P2- □□□□ Learning the basic
specifications of the
NX1P2 CPU Units,
including introductory
information,
designing, installation,
and maintenance.
Mainly hardware
information is
provided.

An introduction to the entire NX1P2
system is provided along with the
following information on the CPU Unit.
• Features and system configuration
• Introduction
• Part names and functions
• General specifications
• Installation and wiring
• Maintenance and inspection

NX-series
NX1P2 CPU Unit
Built-in I/O and
Option Board
User's Manual

W579 NX1P2- □□□□ Learning about the
details of functions
only for an NX-series
NX1P2 CPU Unit and
an introduction of
functions for an
NJ/NX-series CPU
Unit.

Of the functions for an NX1P2 CPU
Unit, the following information is
provided.
• Built-in I/O
• Serial Communications Option Boards
• Analog I/O Option Boards
An introduction of following functions for
an NJ/NX-series CPU Unit is also
provided.
• Motion control functions
• EtherNet/IP communications functions
• EtherCAT communications functions

NJ/NX-series
CPU Unit
Software User’s
Manual

W501 NX701- □□□□
NJ501- □□□□
NJ301- □□□□
NJ101- □□□□
NX1P2- □□□□

Learning how to
program and set up
an NJ/NX-series CPU
Unit.
Mainly software
information is
provided.

The following information on a
Controller built with an NJ/NX-series
CPU Unit.
• CPU Unit operation
• CPU Unit features
• Initial setting
• Programming based on IEC 61131-3

language specifications
Use this manual together with the
NX-series NX1P2 CPU Unit Hardware
User's Manual (Cat. No. W578).

NJ/NX-series
Instructions
Reference Manual

W502 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Learning detailed
specifications on the
basic instructions of
an NJ/NX-series CPU
Unit.

The instructions in the instruction set
(IEC 61131-3 specifications) are
described. When programming, use this
manual together with the NJ-series CPU
Unit Hardware User's Manual (Cat. No.
W500) and NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501).

NJ/NX-series
CPU Unit
Motion Control
User’s Manual

W507 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Learning about
motion control
settings and
programming
concepts.

The settings and operation of the CPU
Unit and programming concepts for
motion control are described. Use this
manual together with the NJ-series CPU
Unit Hardware User's Manual (Cat. No.
W500) and NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501).

9

Manual name Cat. No. Model Application Description
NJ/NX-series
Motion Control
Instructions
Reference Manual

W508 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Learning about the
specifications of the
motion control
instructions.

The motion control instructions are
described. When programming, use this
manual together with the NJ-series CPU
Unit Hardware User's Manual (Cat. No.
W500), NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501),and NJ/NX-series CPU Unit
Motion Control User’s Manual (Cat. No.
W507).

NJ/NX-series

CPU Unit
Built-in
EtherCAT Port
User’s Manual

W505 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Using the built-in
EtherCAT port on an

NJ/NX-series CPU

Unit.

Information on the built-in EtherCAT
port is provided. This manual provides
an introduction and information on the
configuration, features, and setup. Use
this manual together with the NJ-series
CPU Unit Hardware User's Manual (Cat.
No. W500) and NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501).

NJ/NX-series

CPU Unit
Built-in
EtherNet/IP Port
User’s Manual

W506 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Using the built-in
EtherNet/IP port on an
NJ/NX-series CPU
Unit.

Information on the built-in EtherNet/IP
port is provided. Information on the
basic setup, tag data links, and other
features is provided. Use this manual
together with the NJ-series CPU Unit
Hardware User's Manual (Cat. No.
W500) and NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501).

NJ/NX-series
Troubleshooting
Manual

W503 NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
NX1P2-□□□□

Learning about the
errors that may be
detected in an
NJ/NX-series
Controller.

Concepts on managing errors that may
be detected in an NJ/NX-series
Controller and information on individual
errors are described. Use this manual
together with the NJ-series CPU Unit
Hardware User's Manual (Cat. No.
W500) and NJ/NX-series CPU Unit
Software User's Manual (Cat. No.
W501).

Sysmac Studio
Version 1
Operation Manual

W504 SYSMAC-SE2 □□□ Learning about the
operating procedures
and functions of the
Sysmac Studio.

The operating procedures of the
Sysmac Studio is described.

NJ/NX-series
Startup Guide for
Motion Control

W514 NX1P2-□□□□
NX701-□□□□
NJ501-□□□□
NJ301-□□□□
NJ101-□□□□
SYSMAC-SE20□□
R88M-1□
R88D-1SN□-ECT

Learning startup
procedures and
Sysmac Studio
operating procedures
for someone that will
use NJ/NX series
motion control
functions for the first
time.

The operations from hardware
assembly through debugging for axis
parameter settings, simple one-axis
positioning, and two-axis linear
interpolation are described.

10

Revision History

A manual revision code appears as a suffix to the catalog number on the front and back covers
of the manual.

Revision code Date Revised content
01 September 2017 Original production
02 December 2018 Correction of mistakes

Cat. No. P122-E1-02
Revision code

11

CONTENTS

Introduction ...3

Terms and Conditions Agreement ..4

Precautions ...7

Related Manuals ...8

Revision History ... 10

1 Programming the NX1P .. 14

1-1 Overview ... 15

1-2 Features of NX1P Programming ... 16
1-2-1 Challenges in Development and Solutions Using the NX1P 16
1-2-2 Easy to Add Programs ... 17
1-2-3 Easy Motion Programming .. 18
1-2-4 Structured Text Language for Easy Mathematical Processing 19

1-3 Programming with Variables ... 20
1-3-1 Programming the NX1P ... 20
1-3-2 Data Types .. 23
1-3-3 Benefit of Using Data Types .. 24
1-3-4 International Standard IEC 61131-3 .. 25

1-4 Programming Software ... 26
1-4-1 Programming Software Sysmac Studio ... 26
1-4-2 Simulations .. 27

2 Before You Begin .. 28

2-1 System Configuration and Devices ... 29
2-1-1 Overview .. 29
2-1-2 Wiring ... 30

2-2 Installing the Sysmac Studio ... 32
2-2-1 Installing the Sysmac Studio ... 32
2-2-2 Requirements for Installation ... 32

3 Ladder Programming .. 33

3-1 Programming with the Sysmac Studio .. 35
3-1-1 Programming Procedure ... 35
3-1-2 Creating a Project .. 35

12

3-2 Parts of the Sysmac Studio Window ... 37
3-2-1 Screen for Configurations and Setup .. 37
3-2-2 Screen for Programming ... 37

3-3 Assigning Variables to Terminals ... 38
3-3-1 Variable Names for Terminal Numbers ... 38
3-3-2 I/O Map Setting .. 39
3-3-3 Checking Wiring ... 41

3-4 Ladder Programming .. 42
3-4-1 Inserting Circuit Parts .. 42
3-4-2 Keyboard Mapping ... 42
3-4-3 Rules .. 43

3-5 Example of a Basic Ladder Program .. 44
3-5-1 Practice of Programming a Ladder Diagram 44
3-5-2 Writing the Algorithm ... 45
3-5-3 Program Check .. 47
3-5-4 Saving the Program ... 48
3-5-5 Checking Operation on the NX1P ... 49
3-5-6 Checking Operation on the Simulator .. 50
3-5-7 Example of a Program Error (Offline) .. 52
3-5-8 Example of an Error Occurred During Operation 52

3-6 Example of a Ladder Program Using a Timer Instruction 53
3-6-1 Self-holding Rung .. 53
3-6-2 On-Delay Timer (TON) Instruction ... 54
3-6-3 Exercise: Energy Saving Escalator ... 58
3-6-4 Checking the Operation of the Program .. 59
3-6-5 Checking the Operation of the Program (Watch Tab Page) 60

3-7 Example of a Ladder Program Using Date and Time 62
3-7-1 Programming the NX1P Using Date and Time 62
3-7-2 Exercise: Continuous Operating Time of Escalator 62

3-8 Fundamentals of Programming to Reduce Development Time 66
3-8-1 POUs (Program Organization Units) ... 66
3-8-2 Programs and Execution Priorities (Tasks) 66
3-8-3 Functions (FUNs) and Function Blocks (FBs) 68
3-8-4 Sections ... 69
3-8-5 Types of Variables ... 70

4 Creating Programs to Handle Data ... 73

4-1 Variables Used for Data Processing ... 74
4-1-1 Arrays .. 74

4-2 Programming Exercise ... 75
4-2-1 Application Example .. 75
4-2-2 Programming ... 75
4-2-3 Creating a Project .. 76
4-2-4 Configuring Analog Option Board Settings .. 77
4-2-5 Assigning Variables to the Option Board and Input Terminal 77
4-2-6 Program Example .. 78

13

4-2-7 Creating an Array .. 79
4-2-8 Entering Programming Code ... 80
4-2-9 Checking the Operation of the Program .. 81
4-2-10 Referring Values of Array Variables .. 83

5 Motion FB Programming ... 84

5-1 Motion FB Programming ... 85
5-1-1 Motion FB Programming .. 85
5-1-2 Programming Procedure ... 85

5-2 Adding a Servo Drive and Setting the Parameters ... 86
5-2-1 Registering a Servo Drive.. 86
5-2-2 Registering the Axis ... 87
5-2-3 Setting the Axis Parameters .. 87

5-3 Creating a Program .. 89
5-3-1 Overview of the Ladder Program .. 89
5-3-2 Motion FBs to Use ... 89
5-3-3 Writing the Ladder Program .. 90

5-4 Data Tracing ... 93
5-4-1 Checking the Operation with Data Traces ... 93

5-5 3D Simulation ... 95
5-5-1 Starting 3D Simulation ... 95

6 ST Programming ... 97

6-1 Overview of ST Programming ... 98
6-1-1 Advantages of ST Language ... 98
6-1-2 ST Programs Including Constructs .. 98
6-1-3 Structure of ST and Example .. 99
6-1-4 Operators ... 99

6-2 NX1P Programming in ST .. 100
6-2-1 Writing an ST Program for NX1P .. 100

6-3 ST Programming Exercise .. 101
6-3-1 Exercise of Numerical Calculation Programming 101
6-3-2 Programming Procedures.. 102
6-3-3 Checking the Program ... 104
6-3-4 Checking the Operation of the ST Program 104

14

1
1 Programming the NX1P

This section describes the fundamental elements of programming an NX1P
Machine Automation Controller.

1-1 Overview .. 1-15

1-2 Features of NX1P Programming .. 1-16
1-2-1 Challenges in Development and Solutions Using the NX1P 1-16
1-2-2 Easy to Add Programs ... 1-17
1-2-3 Easy Motion Programming .. 1-18
1-2-4 Structured Text Language for Easy Mathematical Processing 1-19

1-3 Programming with Variables .. 1-20
1-3-1 Programming the NX1P ... 1-20
1-3-2 Data Types .. 1-23
1-3-3 Benefit of Using Data Types .. 1-24
1-3-4 International Standard IEC 61131-3 .. 1-25

1-4 Programming Software .. 1-26
1-4-1 Programming Software Sysmac Studio ... 1-26
1-4-2 Simulations .. 1-27

15

1-1 Overview

The photo below shows an NX1P2 CPU Unit. Push-In Plus terminal blocks are used to
connect a power supply and I/O devices.
EtherCAT and EtherNet/IP ports are built in.

Features
1. The built-in EtherCAT port and advanced motion control make machines faster and more

precise
• Up to four axes of motion control
• Electronic cams and interpolation increase machine speed and precision
• EtherCAT simplifies the wiring to up to eight servo systems including for single-axis

position control
2. Networks for IoT

• EtherNet/IP enables communications with a host PC and data links between
NJ/NX-series Controllers and CJ-series PLCs

3. Push-In Plus terminal blocks
• Push-In Plus connection reduces wiring time when a control panel is built

The environment for programming the NX1P makes development faster and easier.
This Guide describes the features of NX1P programming and how to program the NX1P
using the Sysmac Studio.

Push-In Plus
terminal
block

16

1-2 Features of NX1P Programming
1-2-1 Challenges in Development and Solutions Using the NX1P

As manufacturers need to improve productivity and quality, machines are getting more
advanced and more complex. Engineers are facing challenges such as reducing
engineering costs, improving programming efficiency, and minimizing training costs.

The NX1P can offer solutions to each challenge.

The next section gives more detailed explanation about programming the NX1P.

17

1-2-2 Easy to Add Programs
Previously

When adding a program, the user needed to check whether the I/O addresses and memory
area used for the additional program had already been used. If they were used,
modifications and debugging were required. These tasks reduced development productivity.

 Existing program Program to add (reused)

Programming the NX1P

When a program is reused, the NX1P automatically allocates memory addresses in the
memory area for variables. The user does not need to worry about addresses when adding or
modifying the program. Debugging time can also be reduced.

 Existing program Program to add (reused)

Memory area used for
existing program

Memory area used for
program to add

The same area is used

Memory area allocated for
variables of existing program

Memory area allocated for
variables of program to add

18

1-2-3 Easy Motion Programming
Previously

The traditional PLC (e.g., CJ2) used three different software applications for Position Control
Unit settings, ladder programming, and Servo System settings. The user had to create a
program while monitoring and tuning the settings.

Programming the NX1P

Operations such as turning ON the Servo, homing, and positioning can be described in one
program by using motion FBs.
Processes are executed from top to bottom, which makes the program easy to read.
The Sysmac Studio integrating ladder programming, motion, and Servo configuration
facilitates positioning control. Simple monitoring and modification!

19

1-2-4 Structured Text Language for Easy Mathematical Processing
Structured Text Language

The structured text (ST) language is a high-level structured language, similar to Pascal. It is
ideal for mathematical processing and nested conditional branching that are difficult to write
in ladder diagrams.

Features of ST Language

You can create easy to read programs by using two different programming languages,
ladder diagram language for sequence control and ST language for mathematical
processing.

Example: Calculating the area of a trapezoid
(Top length + bottom length) * height / 2

The ST language simplifies this code.

You can use ST as an element in a ladder diagram or create a program in ST only.

ST is ideal for:

1. Arithmetic operations and function calculation
+, -, *, /, SIN, COS, TAN, etc.

2. Loop and condition constructs
IF THEN, FOR NEXT, etc.

3. Text string processing
Joining, extracting, searching, and replacing text strings

The next section gives more detailed explanation about programming with variables.

20

1-3 Programming with Variables
1-3-1 Programming the NX1P

Variables are names defined by the user. They are used for programming the NX1P
although addresses are used for the CJ2 and other traditional PLCs.

Programming the NX1P

Programming with variables eliminates the need to remember addresses and makes
programming faster and easier.
Programming with variables means that you can create programs using the names on your
control panel or touchscreen as shown below.

Programming Traditional PLCs

I/O numbers and timer numbers (0.00 and T0000 shown in the figure below) are used to
program traditional PLCs such as CJ2.
For most PLCs, comments can be added to the numbers in order to easily understand what
the numbers mean. Omron calls the comment “I/O comment”.

21

Difference between Programming with Addresses and with Variables

This section shows the difference between two programming methods.
The CJ2 program (created with the CX-Programmer) and NX1P program (created with the
Sysmac Studio) are shown below.

Two programs shown above were written to perform the same operation.
To program the NX1P, each variable (e.g., SW1 and L1) must be assigned in the I/O Map to
the corresponding input/output terminal to which the physical device is connected.

Variables used in the program are linked with actual I/O (input/output terminals of the NX1P
in this example). You can change I/O assignments by simply changing the terminal number
in the I/O Map. The benefit of programming with variables is that there is no need to change
the program itself.

CJ2 program example

NX1P program example

NX1P

I/O Map

22

Previously

When changing the Unit configuration, you had to change addresses in the ladder program
because the addresses assigned to the I/O channels were changed.

Programming the NX1P

Even when adding Units, you just assign variables to new I/O ports in the I/O Map without
changing the program.

Addresses are changed

Adding
a Unit

Change all related
addresses in the
ladder program

Adding
a Unit

Just assign the device
variables to the I/O
ports of the added
Unit

I/O Map for NX1P

23

1-3-2 Data Types
For example, you define a variable called L1 (meaning the 1st lamp). It is clear that L1
contains ON/OFF data because L1 is a lamp.
However, if you define a variable called Data1, Data1 may contain a decimal number,
decimal point number, or text string.
The data type defines the type of data that is expressed by a variable.
A variable is a container for data with a name and data type.

 Variable = (Name) + (Data type)

Examples of Data Types

The table below lists the data types used for the NX1P. The BOOL data type is used for
ON/OFF data, the INT data type for decimal integers, and the STRING data type for text
strings.
Although both the INT and DINT data types represent decimal integers, they have different
ranges of values.
The WORD data type for bit strings, the DATE_AND_TIME data type for date and time, and
other data types can also be used.

Classification Used for Data type Range of values Notation

Boolean ON/OFF status
of inputs and
outputs

BOOL 0 to 1 ・1 or 0
・TRUE or FALSE

Decimal
number
(integer)

Numeric
operation

Signed INT -32768 to +32767 +30000, -20000

DINT -2147483648 to
+2147483647

+12345678, -20000000

Unsigned UINT 0 to 65535 60000

UDINT 0 to 4294967295 20000000

Floating-point
number

Real number REAL Single-precision
floating-point values

0.15625

LREAL Double-precision
floating-point values

1.0000000000000002

Text string Text string
displayed on
HMI

STRING Text strings (UTF-8)
Approx. 2,000 bytes

‘OMRON’
‘Failure rate’

Programming
using the name

Defines the range and type (e.g., integer,
real number, and text string) of data

24

1-3-3 Benefit of Using Data Types
When special instructions are used for a traditional PLC such as CJ2, different instructions
must be used for different types of data.
With the NX1P, operands of special instructions are specified with variables. As the
variables contain data types, there is no need to use different instructions for different data
types.
Even when the data length is changed from 16 bits to 32 bits, all you have to do is change
the data type. You don’t need to change the program or allocate memory.

The concepts of “programming with variables” and “data types” based on the international
standard IEC 61131-3 are rapidly spreading.

● CJ2 or traditional PLC

● NX1P

Different special instructions for
different types or lengths of data.
MOV, MOVL, MOVF, etc.

MOVE instruction only.
Specify the appropriate data types for
move source In and move destination
Out when the type or length of data is
changed.
Move 16-bit value ⇒ INT
Move 32-bit value ⇒ DINT
Move floating-point value ⇒ REAL

25

1-3-4 International Standard IEC 61131-3
IEC 61131-3

IEC 61131-3*1 is an international standard that is initially published in 1993.
• Manufacturer and hardware-independent
• Reusable software components
• Five programming languages for a variety of purposes and skill levels
*1. IEC (International Electrotechnical Commission)

Five programming languages according to IEC 61131-3

• IL (Instruction List): A low-level text language similar to assembly
• LD (Ladder Diagram): A graphical language written in a form similar to electrical circuits
• ST (Structured Text): A high-level structured language similar to Pascal
• FBD (Function Block Diagram):

A graphical language to describe the function as a set of elementary blocks
• SFC (Sequential Function Chart):

A graphical language used to program processes that can be split into steps

The NX1P supports LD and ST.

 Adoption of the IEC 61131-3 standard

The adoption of the IEC 61131-3 standard is widespread from Europe and North
America to Asia.
The NX1P support programming languages based on IEC 61131-3. Engineers can be
trained easily thanks to familiar programming languages.

26

1-4 Programming Software
1-4-1 Programming Software Sysmac Studio

The Sysmac Studio

The Sysmac Studio provides an integrated development environment to configure, program,
debug, and maintain NJ/NX-series Machine Automation Controllers.

Features

1. One software integrates configuration, programming and monitoring
2. Programming with variables. Supports the ladder and ST languages and FBs*1

based on IEC 61131-3
3. PLCopen function blocks for easy programming of complex motion profiles, and

Cam Editor for quick implementation of cam motion profiles
4. Integrated simulation and debugging

Motion trajectories in 3D can be pre-tested, and simulation of programs can be
performed. This reduces set-up and tuning time.

*1. ST language (Structured Text language), FB (Function Block)

Programming Motion control

HMI Vision sensors

Safety Simulation

27

1-4-2 Simulations
The Sysmac Studio provides a variety of simulations.
The Simulator in the Sysmac Studio allows you to test programs without connecting physical
devices.

 1. Check the operations of a program

 2. Monitor variables in the Watch Tab Page without connecting devices

3. Check a motion program by viewing the changes of positions and velocities sampled
by data tracing

4. Check motion trajectories by performing 3D motion monitoring, without connecting
physical devices

28

2
2 Before You Begin

This section describes the process of hardware mounting and wiring and the
installation of the Sysmac Studio.

2-1 System Configuration and Devices .. 2-29
2-1-1 Overview .. 2-29
2-1-2 Wiring ... 2-30

2-2 Installing the Sysmac Studio .. 2-32
2-2-1 Installing the Sysmac Studio ... 2-32
2-2-2 Requirements for Installation ... 2-32

29

2-1 System Configuration and Devices
2-1-1 Overview

Connect a Power Supply, Pushbutton Switches, and Indicators to the NX1P and create a
ladder program in Section 3 Ladder Programming.

Automation Software
Sysmac Studio
Standard Edition
Version 1.17 or higher

Machine Automation
Controller
NX1P

Ethernet cable
(100Base-TX/10Base-T)

SYSMAC-SE200D
(DVD only)
SYSMAC-SE201L
(1 license)

NX1P2-□□□□ -

Pushbutton Switch Indicator Power Supply
A22NL etc. M22N etc. S8VK-S06024 etc.

The physical devices such as NX1P, Pushbutton Switches, and Indicators will help you
understand programming concepts.
Even if there is no physical device, you can check operation using the Simulator in the
Sysmac Studio.
Section 4, 5, and 6 explain about simulations.

30

2-1-2 Wiring
Wiring Pushbutton Switches

Wire Pushbutton Switches to the NX1P as shown below.

Wiring Indicators

31

Push-In Plus Terminal Blocks

A push-in terminal block allows you to connect wires (e.g. ferrule) by just pushing them in.
Reducing wiring work can greatly reduce the time required to build control panels.
Push-In Plus Terminal Blocks were independently developed by Omron for easier wire
insertion and firmer wire holding ability than standard push-in terminal blocks.

You can connect and remove a wire (solid or ferrule) to/from a Push-In Plus Terminal Block
by following the procedure below. (Refer to the manual for connection and removal of a
stranded wire)

■ Connecting a wire
Just push the wire into the terminal block until stopping. When connecting a stranded wire,
use a ferrule, or insert the wire after loosening the clamp spring with a tool and then remove
the tool.

■ Removing a wire
Press a flat-blade screwdriver diagonally into the release hole to loosen the clamp spring
and then remove the wire. Remove the flat-blade screwdriver.

Held securely with
clamp spring

Flat-blade
screwdriver

Remove the
screwdriver

32

2-2 Installing the Sysmac Studio
2-2-1 Installing the Sysmac Studio

The Sysmac Studio is the support software to configure, program, debug, and simulate
NJ/NX-series Controllers.

Use the following procedure to install the Sysmac Studio on your computer.

1. Set the Sysmac Studio installation disk into the DVD-ROM drive.

The setup program is started automatically and the Select Setup Language Dialog Box is
displayed.

2. Select the language to use, and then click the OK Button.
The Sysmac Studio Setup Wizard is started.

3. Follow the wizard to install the Sysmac Studio.
4. Restart your computer after the Sysmac Studio has been successfully installed.

2-2-2 Requirements for Installation
The system requirements for the Sysmac Studio are given in the following table.

OS CPU RAM Display

Windows 7
32-bit or 64-bit edition
Windows 8
32-bit or 64-bit edition
Windows 8.1
32-bit or 64-bit edition
Windows 10
32-bit or 64-bit edition

Minimum IBM AT or compatible with
Intel® Celeron® processor 540
(1.8 GHz)

2 GB XGA
1,024 x 768
16 million
colors

Recommended IBM AT or compatible with
Intel® Core™ i5 M520
processor (2.4 GHz) or the
equivalent

4 GB
min.

WXGA
1,280 × 800
16 million
colors

Precautions for Correct Use

When the CX-One version 4 or lower has been installed, uninstall it before installing
the Sysmac Studio.

33

3
3 Ladder Programming

This section describes how to write ladder programs using the Sysmac Studio.

3-1 Programming with the Sysmac Studio ... 3-35
3-1-1 Programming Procedure ... 3-35
3-1-2 Creating a Project .. 3-35

3-2 Parts of the Sysmac Studio Window .. 3-37
3-2-1 Screen for Configurations and Setup .. 3-37
3-2-2 Screen for Programming ... 3-37

3-3 Assigning Variables to Terminals .. 3-38
3-3-1 Variable Names for Terminal Numbers ... 3-38
3-3-2 I/O Map Setting .. 3-39
3-3-3 Checking Wiring ... 3-41

3-4 Ladder Programming ... 3-42
3-4-1 Inserting Circuit Parts .. 3-42
3-4-2 Keyboard Mapping ... 3-42
3-4-3 Rules .. 3-43

3-5 Example of a Basic Ladder Program ... 3-44
3-5-1 Practice of Programming a Ladder Diagram 3-44
3-5-2 Writing the Algorithm ... 3-45
3-5-3 Program Check .. 3-47
3-5-4 Saving the Program ... 3-48
3-5-5 Checking Operation on the NX1P ... 3-49
3-5-6 Checking Operation on the Simulator .. 3-50
3-5-7 Example of a Program Error (Offline) .. 3-52
3-5-8 Example of an Error Occurred During Operation 3-52

3-6 Example of a Ladder Program Using a Timer Instruction 3-53
3-6-1 Self-holding Rung .. 3-53

34

3-6-2 On-Delay Timer (TON) Instruction ... 3-54
3-6-3 Exercise: Energy Saving Escalator ... 3-58
3-6-4 Checking the Operation of the Program .. 3-59
3-6-5 Checking the Operation of the Program (Watch Tab Page) 3-60

3-7 Example of a Ladder Program Using Date and Time 3-62
3-7-1 Programming the NX1P Using Date and Time 3-62
3-7-2 Exercise: Continuous Operating Time of Escalator 3-62

3-8 Fundamentals of Programming to Reduce Development Time 3-66
3-8-1 POUs (Program Organization Units) ... 3-66
3-8-2 Programs and Execution Priorities (Tasks) 3-66
3-8-3 Functions (FUNs) and Function Blocks (FBs) 3-68
3-8-4 Sections ... 3-69
3-8-5 Types of Variables ... 3-70

35

3-1 Programming with the Sysmac
Studio

3-1-1 Programming Procedure
This section describes how to create a simple ladder program using pushbutton switches and
lamps.
The overall programming procedure is given below.

3-1-2 Creating a Project

1. Start the Sysmac Studio.

2. Enter the project name.

Select NX1P2, 9024DT/1140DT for the device parameter and 1.13 (version indicated on the
NX1P) for the version parameter, and then click the Create Button.

Connecting NX1P to debug program using physical devices

Assigning variables to connected I/O devices in I/O Map

Programming

Creating a project

36

The following window is displayed.

Additional Information
You can change the model, version, and other properties after creating a project file.

Right-click

37

3-2 Parts of the Sysmac Studio Window
3-2-1 Screen for Configurations and Setup

3-2-2 Screen for Programming

Configurations
and Setup

Multiview
Explorer Toolbox

Programming

Edit Pane

Simulation
Pane

1. Select an item
to set up

2. Make settings or
create programs

3. Use as setup
assistant tools

38

3-3 Assigning Variables to Terminals
3-3-1 Variable Names for Terminal Numbers

Although Pushbutton Switches and Indicators are physically connected to the input and output
terminals of the NX1P, they cannot be used for programming now.
In order to create a program using the connected devices (I/O), you need to assign variable
names for the numbers of terminals to which devices are connected.

Any name can be assigned. Names related to the device type or processing are recommended.
For example, you can use “SW1” for a Pushbutton Switch connected to the input terminal 00 of
the NX1P because “SW1” is its name on the nameplate in the control panel. This makes it easy
to identify the device.

39

3-3-2 I/O Map Setting
Set variables for terminals.
I/O map setting means that variables used for a program are assigned to terminals (called “I/O
ports” in the Sysmac Studio) of the NX1P to which devices (I/O) are connected.

1. Double-click I/O Map under Configurations and Setup on the Multiview Explorer. The I/O

Map is displayed.

As the NX1P is selected for the device, all input/output terminals (I/O ports: Input Bit 00 etc.)
of the NX1P are displayed in the I/O Map.

2. Double-click an I/O port to enter a variable name.

Set variable names for input/output terminals as shown below.

Variable names for input terminals Variable names for output terminals
Terminal No. R/W Variable

name
Data type Terminal No. R/W Variable

name
Data type

Input bit 00 R SW1*1 BOOL Output bit 00 R L1*2 BOOL

Input bit 01 R SW2 BOOL Output bit 01 R L2 BOOL

Input bit 02 R SW3 BOOL Output bit 02 R L3 BOOL
*1. SW means a switch (Pushbutton Switch).
*2. L means a lamp (Indicator).

3. Enter “SW1” in the Variable Column of Input Bit 00.

40

4. In the same way, set SW2 and SW3 for Input Bit 01 and 02 and L1 to L3 for Output Bit 00 to
02.

The variable names have been linked with the terminal numbers.

41

3-3-3 Checking Wiring
1. Connect the NX1P to the computer (Sysmac Studio) via an Ethernet cable.

2. Go online, and then transfer the I/O map settings to the NX1P.

Go online Transfer to Controller

3. Change the operating mode to PROGRAM mode to prevent the program from being
executed while checking I/O wiring.

4. Press the Pushbutton Switches to check whether the values of the input bits change in the

I/O Map.

5. Select the I/O port. Right-click and select Set or Reset from the menu to check whether the
Indicator turns ON or OFF.

Change to PROGRAM mode

42

3-4 Ladder Programming
3-4-1 Inserting Circuit Parts

Inserting a Program Input or Output in an AND Structure

Shortcut key: Select a connecting line and press the shortcut key
Example: N.O. Input - C Key, output - O Key

Toolbox: Drag a circuit part from the Toolbox
Right-click: Right-click a connecting line and select Insert Input or Insert Output from the

Menu.

Inserting a Program Input in an OR Structure

Shortcut key: Select an input and press the W Key. (The N.O. input is inserted in an OR
structure)

Drag and drop: Drag the connecting line and select a circuit part from the pop-up menu

Inserting a Rung

Shortcut key: Select the start of a rung and press the R Key.
Right-click: Right-click a rung and select Insert rung above or Insert rung below.

3-4-2 Keyboard Mapping
The following table lists the shortcut keys that you can use when creating ladder programs.

Operation Shortcut keys Reference (Shortcut key in CX-Programmer)
Entering an N.O. input C Same key * C or L in CX-Programmer
Entering an N.C. input / Same key
Entering an OR with an N.O. input W Same key * Different cursor position
Entering an OR with an N.C. input X Same key * Different cursor position
Entering an output O Same key
Entering a NOT output Q Same key
Calling a function block F Same key * F for both FUN and FB
Calling a function I Different key * First letter of instruction
Inserting a rung below the cursor R Same key
Inserting a rung above the cursor Shift + R
* Select Keyboard Mapping Reference from the Help Menu to display the Keyboard Mapping Reference.

43

3-4-3 Rules
You Can

With the NX1P, you can program a ladder diagram that cannot be programmed with the CJ2 or
other traditional PLC.

 You can insert an output without inserting an input. (Always ON Flag is not required)

Functions and function blocks can also be inserted without inserting an input.

 You can connect outputs, functions, and function blocks in series.

You Cannot

 You cannot set a rung without any circuit parts.

 You cannot set a rung with only one input.

 You cannot connect any item other than output after an output.

44

3-5 Example of a Basic Ladder Program
3-5-1 Practice of Programming a Ladder Diagram

[Exercise] Coin Operated Parking Space

Three cars can be parked in the parking space. Create a program to turn ON the FULL lamp
(L3 (red lamp)) if the parking lots are full and turn ON the AVAILABLE lamp (L1 (green lamp)) if
one or more parking lots are available.
SW1, SW2, and SW3 are used as sensors to detect presence of cars.

 Completed program

FULL

AVAILABLE

45

3-5-2 Writing the Algorithm
1. Click POUs under Programming in the Multiview Explorer.

Programs, Functions, and Function Blocks are displayed under POUs.

2. Double-click Section0 under Programs - Program0.

The Ladder Editor is displayed.

3. Write a ladder program on the Ladder Editor.

Additional Information
When a new ladder program is created, Section0 will be marked with a red ! mark ().
This mark means that the program contains an error. It will disappear when the program
is written correctly.

46

(1) Insert a program input in an AND structure
Insert an input and enter the variable name.
1. Press the C Key or right-click a connecting line and select Insert Input from the

Menu.

In the same way insert circuit parts as shown below.

2. To insert an output, press the O Key or right-click a connecting line and select Insert
Output from the Menu.

(2) Insert a rung below.

1. Select the start of a rung and press the R Key, or right-click a rung and select Insert
rung below.

(3) Insert a program input in an OR structure

1. Insert an N.C. input and an output.
Insert an N.C. input by pressing the / Key and then insert an output.

S と入力し、変数リストから SW1 を

選択して、[Enter]キーを押す。

コメントが必要なければ、

[Enter]

Right-click

Enter “s”. Select SW1 from
the variable list and press the
Enter Key

Just press the Enter Key
if you do not enter any
comments

47

2. Inset an N.C. input in an OR structure. Select SW1 and press the X Key, or drag the
connecting line from the start point to the end point and select N.C. Input from the
menu.

Drag the connecting line
from the start point
to the end point

3. Insert another N.C. Input in the same way.

The program is completed.

3-5-3 Program Check
1. Select Check All Programs from the Project Menu.

Warnings and errors
are displayed

48

2. Modify the program if an error is found.
The results of the program check are displayed in the Build Tab Page.
Modify the program if an error is found.

3-5-4 Saving the Program
1. Save and export the project file before taking the next step.

Select Save from the File Menu.

2. Select Export from the File Menu. Enter a file name and export the file to the desktop.

Additional Information Difference between Save and Export

Save Export
The project is saved in the default
folder. The user does not need to
know where the project is saved.

To open the
saved project,
click Open
Project on the
Start page.

The project is Saved as a file.

To open the saved
project,
double-click the
file icon or Click
Import on the
Start page.

< Useful function >
Double-click the line of the error to

jump to the location of the error

49

3-5-5 Checking Operation on the NX1P
Connect the NX1P and the Sysmac Studio and download the project (all data including the
program) from the Sysmac Studio to the NX1P to check operation.
1. Connect the NX1P to the computer (Sysmac Studio) via an Ethernet cable.

2. Go online.

Start the Sysmac Studio and go online with the NX1P.

3. Download the project.

Click the Transfer to Controller Button.

Transfer to Controller

50

4. Change the operating mode to RUN mode.
Check the Controller Status Pane. If the mode is PROGRAM mode, change the operating
mode to RUN mode.

5. Check operation.

Turn ON and OFF the SW1, SW2, and SW3 to check whether the AVAILABLE lamp (L1)
and FULL lamp (L3) turn ON and OFF.

3-5-6 Checking Operation on the Simulator
You can check operation using the Simulator in the Sysmac Studio, without connecting the
NX1P (offline debugging).

1. Select Run from the Simulation Menu to start the Simulator.

2. The Simulator is started and connected after displaying some messages.

Change to RUN mode

51

3. Double-click the input. You can change the value between True (ON) and False (OFF) to
debug the program, instead of pressing the physical switch.

4. Select Stop from the Simulation Menu to stop the Simulator.

52

3-5-7 Example of a Program Error (Offline)
Delete the variable name “SW1” of input SW1 offline. Select Check All Programs from the
Project Menu. Errors are displayed in the Build Tab Page.

3-5-8 Example of an Error Occurred During Operation
Click the Troubleshooting Button (!) in the toolbar when an error occurs. The example below
shows a verification error that occurs when the NX1W-CIF01 Serial Communications Option
Board is not connected physically but is connected on the Sysmac Studio.
* Double-click Option Board Settings under Configurations and Setup - Controller Setup to configure the

Option Board settings.

Marked with a red line or red ! mark Displays a description
of the error

Press the Display Switch
Button to display the details

Displays status of NX1P

53

3-6 Example of a Ladder Program Using
a Timer Instruction

3-6-1 Self-holding Rung
Create a self-holding rung to turn ON L1 when SW1 is pressed and stay lit until SW2 is
pressed.

1. Create the program offline.

2. Delete the program created in 3-5 Example of a Basic Ladder Program.

Right-click the rung numbers to delete while holding down the Ctrl Key. Press the Delete
Key.

Although the ladder program is deleted, the I/O Map settings are not deleted and remain the
same as those configured in 3-3-2 I/O Map Setting.

3. Create the following rungs.

4. Click the SW1 input, and then press the W Key to insert L1 in an OR structure.

Self-holding rung

54

5. Click the connecting line to insert an N.C. Input. Press the / Key and enter “SW2”.

6. The self-holding rung is created.

3-6-2 On-Delay Timer (TON) Instruction
Create a rung to turn ON L2 in five seconds after SW1 is pressed.

Rung to add

(1) Refer to the help for details of the TON instruction

• Select Instruction Reference - Timer - TON from the Help Menu.

Select an instruction and

press the F1 Key to display

the Instructions Reference

Point

55

Additional Information
Difference between the TON instruction for the NX1P and the TIM instruction for the
traditional PLC

The TON instruction changes timer output Q to TRUE when the set time PT elapses after
timer input In changes to TRUE.
The timer is reset when In changes to FALSE. Elapsed time ET changes to 0 and Q
changes to FALSE.

(2) Input the set time
Specify a TIME data variable for the input parameter PT when inputting the set time.
For example, input “T#10.12s” to set to 10.12 seconds.

Classification Data
type

Data
size Alignment Range of values Notation

Durations TIME 64
bits

8 bytes T#-9223372036854.775808ms
(T#-106751d_23h_47m_16s_
854.775808ms) to
T#+9223372036854.775807ms
(T#+106751d_23h_47m_16s_
854.775807ms)

T#12d3h3s
T#3s56ms
TIME#6d_10m
TIME#16d_5h_3m_4s
T#12d3.5h
T#10.12s
T#61m5s (Equivalent to T#1h1m5s)
TIME#25h_3m

56

 Adding a rung using the On-Delay Timer instruction
1. Insert a rung below.

Right-click the existing rung and select Insert rung below, or select the start of a rung
and press the R Key.

2. A rung is inserted below.

3. Insert the N.O. input L1 as shown below.

4. Search for the TON instruction in the Toolbox on the right of the window or select TON in

the Timer in the Toolbox.

5. Add the TON instruction by dragging it from the Toolbox.
* You can also insert the TON instruction by right-clicking the desired location, selecting

Insert Function Block from the menu, and entering “TON”.

57

6. The TON instruction is inserted.

7. Enter the instance name of the TON instruction.

Click Enter Function Block and enter “Timer1”.

8. Set the parameters.

PT: T#5s
ET: Timer1PV

9. Insert an output that changes to TRUE when Timer1 times out.

Enter “L2” for the variable name.

58

3-6-3 Exercise: Energy Saving Escalator
This section explains the operation of the TON instruction.
This escalator does not move until someone approaches it. When a person passes in front of
the sensor (SW1), the motor (L1) starts. In order to save energy, the motor stops in five
seconds after the last person passes.

Tips
(1) Modify the created program.
(2) Insert an N.C. Input for timer output in the rung to stop the motor. There are two N.C.

input methods
① Specify timer output as a work bit (e.g., Timer1UP).
② Use Timer1.Q that represents the output status of the timer instruction.

(3) Modify so as to reset the timer when a person passes.

Add an N.C. Input (Timer1UP) in the first rung to stop L1 (the motor of the escalator in this
example) when Timer1UP changes to TRUE. Add another N.C. Input (SW1) to reset the
present value of the TON instruction. The program is completed.

■ Example (Output Timer1UP for when Timer1 times out)

59

■ Example (Using Timer1.Q)

3-6-4 Checking the Operation of the Program
Check the operation of the program.

1. Connect the NX1P to the computer (Sysmac Studio) via an Ethernet cable.

2. Go online, and then transfer the program to the NX1P.

3. Change input SW1 (passing person) to TRUE. Output L1 (lamp 1) changes to TRUE and

variable Timer1PV (present value of Timer1) is incremented as time elapses.

4. Change input SW1 to FALSE, and check that variable Timer1PV is reset.

5. Change input SW2 (stop button of the escalator) to TRUE, and check that output L1
changes to FALSE and variable Timer1PV is reset.

6. Change input SW1 to TRUE. Check that output L1 automatically changes to FALSE and

variable Timer1PV is reset in five seconds after nothing is done.

Present value of Timer1

L1 lamp

Go online
Transfer to Controller

Enter “Timer1” and “.” (dot). A list of possible candidates is
displayed.
The list shows that Timer1 has four data: In (input signal), PT
(set time), Q (timer completion flag), and ET (elapsed time).

60

● Checking the operation using the Simulator
1. Select Run from the Simulation Menu to start the Simulator.

2. Double-click the input. You can change the value between True (ON) and False (OFF) to

debug the programs, instead of pressing the physical switch.

3-6-5 Checking the Operation of the Program (Watch Tab Page)
You can also check the operation of the program in the Watch Tab Page.
Monitoring can be performed online on the NX1P or offline with the Simulator in the same way.

1. Select Watch Tab Page from the View Menu. The Watch Tab Page is displayed at the

bottom of the window.

2. Click the Watch Tab Page 1 Tab.

61

3. Click the Variables Bar at the top of the window. The variable table appears. Select the
variable to monitor from the variables (external variables and internal variables) used in the
program and drag it to the Watch Tab Page.

Register Timer1 by dragging it to the Watch Tab Page.

Drag

Click the ▼ mark, and check that data (timer start flag (In), timer set value (PT), timer
present value (ET), and timer completion flag (Q)) contained in Timer1 can be monitored.

4. Select the variable to monitor in the Ladder Editor and drag it to the Watch Tab Page.

Register SW1 by dragging it to the Watch Tab Page.

Drag

5. Execute the program. You can monitor the values.

6. Go offline before taking the next step.

Save and export the project file.
• Select Save from the File Menu.
• Select Export from the File Menu to export the file to the desktop.

62

3-7 Example of a Ladder Program Using
Date and Time

3-7-1 Programming the NX1P Using Date and Time
For example, best before date and time that is 30 hours from production is printed on boxed
lunch.

A program is required to

acquire date and time of production and
calculate the best before date and time by adding
30 hours to the acquired date and time

Programming with variables uses DATE_AND_TIME data (year, month, day, hour, minute, and
second), TIME data, and instructions to perform calculations easily.

3-7-2 Exercise: Continuous Operating Time of Escalator
Create a program to measure time by using the program created in 3-6-3 Exercise: Energy
Saving Escalator.

[Exercise] Acquire current time and calculate elapsed time

Measure continuous operating time of the escalator (continuous ON time of L1). Create a
program to subtract time of day when L1 turns OFF from time of day when L1 turns ON.

Tips
(1) Use the GetTime function to acquire current time.
(2) Use the SUB_DT_DT function to subtract date and time.
(3) The SUB_DT_DT function returns TIME data.

63

Add code to the program created in 3-6-3 Exercise: Energy Saving Escalator.

1. Insert a rung below.

Right-click the rung 1 and select Insert rung below, or select the start of a rung and press
the R Key.

2. Set upward differentiation for L1.
Press the C Key, or right-click a connecting line and select Insert Input from the Menu to
insert an input. Press the @ Key, or right-click the input and select Diff Up from the menu.

3. Insert the GetTime function to acquire date and time when L1 changes to TRUE.
Press the I Key and enter “GetTime” as the function name

Enter “StartTime” as the output variable name.

4. In the same way create another rung to execute the GetTime function when L1 changes to
FALSE.
To set downward differentiation, press the % Key, or right-click the input and select Diff
Down from the menu.

64

5. Insert the GetTime function and enter “EndTime” as the output variable name.

6. Insert the SUB_DT_DT (Subtract Date and Time) instruction to subtract StartTime from
EndTime.

Enter “LapTime” as the output variable name.

7. Click the Variables Bar at the top of the window to check the variable table.

StartTime and EndTime are registered as DATE_AND_TIME (date and time) data and
LapTime as TIME (durations) data.
The data types are automatically set according to the used instructions.

65

8. Execute the program.
Transfer the program to the NX1P or change the operating mode to RUN mode to use the
Simulator in the Sysmac Studio.

9. Click the Watch Tab Page 1 Tab.
Select StartTime, EndTime, and LapTime in the variable table and drag them to the Watch
Tab Page. Change the value of input SW1 from False to True and check the value of
variable LapTime. The value of variable LapTime shows the time from when output L1
changes to TRUE to when output L1 changes to FALSE.

10. Go offline before taking the next step. Save and export the project file.

Drag

66

3-8 Fundamentals of Programming to
Reduce Development Time

3-8-1 POUs (Program Organization Units)
 POUs

A POU (program organization unit) is a unit that is defined in the IEC
61131-3 and used to build the user program. There are three types of
POUs: programs, functions (FUNs), and function blocks (FBs).
FUNs and FBs that are reusable software components make
programming easier.

3-8-2 Programs and Execution Priorities (Tasks)
 Programs

Separate programs for different processes make programs easy to read and reuse.

Two different programming languages, ladder diagram and ST, can be used. You can
choose the appropriate language for each process and also program in ST within a ladder
diagram program (inline ST).

 Tasks
A task is an attribute that defines when a program is executed. You
can set a task period for each program.
To execute processes with high speeds, assign the program to the
primary periodic task that has the highest execution priority.
By assigning processes that do not require high-speed processing to
the task that has the lower execution priority, you can reduce the load
on the NX1P. One or more programs can be assigned to one task.

67

 Default task setting and addition of a program

1. When a project is created in the Sysmac Studio, Program0 (ladder program) is registered
in advance and assigned to the primary periodic task by default.
Create a program in Program0 because there is no need to worry about task setting.

2. When adding a program, right-click Programs under Programming - POUs and select

Add - Ladder or ST from the menu.
Program1 is added. Program2 will be added when you add another program. When
changing the name of the program, right-click Program* and select Rename from the
menu.

68

3. When assigning the added program to a task, double-click Task Settings under
Configurations and Setup and click the Task Settings Button and the Program
Assignment Settings Button.

3-8-3 Functions (FUNs) and Function Blocks (FBs)
Functions (FUNs) and function blocks (FBs) are instructions used in programs.
In traditional PLCs like the CJ2, they are called special instructions (e.g., MOV instruction =
FUN, TIM instruction = FB).
In addition to system-defined FUN/FBs, the uses can define their own FUN/FBs (user-defined
FUN/FBs).

 User-defined FUNs/FBs
You can define the existing programs that will be used in
other programs as FUNs or FBs.
You can program using the user-defined FUNs/FBs, which
makes programming easier and faster.

69

 System-defined FUNs/FBs
The FUNs/FBs available for the NX1P are listed in the Toolbox on the right of the window.
Drag an instruction to use in the program.

 Difference between FUN and FB
 Description Figure that

represents
instruction

Example

Function
(FUN)

An instruction
that performs a
single function.
The values of
internal variables
are not retained.

Bit string processing (AND, OR, XOR,
NOT)
Math (ADD, SUB, MUL, DIV, SQRT, LN,
LOG, EXP, SIN, COS, TAN)
Comparison (GT, GE, EQ, LT, LE, NE)
etc.

Function
block
(FB)

The values of
internal variables
are retained until
the conditions
are completed,
such as for
timers.

The name
(instance name)
is required.

Set, reset (SR, RS)
Trigger (R_TRIG, F_TRIG)
Counter (CTU, CTD, CTUD)
Timer (TP, TON, TOF)

Motion control (MC_HOME, MC_MOVE)
etc.

3-8-4 Sections
 Sections

You can divide a ladder diagram into smaller units and set a name
for each unit. This makes the program easy to understand and
manage. The section can be moved and deleted.
Programs are executed from top to bottom in the order that the
sections are displayed in the Multiview Explorer. To change the
order of execution, you must change the order of the sections.

Section0 is registered in Program0 by default.

70

 Adding a section
1. Right-click Program0 under Programming - POUs - Programs in the Multiview

Explorer. Select Add - Section from the menu.

2. A section with the name Section1 is added under Program0.

3-8-5 Types of Variables
 Global variables

Global variables are variables registered in the I/O Map and used for more than one
program. They can be accessed from any program.

 External variables and internal variables
External variables and internal variables are used only within one program.
When global variables (SW1 and L1) are used in programs, the global variables are
registered as external variables. Variables that are registered in programs (Timer1 and
Timer1PV) are registered as internal variables.

71

 Checking global variable
Check the global variables registered in 3-7
Example of a Ladder Program Using Date and Time. Double-click Global Variables under
Programming - Data in the Multiview Explorer.

Check that the variables such as SW1 and L1 registered in the I/O Map are automatically
registered as global variables.

Additional Information
Global variables are displayed in purple.

 Checking the variable table

Click the Variables Bar at the top of the Edit Pane.

The local variable table is displayed. Click the Externals Tab.

When variables (global variables) registered in the I/O Map are used in this program, they

72

are automatically registered as external variables.
Click the Internals Tab.

Variables registered in this program are automatically registered as internal variables.

73

4

4 Creating Programs to Handle
Data

This section describes how to create programs to handle data.

4-1 Variables Used for Data Processing ... 4-74
4-1-1 Arrays ... 4-74

4-2 Programming Exercise .. 4-75
4-2-1 Application Example ... 4-75
4-2-2 Programming .. 4-75
4-2-3 Creating a Project .. 4-76
4-2-4 Configuring Analog Option Board Settings 4-77
4-2-5 Assigning Variables to the Option Board and Input Terminal 4-77
4-2-6 Program Example .. 4-78
4-2-7 Creating an Array ... 4-79
4-2-8 Entering Programming Code ... 4-80
4-2-9 Checking the Operation of the Program .. 4-81
4-2-10 Referring Values of Array Variables ... 4-83

74

4-1 Variables Used for Data Processing
4-1-1 Arrays

The CJ2 and other traditional PLCs use Data Memory Area as a memory area for data
processing and storage.
The NX1P does not have Data Memory Area and uses variables as memory used for data
processing.

 Arrays

All_Data[n] shown above is called an “array”.
The elements of an array are expressed by adding a [subscript] to the name of the variable
that represents the entire array.
An element expressed by “variable name [subscript]” (e.g., All_Data[3]) is used as a
variable in programs.
Only one data type can be set for an array variable.
One name can be used for multiple variables, making the program easy to understand and
read.

75

4-2 Programming Exercise
4-2-1 Application Example

Create a program to store the first 10 values measured by the Displacement Sensor when the
Photoelectric Sensor (PH1) turns ON.

The value measured by the Displacement Sensor is stored in variable data1 as analog data
and then stored as an element of array variable All_Data.

4-2-2 Programming
This section describes the procedure to check operation using the Simulator in the Sysmac
Studio, without using physical devices.

76

4-2-3 Creating a Project
1. Start the Sysmac Studio.

2. Enter the project name. Select NX1P2, 9024DT/1140DT for the device parameter and 1.13
(version indicated on the NX1P) for the version parameter, and then click the Create
Button.

77

4-2-4 Configuring Analog Option Board Settings
1. Double-click Option Board Settings under Configurations and Setup - Controller

Setup in the Multiview Explorer.

2. Select NX1W-ADB21 (Analog Input Option Board) for the Option board 1 parameter.

4-2-5 Assigning Variables to the Option Board and Input Terminal
1. Select Configurations and Setup - I/O Map.

NX1W-ADB21 is displayed at the bottom of the I/O Map.

78

2. Select Ch1 Analog Input Value and enter “data1” in the Variable Column.

INT data from 0 to 4000 is stored in variable data1 according to the analog input value of
the Displacement Sensor (0 to 10 V).

3. Enter “PH1” in the Variable Column of Input Bit 00 to which the Photoelectric Sensor is

connected.

Variable PH1 is changed between True (ON) and False (OFF) by changing the ON/OFF
state of the Photoelectric Sensor.
The data type is Boolean.

4-2-6 Program Example
When PH1 changes to TRUE, the MOVE (data movement) instruction stores the value of
variable data1 in the nth element of array variable All_Data and the Inc (increment) instruction
adds 1 to n (n = n + 1).
The first time PH1 changes to TRUE, data1 (analog input value) is stored in All_Data[0]. The
next time PH1 changes to TRUE, it is stored in All_Data[1], and then All_Data[2].

79

4-2-7 Creating an Array
Create array variable All_Data[n].

1. Double-click Program0 - Section0 and then click the Variables Bar at the top of the Edit

Pane to display the variable table.

2. Click the Internals Tab to create internal variables.

Use an array specification for a data type.
Enter “All_Data” into the Name Column and then enter “Array” into the Data type Column.
The data type name candidate ARRAY[?..?] OF ? appears.

3. Enter “0” for the left question mark and “9” for the right question mark in the [?..?] section.

Next, enter “INT” for the question mark in the OF ? section. Array variables All_Data[0] to
All_Data[9] with the INT data type are registered.
Like with Data Memory Area of a traditional PLC (e.g., CJ2), values of variables can be
retained when power is turned OFF. Selecting the Retain Check Box.

All_Data[0]
All_Data[1]
All_Data[2]
All_Data[3]

All_Data[n]

80

4. Right-click in the internal variable table and select Create New from the menu.
Register INT variable n that is the element number of All_Data[n].
Enter “0” into the Initial Value Column in the variable table.

4-2-8 Entering Programming Code
1. Insert input PH1 and set upward differentiation. Select a connecting line and press the C

Key. Right-click the input and select Diff Up from the menu or press the @ Key.

Click Enter Variable and enter “PH1”.

2. Add the MOVE instruction. Search for “MOVE” in the Toolbox. Add the MOVE function by
dragging it from the Toolbox. (Or press the I Key and enter “MOVE”.)

81

3. Enter variables “data1” and “All_Data[n]” into the MOVE instruction.

4. In the same way as the MOVE instruction, enter variable “n” into the Inc instruction.

4-2-9 Checking the Operation of the Program
This section explains how to check the operation of the program on the Simulator.

1. Select Run from the Simulation Menu to start the Simulator.

2. Select Watch Tab Page from the View Menu to display the Watch Tab Page (Table).

Drag All_Data in the variable table to the Watch Tab Page.

82

3. Double-click data1 in the MOVE instruction to set the value.
Enter “123” and press the Enter Key.

4. Press the Enter Key on N.O. input PH1 to change the value between True (ON) and False

(OFF).
Change the value of PH1 to True (ON). “123” is stored in the value of All_Data[0] in the
Watch Tab Page.

Check that n of the Inc instruction is incremented by 1 and now it is 1.

5. Enter any value in data1 several times.

The values are set to array variable All_Data in order as shown above.

83

4-2-10 Referring Values of Array Variables
1. Use the following procedure to refer values of the registered array variables.

The figure below shows an example of the program to assign the value of All_Data[3] (the
4th value) to INT variable temp1.

2. Go offline before taking the next step. Save and export the project file.

84

5
5 Motion FB Programming

This section describes how to write programs using motion FBs.

5-1 Motion FB Programming .. 5-85
5-1-1 Motion FB Programming .. 5-85
5-1-2 Programming Procedure ... 5-85

5-2 Adding a Servo Drive and Setting the Parameters 5-86
5-2-1 Registering a Servo Drive .. 5-86
5-2-2 Registering the Axis ... 5-87
5-2-3 Setting the Axis Parameters .. 5-87

5-3 Creating a Program ... 5-89
5-3-1 Overview of the Ladder Program ... 5-89
5-3-2 Motion FBs to Use ... 5-89
5-3-3 Writing the Ladder Program .. 5-90

5-4 Data Tracing .. 5-93
5-4-1 Checking the Operation with Data Traces 5-93

5-5 3D Simulation .. 5-95
5-5-1 Starting 3D Simulation ... 5-95

85

5-1 Motion FB Programming
5-1-1 Motion FB Programming

This section explains how to create a program using PLCopen®-defined function blocks for
motion control (hereafter called motion FBs).
The motion FBs listed below can be used for the NX1P. You can implement your desired
motion control by combining the motion FBs.

 Single-axis positioning

Synchronized operation

Others

Continuous operation

MC_Power

MC_MoveJog

MC_Home MC_Move/Relative/Absolute

MC_MoveZero MC_MoveFeed MC_Stop

MC_MoveVelocity

MC_TorqueControl

MC_SetPosition

MC_SetOverride

MC_CamIn

MC_GearIn

MC_GearInPos

MC_GearOut

MC_MoveLink

MC_CombineAxes

MC_Phasing

MC_ZoneSwitch MC_TouchProbe

MC_CamOut

MC_Write

5-1-2 Programming Procedure
Create a program to perform simple positioning by using motion FBs.
The Sysmac Studio allows you to debug programs and check motion in 3D on the Simulator,
without using physical devices such as NX1P and Servomotors.

 Creating a project

Creating Unit/network configuration

Programming

Checking operation on Simulator

This Guide mainly explains how to use motion FBs. Although it is required to set up the
Servomotor and Absolute Encoder in real applications, this Guide does not explain it.

86

5-2 Adding a Servo Drive and Setting
the Parameters

5-2-1 Registering a Servo Drive
1. After creating a project, double-click EtherCAT under Configurations and Setup in the

Multiview Explorer to display the EtherCAT Tab Page.

2. Add a Servo Drive as the EtherCAT slave.
Click the Servo Drives in the Toolbox. The list of Servo Drives is displayed.
Double-click the Servo Drive to use. (Select R88D-1S□ in this example.)

3. The Servo Drive is added under the master.

87

5-2-2 Registering the Axis
1. Register the axis to perform motion control. Right-click Axis Settings under

Configurations and Setups − Motion Control Setup and select Add − Single-axis
Position Control Axis from the menu.

2. The axis MC_Axis000(0) is added as shown below.

5-2-3 Setting the Axis Parameters
Double-click MC_Axis000(0). The Axis Parameter Settings Tab Page is displayed. Set the
parameters used in this exercise.

1. Set the parameters in the Axis Parameter Settings Tab Page.

Select Servo axis.

Select Node : 1
R88D-1SN01H-ECT (E001).

88

2. Click the Unit Conversion Settings Button and check that settings are the same as
those shown below (default settings).

Additional Information
Although the 1S-series AC Servo System has a built-in absolute encoder, default
incremental encoder settings are used in this exercise.
When using as an absolute encoder, select absolute encoder in the Position Count
Settings Tab Page.

89

5-3 Creating a Program
5-3-1 Overview of the Ladder Program

Create a program using single-axis motion FBs to move a ball screw forward and backward
as shown below.

5-3-2 Motion FBs to Use
Three motion FBs are used for this exercise.

Additional Information
MC_Home is the Home instruction. Set the homing operation in the Homing Settings
Tab Page that is displayed by double-clicking Axis Settings - MC_Axis000. Zero
position preset (default) is used for this exercise.

Zero position preset: The present value becomes 0 when the MC_Home
instruction is executed

90

5-3-3 Writing the Ladder Program
1. Start the Sysmac Studio and create a project.

Double-click Section0 under Programming - POUs - Programs - Program0 in the
Multiview Explorer to open the Ladder Editor.

2. Insert N.O. Input start in the first rung.

Insert the MC_Power motion FB and enter “Power1” as the instance name.
(Search for “MC_Power” and drag the motion FB from the Toolbox.)
Enter “MC_Axis000” into the parameter for Axis.

3. Insert output power1_done (or any other name you prefer).

MC Axis000

Drag

91

4. Press the R Key to insert a rung below the first rung.
Insert N.O. Input power1_done and then insert the MC_Home motion FB.
Enter “Home1” as the instance name.

5. Insert output home1_done (or any other name you prefer).

6. Press the R Key to insert a rung below the second rung.

Insert N.O. Input home1_done and then insert the MC_MoveRelative motion FB.
Enter “Move1” as the instance name.

7. Set the parameters as follows. (You do not need to set other parameters in this exercise.)
• Distance : 1000 (pulses)
• Velocity : 1000 (pulses/s)
These settings move the ball screw the set distance in a second.

Drag

Drag

92

8. In the same way as step 6 and 7, insert another MC_MoveRelative motion FB to move
the ball screw backward at the same velocity. Enter “Move2” as the instance name. Set
the parameter for Distance to -1000 to move backward.

9. Insert output move_done as shown below.

The program is completed.

■ Completed program

93

5-4 Data Tracing
5-4-1 Checking the Operation with Data Traces

Use the traced data to check the positions during single-axis motion control.
1. Right-click Data Trace Settings under Configurations and Setup in the Multiview

Explorer and select Add − Data Trace from the menu.
DataTrace0 is added.

2. Double-click DataTrace0 to make settings. Select the Enable trigger condition Check

Box and enter “Program0” and “.” (dot). A list of possible candidates is displayed.
Select home1_done and TRUE (rising) to set the execution condition of the motion FB.

3. Set the variable to trace.

Click the Add Target Button (+) and specify MC_Axis000.Cmd.Pos.
Enter “MC_Axis000” and “.“ (dot). A list of possible candidates is displayed. Select Cmd
(command value) and Pos (position).

4. Select Run from the Simulation Menu. The program can be debugged without

connecting the NX1P physically.
Simulation starts and the color of the top of the Edit Pane changes to yellow green.

5. Click the Execute Button (red button) to start a trace.
A “Waiting for trigger ...” message appears on the status bar at the lower left of the
window.

94

6. Double-click Section0 to open the Ladder Editor.
Use the Set and Reset menu commands to change program inputs and outputs in the
Ladder Editor to TRUE or FALSE.
Double-click start in the first rung and select True.

7. When start changes to True, the trigger condition home1_done changes to TRUE and

the tracing starts.

The progress of tracing is displayed in a light blue progress bar at the lower right of the
window.
When the bar disappears, the tracing is completed.

8. Double-click DataTrace0 under Configurations and Setup - Data Trace Setting.

Check that position data is traced as shown below.
This graph shows that the Servomotor moves forward and backward every second. (The
X axis represents time and the Y axis represents travel distance (pulse).)

You can adjust the screen layout by using the icons shown below to display and hide
items.

95

5-5 3D Simulation
5-5-1 Starting 3D Simulation

1. Click the Display 3D Motion Monitor Button shown below. Close unnecessary windows.

2. Click the Settings Button shown below and select Add from the menu.

3. Select Single axis position control for the Type parameter in the 3D Machine Model List.

4. Enter “MC_Axis000” into the Value Column of Y Stage: Corresponding variable.

96

5. Enter “1000” into the 3D space size Box and “100” into the Scale resolution Box, and
then click the OK Button.

6. Click the Trace Data Loading Button shown below to load the traced data.

7. Check the 3D equipment motion by using the buttons shown below.

8. Use the three viewpoint operation buttons shown below to change and rotate your

viewpoint and zoom in and out of the 3D display area.

9. 3D simulation debugging is completed.

10. Go offline before taking the next step. Save and export the project file.

97

6
6 ST Programming

This section describes how to create ST programs.

6-1 Overview of ST Programming ... 6-98
6-1-1 Advantages of ST Language ..6-98
6-1-2 ST Programs Including Constructs ...6-98
6-1-3 Structure of ST and Example ...6-99
6-1-4 Operators ..6-99

6-2 NX1P Programming in ST .. 6-100
6-2-1 Writing an ST Program for NX1P ...6-100

6-3 ST Programming Exercise .. 6-101
6-3-1 Exercise of Numerical Calculation Programming6-101
6-3-2 Programming Procedures...6-102
6-3-3 Checking the Program ..6-104
6-3-4 Checking the Operation of the ST Program6-104

98

6-1 Overview of ST Programming
6-1-1 Advantages of ST Language

Machine control programs are becoming larger in size and more complicated. The
percentage of status control and interlock control that can be programmed easily in ladder
diagrams is decreasing. On the other hand, complex mathematical processing and data
storage that are difficult to program in ladder diagrams account for about 70% of an entire
program. The use of ST for this part makes programming easier and reduces program size.

6-1-2 ST Programs Including Constructs
Branch and loop statements such as “IF” and “FOR” can be used in ST programming, like
BASIC and C programming.
Programs including mathematical processing and control statements, which are difficult to
write in ladder diagrams, can be created easily.

99

6-1-3 Structure of ST and Example
Using general expressions, ST programming requires no special knowledge.
Remember the following two rules:
(1) Use a colon and an equals sign (:=) to assign a value to a variable.
(2) Statements must end with a semicolon (;).

Example

An example of the statement to calculate the distance between two points using Pythagoras'
theorem is shown below.
Just apply the formula.

■ Formula

𝐋𝐞𝐧𝐠𝐭𝐡 = �(𝐗𝟏 − 𝐗𝟎)𝟐 + (𝐘𝟏 − 𝐘𝟎)𝟐

■ ST program
Length := SQRT((X1-X0)**2+(Y1-Y0)**2);

* SQRT: Square Root

6-1-4 Operators
Operator Operation Notation example Priority
() First priority Value := (1+2)*(3+4); // Value is 21 1
-, + Sign +100, -100

2
NOT Logical NOT Value := NOT TRUE; // Value is FALSE
** Exponent Value := 2**8; // Value is 256 3
* Multiplication Value := 8*100; // Value is 800

4 / Division Value := 200/25; // Value is 8
MOD Remainder Value := 10 MOD 6; // Value is 4
+ Addition Value := 200+25; // Value is 225

5
- Subtraction Value := 200-25; // Value is 175
<, >, <=, >= Comparison Value := 60>10; // Value is TRUE 6
= Matches Value := 8=7; // Value is FALSE

7
<> Does not match Value := 8<>7; // Value is TRUE
&, AND Logical AND Value := 2#1001 AND 2#1100; // Value is 2#1000 8
XOR Logical exclusive OR Value := 2#1001 XOR 2#1100; // Value is 2#0101 9
OR Logical OR Value := 2#1001 XOR 2#1100; // Value is 2#1101 10

100

6-2 NX1P Programming in ST
6-2-1 Writing an ST Program for NX1P

You can create an ST program for the NX1P in two ways:
1. Using the ST language only
2. Partly using the ST language within a ladder program (inline ST)

In the second method, the ST program can be executed under a specified condition (e.g.,
when an input changes to TRUE) or can always be executed.

Additional Information
Adding a program and assigning the program to a task

(1) Right-click Programs and select Add − Ladder or Add − ST from the menu.

(2) Double-click Task Settings under Configurations and
Setup in the Multiview Explorer and then click the Program
Assignment Settings Button. Select the program to assign
to Primary Task and set the initial status.

101

6-3 ST Programming Exercise

6-3-1 Exercise of Numerical Calculation Programming
Create a ladder program including inline ST to calculate the distance between two points.

Exercise

Create a program to execute the ST code to calculate the distance between two points
when the Switch SW3 is pressed.

[Pythagoras' theorem]

𝐋𝐞𝐧𝐠𝐭𝐡 = �(𝐗𝟏 − 𝐗𝟎)𝟐 + (𝐘𝟏 − 𝐘𝟎)𝟐

102

6-3-2 Programming Procedures
1. Create a project. Double-click Section0 under Programming - POUs - Programs -

Program0 in the Multiview Explorer to open the Ladder Editor.

2. Click the Variables Bar to display the variable table.

3. Register the variables used for inline ST as internal variables in the variable table.

Press the Insert Key to insert a row.
LREAL (double-precision floating-point) data enables precise decimal point calculation.

4. Insert a rung and N.O. Input SW3. Set upward differentiation. (Press the @ Key on the

N.O. input.)

5. Right-click the connecting line as shown below and select Insert Inline ST from the
menu.

103

6. An inline ST box is inserted. Write the following ST code in this box:

Length := SQRT((X1-X0)**2.0+(Y1-Y0)**2.0);

7. Enter “Leng” of variable Length. A list of possible candidates is displayed. Select Length

and press the Enter Key.

8. Enter a space and “:” (colon). The assignment keyword := is entered automatically.

9. Enter “SQRT” (Square Root) and “(“ (left parenthesis). A description of the parameters is
displayed.

10. Enter “x”. A list of possible candidates is displayed. Select X1 and press the Enter Key.

Enter the statement to the end.

Enter “;” (semicolon).

104

6-3-3 Checking the Program
Inline ST programming is completed.

Select Check All Programs from the Project Menu to confirm that there is no error.
(Ignore a warning.)

6-3-4 Checking the Operation of the ST Program
1. Start the Simulator to check the operation.

Select Run from the Simulation Menu.

105

2. Check the operation.
Synchronize (download) the program. Assign any value to variables of two points (X0, Y0,
X1, Y1), and then press SW3. Check that the calculation result is displayed in the Online
value Column of Length.

3. Go offline. Save and export the project file.

Additional Information
Write the code created in 4 Creating Programs to Handle Data in ST.
Instead of using the MOVE and Inc instructions, you can use ST language that is a
BASIC or C-like language.

• Ladder programming

• ST programming (inline ST)

Assigns the right side to the left side
(= MOVE instruction)

Assigns the result of the expression n+1 to n
(= Inc instruction)

2018

 1218 (0917) P122-E1-02

	Introduction
	Terms and Conditions Agreement
	Precautions
	Related Manuals
	Revision History
	1 Programming the NX1P
	1-1 Overview
	1-2 Features of NX1P Programming
	1-3 Programming with Variables
	1-4 Programming Software

	2 Before You Begin
	2-1 System Configuration and Devices
	2-2 Installing the Sysmac Studio

	3 Ladder Programming
	3-1 Programming with the Sysmac Studio
	3-2 Parts of the Sysmac Studio Window
	3-3 Assigning Variables to Terminals
	3-4 Ladder Programming
	3-5 Example of a Basic Ladder Program
	3-6 Example of a Ladder Program Using a Timer Instruction
	3-7 Example of a Ladder Program Using Date and Time
	3-8 Fundamentals of Programming to Reduce Development Time

	4 Creating Programs to HandleData
	4-1 Variables Used for Data Processing
	4-2 Programming Exercise

	5 Motion FB Programming
	5-1 Motion FB Programming
	5-2 Adding a Servo Drive and Setting the Parameters
	5-3 Creating a Program
	5-4 Data Tracing
	5-5 3D Simulation

	6 ST Programming
	6-1 Overview of ST Programming
	6-2 NX1P Programming in ST
	6-3 ST Programming Exercise

